
Journal of Physics and Chemistry of Solids 181 (2023) 111542

Available online 10 July 2023
0022-3697/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Modelling crystallization: When the normal growth velocity depends on 
the supersaturation 

V.V. Ivanov a, C. Tielemann b,c, K. Avramova d, S. Reinsch c, V. Tonchev a,* 

a Faculty of Physics, Sofia University, 1164, Sofia, Bulgaria 
b ASML Berlin GmbH, 12347, Berlin, Germany 
c Bundesanstalt für Materialforschung und prüfung (BAM), 12205, Berlin, Germany 
d Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria   

A R T I C L E  I N F O   

Keywords: 
Crystallization 
Supersaturation 
Growth kinetics 
Growth rate 
Model verification and validation 
Johnson-Mehl-Avrami-Kolmogorov (JMAK) 
model 
Dimensional analysis (DA) 

A B S T R A C T   

The crystallization proceeds by the advance of the crystal faces into the disordered phase at the expense of the 
material excess, the supersaturation. Using a conservation constraint for the transformation ratio α∈[0,1] as 
complementing the rescaled supersaturation to 1 and a kinetic law for the normal growth velocity as function of 
the supersaturation raised to power g, the growth order, we derive an equation for the rate of transformation dα/ 
dt. We integrate it for the six combinations of the three spatial dimensions D = 1, 2, 3 and the two canonical 
values of g = 1, 2 towards obtaining expressions for αDg. The same equation, with g = 1 and D = n (n is the so 
called Avrami exponent) is obtained when taking only the linear in α term from the Taylor’s expansion around α 
= 0 of the model equation of Johnson-Mehl-Avrami-Kolmogorov (JMAK). We verify our model by fitting datasets 
of α21 and α31 (from α = 0 to αupper = 0.999) with JMAK to obtain from the fit n = 1.725, 2.43, resp. We show 
further how the values of n depend on the value of αupper to which the fit is performed starting always from 0. 
Towards building a validation protocol, we start with validating α21 with published results.   

1. Introduction 

Crystallization is a process of first order phase transformation from a 
disordered to an ordered, crystal phase [1]. One of its aspects is the 
significant symmetry reduction– from the highest for the embedding 
space, circular (O2) or spherical (O3) - that of the disordered state, down 
to the symmetry group of the forming crystal. It is the difference in the 
chemical potentials of the two phases that drives the transformation 
upon leveling the chemical potential when the equilibrium is 
re-established. At the end of the 1920’s a key concept in the theory of 
crystal growth was formulated by Walter Kossel [2], and, independently, 
by Ivan N. Stranski [3] – they identified the so called half-crystal or kink 
crystal position as the gear of the reproducible crystal growth – the 
attachment of a crystal building unit, atom or molecule, at the kink 
position creates the same number of bonds that the unit has in the 
volume of the crystal, since there, in the volume of the crystal, each bond 
is shared between the two units on each side of the bond. Instead of 
adding an illustration of what is kink we can imagine the crystal forming 
unit in the volume of the crystal and then cut one bond of any bond pair 
in given direction in such a way that the remaining bonds form a 

concavity for this atom (“half-volume, half-plane, half-step”). It is 
different from the so called nucleus (seed) since the kinks perpetuate the 
growth started from the nucleus. Of course, somewhere there, between 
the nucleus and the crystal is the first kink but with respect to the present 
text this is rather a philosophical problem. As a result the energy of the 
attaching unit is lowered and the so called latent heat is released in the 
ambience (equal to the energy difference coming from the bonds crea-
tion). Turning now the focus towards the disordered phase such an 
attachment-to-kink (A2K) event leaves behind a kink again if not 
reaching the end of the crystal. Through such a sequence of elementary 
acts the crystal symmetry is reproduced along the increasing length scale 
of the phenomenon, from atomic to macroscopic. It is the introduction of 
the concept of kink that paved the way to build the new, molec-
ular-kinetic theory of crystal growth, where the kinks play a key role [4, 
5] within the terrace-step-kink [6] paradigm that eventually led to the 
seminal model of Burton, Cabrera and Frank (BCF) [7,8]. Note that the 
“BCF thinking” is embedded in (1 + 1)D and, therefore, it does not 
distinguish on the conceptual level between step and kink. 

As already mentioned, crystals are finite objects and the crystal 
growth events – the attachments to kink positions, are not enough for the 
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process to be a self-sustaining one. Other, complementary events of 
attachment to positions where the attaching unit is less bound to the 
crystal than in the kink position are needed. They could be united under 
the general name of kink generation events, regardless of what they are 
called in various contexts – aggregation, (secondary) nucleation, etc. The 
process of kink generation could be rather complex one and require 
multiple stages, especially during the growth of three-dimensional 
crystals since the attachment of a single crystallizing unit to a smooth 
on the atomic scale crystal plane does not result in a kink. This is why the 
various realizations of the so called epitaxy employ as substrates ordered 
arrays of steps (and kinks on them) – the vicinal crystal surfaces, see for 
further discussion [9,10] and the references therein. 

Yet the first joint paper by R. Kaischew and I. N. Stranski [11] pro-
vides a criterion that could be used, in fact, to distinguish between the 
crystal growth (crystallization) and the aggregation. The original 
formulation defines the units which are bound to the crystal with fewer 
bonds than in a kink position as not belonging to the equilibrium crystal 
shape [6]. In the thought experiment proposed in Ref. [11] of removing 
such units one should also remove these that leave behind units less 
bound than in a kink position. Here a simple argument is provided in 
order to illustrate the approach of [11]: if one removes the units 
described above from the crystal until ending up with a flat crystal plane 
or a vicinal crystal surface with only kinks on the steps further removals 
are impossible and vice versa - since no planes can be observed at any 
stage of the aggregate growth, even if the aggregation is simulated on a 
regular lattice [12,13], the aggregate will be destroyed completely by 
such a thought (or translated in silico) experiment. From the same point 
of view, in 1D is impossible to distinguish in between crystallization and 
aggregation, and, in fact, from nucleation – everything that can happen 
in 1D is attachment to one of the two ends of the growing 1D “rod” 
(apart from the initialization of the rod growth). 

In the 30’s started a parallel theoretical development to meet the 
needs of the physical metallurgy in the description of phase trans-
formations, including re-crystallization (“order out of order”). The early 
development and success is mainly due to Johnson, Mehl, Avrami and 
Kolmogorov (JMAK) [14–16] and nowadays the number of papers that 
describe what the original modelling was designed for and how the 
consecutive applications went beyond the initial prerequisites, as for 
example the constant interfacial velocity, re-crystallization, etc., is 
steadily increasing, see a general discussion of JMAK in Refs. [17–20]. 
The use of the model for modelling the nucleation kinetics, the so called 
“N-t curves” – the dependence of the number of nuclei N of the time t, is 
beyond the scope of the present study but could provide an interesting 
perspective on the model itself. 

Here we start with the classical formula [21–25] of JMAK: 

α= 1 − exp[− ktn] (1)  

with n = 1, 2, 3 and 4 being the dimensionality of the space embedding 
the process plus 0/1 to account for the absence/presence of a parallel 
nucleation. As pointed out by Svoboda in Ref. [21] this expression is 
based on the concept of the extended volume, see for further details on 
this the review of M. Fanfoni and M. Tomellini [18]. We add to the 
abbreviation of the model the (stretched or Avrami) exponent n to which 
the time is raised, to arrive at the convenient form of abbreviation 
JMAKn. 

This expression acquired an enormous spread in the years providing 
[22] a flexible sigmoid curve with two fitting parameters, or three if 
subtracting from the time t some initial (induction) period t0, or even 
four if presenting α as α ≡ N(t)/Nmax as in the case of nucleation. 
Especially the relaxation of the restrictions on n – from integer-valued to 
real-valued one, leads to reporting various non-integer values with a 
side effect - the weird dimension of k that is expected to encode the 
dependence on the temperature - [k] = Time− n, that is why sometimes 
this dimension is omitted but what a physical meaning a kinetic constant 
with the dimension of Time− 1.7 would have, for example? The direct 

solution is to leave k in the inmost parentheses – which results in (kt)n, as 
done, for example, in Ref. [26]. 

Among the other alternatives of modelling growth phenomena, it is 
worth mentioning here the general purpose three-parameter model of 
Richards [27] with two special cases – the Verhulst [28] and Gompertz 
[29] models. It is also a four-parameter one when it is necessary to 
include also the maximal value of the quantity that is modelled, espe-
cially when modelling populations and their dynamics. 

In 2013 Nanev and coworkers [30,31] used, as part of their protocol 
for growing insulin crystals of certain size from solutions (“order out of 
disorder”), a model for the growth and dissolution of N equally-sized 
crystals in 3D, derived with the assumption that the supersaturation is 
not sustained, i.e. it is raised to a maximal value in the beginning of the 
crystallization. The prerequisites behind the model are simple – to 
formulate the mass balance by expressing the current concentration as 
function of the size of the crystals already grown and then, to plug it in 
into the expression for the growth rate based on the kinetic law for the 
normal to the crystal face velocity. In this way was obtained [30] a 
differential equation for the rescaled crystal size L ≡ l/lmax that is solved 
in the simplest case – for growth order g = 1, obtaining an expression for 
the dimensionless time T(L). Unfortunately, in 3D it is technically 
impossible to go further with obtaining analytical expression for L(T) 
[32]. Additionally, in Ref. [30] a dependence was also obtained that 
links the supersaturation to the crystal size and there it is was pointed 
out that such a dependence could serve to follow the evolution of the 
crystal size by monitoring the supersaturation. 

Later, a model in 1D with same prerequisites was employed by 
Kashchiev [33] and, as a result, he obtained JMAK1. Another comment 
is due here concerning the need to deal with care when modeling in this 
way the crystallization in reduced dimensions, D = 1, 2. It is of particular 
importance to have the diffusion field in the same constrained dimen-
sionality otherwise the applicability of the kinetics law may be 
questionable. 

2. The model 

The point of a first order phase transition is characterized by the 
coexistence of domains of both phases while at the critical point of 
second order phase transition the two phases become indistinguishable. 
Driving the system away from a first order transition point makes one of 
the two phases stable and the other one – metastable (when the devia-
tion is still small) or unstable. Then the domains of the stable phase grow 
invading the metastable one and it is the difference in the chemical 
potentials of the two phases that quantifies the driving force of the pro-
cess. Crystallization is an archetypical case of a first order phase tran-
sition. On atomic level and despite the different realizations, the crystal 
building units have to attach to the crystal, mainly to the kink positions 
from the crystal faces. Thus the crystallizing units leave the crystal 
surrounding - the disordered phase. As a result and when the supersat-
uration is not controlled, their number decreases there. That is why it is 
widely accepted to use the so called (relative) supersaturation [34] σ=(C 
- Ce)/Ce as a measure of the distance to equilibrium - when the con-
centration acquires its equilibrium value C = Ce then the growth seizes, 
and apart from the discussion of applicability of concentration (and not 
other quantities such as the activity, solubility, etc). Same type of an 
expression for the supersaturation is widely used to find the step velocity 
in the various sophistications of models of step flow growth [35] but 
there the equilibrium or reference [36] concentration Ce could account 
for the effect of the step-step interactions. 

The starting point of our considerations is the expression [30] for the 
normal growth velocity - the velocity of advancement of the crystal face 
(s) into the disordered ambience, as function of the (relative) supersat-
uration σ: 

r= βσg (2)  
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where β is a proportionality (kinetic) constant with the dimension of r, 
[r] = LT− 1, g is the growth order. Note, that in β is comprised a coefficient 
that accounts for the density change [30,35] during the phase trans-
formation, usually called molecular volume. The canonical values of g 
from Burton, Cabrera and Frank [7] are 1 in the regime of instantaneous 
kinetics (the diffusion limited regime of the growth) and 2 in the 
kinetically (attachment-detachment) limited one. Due to the resem-
blance to the way the kinetics of the chemical reactions is described in 
the law of mass action by Guldberg and Waage [30], the power g is 
called growth order although, formally, on the left hand side of eq. (2) is 
the velocity of the front of a first order phase transition and not the time 
derivative of a concentration as in the context of the chemical kinetics. 
Still, this motion is an effective one in the sense that each unit remains 
fixed after its attachment to the crystal thus mediating on the atomic 
scale the phase transformation, hence the motion of the crystal face. 

Our strategy will be first to assume that the number of growing non- 
interacting through the diffusion field centers is fixed and then to obtain 
a general equation for the time evolution of the transformation ratio α ∈

[0, 1] , see eq. (17) below, we will use a mass conservation relation to 
exclude the rescaled supersaturation: 

σ
σ0

=
C − Ce

C0 − Ce
(3) 

σ/σ0 ∈ [0,1], from the considerations that follow: 

α= 1 − σ/σ0 (4) 

The meaning of the conservation condition (4) is rather simple – a 
crystal building unit cannot be at the same time both in the crystal and in 
the disordered phase (ambience). In principle, one could arrive at (4) 
without the detailed considerations leading to (3) but only defining a 
quantity that complements the transformation ratio α to 1 to plug it in 
(6) below. 

Thus, we continue by expressing the normal growth velocity r via the 
rescaled supersaturation and the initial normal growth velocity r0: 

r / r0 =(σ/σ0)
g (5) 

and, therefore: 

r = r0(1 − α)g (6) 

The overall growth rate G defined in terms of time derivative of the 
characteristic crystal size l is: 

G ≡ dl/dt (7) 

and could be obtained as twice the normal growth velocity assuming 
that any two crystal faces remain parallel to each other in the course of 
the so called polyhedral growth during which the crystals grow in each of 
the two opposite directions preserving their polygonised shapes: 

G= 2r0(1 − α)g (8) 

In experiments when the supersaturation is driven to its maximal 
value in the beginning of the growth and not sustained further as in the 
so called batch crystallization mode [37], and the parallel nucleation in 
the volume is suppressed, as in the variants of the so called double im-
pulse technique [38], a fixed amount of N crystals is growing in parallel 
retaining the same characteristic size l [30]. One of the conditions for 
this to be fulfilled is N to be small in order to not allow for the over-
lapping of the concentration fields around each of the growing crystals 
[30] and while the diffusion is slow (compared to the growth kinetics), 
hence g = 1, this is more likely to happen. For example, when the 
diffusion of the incorporating units is a priori slow, as in the case of 
protein crystallization, g = 1 is preserved along almost the whole range 
of studied supersaturations, see Ref. [39] (after linearization of the axes 
of their Fig. 4, otherwise the authors obtained g = 3 in log-log co-
ordinates when fitting with a linear dependence through the whole 
range of points). Thus, an additional constraint in our model is on the 

value of g - it remains fixed throughout the whole process. Still, one 
should have in mind that g could change with the decrease of the su-
persaturation [7] but this is a subject of a parallel study. The growth will 
seize when the system is again at equilibrium and the maximal value of 
the characteristic crystal size lmax is achieved [30]: 

lmax =

(

Vm
C0 − Ce

N

)1/D

(9) 

Note that the maximal crystal size lmax is a function of the initial 
concentration difference [30] - a material excess that will be shared 
among the N identical and independent copies of the same growing 
crystal. This time the molecular volume Vm is written explicitly in the 
equation above. 

We proceed now with non-dimensionalization [40] by introducing a 
dimensionless quantity – the rescaled size l/lmax and dividing and 
multiplying the left hand side of equation (7) with lmax to combine it with 
(8): 

lmaxd(l/lmax)

dt
= 2r0(1 − α)g (10) 

Thus, from (10) arises in a natural way the time scale of the 
phenomenon: 

τDg ≡
lmax

r0(g)
=

(

Vm
C0 − Ce

N

)1/D
/

β[(C0 − Ce)/Ce]
g (11) 

a composite parameter comprising through r0 and lmax the initial 
concentration excess, the number of growing crystals N, and including 
also the growth order g and the kinetic coefficient β: 

τDg ≡
lmax

r0(g)
=

V1/D
m

Cg
e β

(
1
N

)1/D

(C0 − Ce)
1
D− g (12) 

It is important to stress that the dimensions of quantities used in eq. 
(11) should be tweaked carefully in order to arrive at the dimension of 
length in the numerator. This could be achieved if all three quantities in 
the parentheses will be defined with the dimension of Length− D. In order 
to compare the time scale (11) with the time scale of the JMAKn model 
from Ref. [41] we provide here its formula as defined for the case of 
growth of a constant number of crystals N: 

τJMAKn ∼
1

UN1/D (13)  

where U is the constant interfacial velocity – an intrinsic property of the 
JMAK model. Note also that the two time scales, (11) and (13), differ 
overall by a factor of ~1.1 as will be seen below. 

Now the differential equation (10) is written in a non-dimensional 
form (omitting the indices of τ for simplicity): 

d(l/lmax)

d(t/τ) = 2(1 − α)g (14) 

On the other hand, α is simply the rescaled volume of the crystal 
phase α = (l/lmax)

D [42] provided that the number of the growing crys-
tals N is fixed from the beginning of the crystallization. Substituting l/
lmax = α1/D in (14): 

d
(
α1/D

)

d(t/τ) = 2(1 − α)g (15) 

and, performing the differentiation in the numerator of the left hand 
side of (15), to arrive at: 

α(1− D)/Ddα
Dd(t/τ) = 2(1 − α)g (16) 

Thus we obtain finally: 
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dα
d(t/τ)= 2Dα(D− 1)/D(1 − α)g (17) 

One can modify further (17) by adding indices to α and τ in order to 
denote them as D- and g-specific: 

dαDg
/

d
(
t
/

τDg
)
= 2Dα(D− 1)/D

Dg
(
1 − αDg

)g (18) 

Equation (17) comprises the combined action of two opposite feed-
back mechanisms – a positive (auto-catalytic) and a negative (self- 
limiting) one. The positive feedback term is 2Dα(D− 1)/D

Dg independently of 
the value of g. In D = 1 it is 2, so there is no positive feedback and the 
one-dimensional “crystal” grows via consecutive attachments to the two 
endpoints at any stage of the process. In D = 2 the positive feedback is 
4α1/2

2g = 4(l /lmax) and this is the rescaled perimeter of the growing crystal 
(s), it increases during the growth and thus the rate of transformation 
increases as well. In D = 3 it is 6α2/3

3g = 6(l/lmax)
2- the rescaled area of the 

6 squares enclosing the growing cube. For D = 2, 3 and g = 1 the 
negative feedback results from the multiplication of the positive one 
with αD1 taken with a negative sign. For g = 2 and α still close to 0, the 
negative feedback is already 2α-times the positive feedback and this is 
why the curves for еach D = 2, 3 are having their maximal values for 
lower values of α compared to the g = 1 curves, and their magnitudes are 
also lower, see Fig. 1. When α increases approaching 1, an additional 
term, proportional to α3, adds to the positive feedback and this explains 
why there are observed inflection points on the two curves meaning 
slowing the decrease of the magnitude due to this additional term. This 
effect may look like a change in the growth mechanism but it is not. 

Towards the integration of (18) we separate the variables: 

dαDg

α(D− 1)/D
Dg

(
1 − αDg

)g = 2Dd
(
t
/

τDg
)

(19) 

A general solution of the differential equation (19) can be found in 
the following form: 

t(α)= 1
2D

В
(

α; 1
D
, 1 − g

)

(20)  

Here В(x; a, b) =
∫x

0

ta− 1(1 − t)b− 1dt is the incomplete Euler beta func-

tion. Solving for α(t) we obtain: 

α(t) =В− 1
(

2Dt;
1
D
, 1 − g

)

(21)  

where В− 1 is the inverse of the beta function. This solution is general but 
a closed-form expression usually cannot be obtained for an arbitrary 
choice of D and g. Instead, we develop a numerical procedure [43] based 
on the differential form, eq. (16), to produce αDg for real-valued D’s and 
g’s. Analytically it is still possible to integrate (19) for the three integer, 
physically justified, values of D = 1, 2 and 3, combined with one of the 
two canonical values of g = 1 or 2, see the results in Table 1. Note that for 
D + g ≤ 3 expressions for α(t) are presented there while for D + g > 3 
only expressions for t(α) are obtained. Note further that α11 coincides, in 
fact, with JMAK1. We will show that with the increase of D (above 1), 
the divergence between the two models increases, Table 4. 

In order to obtain the inflection points of the model curves above, 
Fig. 2, we differentiate both sides of equation (17) to obtain: 

α″≡ d2α
/

dt2 = − 2α− 1/D(1 − α)g− 1
[(Dg+D − 1)α − D+ 1]α′ (22) 

Substituting the first derivative and simplifying further: 

α″= − 4DαD− 2
D (1 − α)2g− 1

[(Dg+D − 1)α − D+ 1] (23) 

A necessary but not sufficient condition for an inflection point t* to 
exist is: 

α″*(t*)= 0 

Therefore, we obtain the equation: 

− 4Dα*
D− 2

D (1 − α*)2g− 1
[(Dg+D − 1)α* − D+ 1] = 0 (24) 

Solving it for α* gives the three possible solutions below, which we 
will analyse: 

α= 0, if D > 2  

α= 1, if g > 1/2  

α=
D − 1

Dg + D − 1
(25)  

α = 0,1 cannot be the values at the inflection point and the only possible 
candidate left is eq. (25). 

Fig. 1. The phase space of our model - six different time derivatives of α, 
following from equation (18). Also shown is the constant rate, independent of α 
which corresponds to the line α = t/τ on the integral plot, Fig. 2. 

Fig. 2. The integral curves αDg of our model. Main figure: g = 1, inset: g = 2. 
The line α = t/τ is not only a “guide to the eye” – here, for example, it serves as 
a reference line to compare the behavior of the curves for the different values 
of g. 
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It should be noted here that if D = 1 for any value of g, α* = 0 and, 
therefore, all α1g models do not have an inflection point. 

From above we have a general solution for t = f(α,g,D). Substituting 
(25) in (21) we obtain that if an inflection point exists, it will have the 
following coordinates: 

{t*|α*}=
{

1
2D

B
(

D − 1
Dg + D − 1

;
1
D
, 1 − g

)⃒
⃒
⃒
⃒

D − 1
Dg + D − 1

}

(26) 

Using further this notation we show the values of the t* and α*, see 
Table 2 and Fig. 3 below. 

3. Model verification 

It is rather natural to start the model verification by using the JMAKn 
model since it is widespread in the crystal growth and glass community 
[19,44], even wider [20,21,45] than supposed by its prerequisites. 
Throughout the remaining part we will use the model with the following 
expression (compare with [41]): 

α= 1 − exp
[

−

(
2t

τJMAKn

)n]

(27) 

The time is multiplied here by the factor of 2 thus bringing the in-
flection points of the expression close to the line α = t/τJMAK, see Fig. 3. 

3.1. The differential form of JMAKn 

In this subsection we study the differential form of the JMAKn model 
with the primary goal to find the correspondence between the two time 
scales -τDg and τJMAKn. First we find an expression for t(α): 

t / τJMAK =
1
2
[− ln(1 − α)]1/n (28) 

in order to differentiate it with respect to α: 

d(t/τJMAK)

dα =
[− ln(1 − α)]

1− n
n

2n(1 − α) (29) 

and then to find the time derivative of α according to the inverse 
function theorem: 

dα
d(t/τJMAK)

= 2n(1 − α)
[

ln
(

1
1 − α

)]n− 1
n

(30) 

Table 2 
Inflection points of the αDg curves. Note that for D = 2, 3 and g = 1, the two 
inflection points lie on the different sides of the α = t/τ line although both are 
close to it. Compare with Table 3.  

D/g 1 2 

1 – – 
2 {0.329 | 1/3} {0.260 | 0.200} 
3 {0.417| 0.4} {0.365 | 0.250}  

Table 3 
Inflection points of the JMAKn model. The comparison with the inflection points 
of αDg is illustrated in Fig. 3.  

n 1.725 2 2.43 3 4 

{(t/ 
τ)* 
|α*} 

{0.303| 
0.343} 

{0.354| 
0.393} 

{0.402| 
0.445} 

{0.437| 
0.487} 

{0.465| 
0.528}  

Table 4 
Values for D and the conversion factor cf resulting from fitting datasets ob-
tained using JMAKn with typical values of n, with values of α ∈ [0, 0.9999], g is 
fixed to 1 throughout thе fitting session, τJMAKn = 1. The datasets with n = 3, 4 
are also fitted but only to illustrate the divergence between the two models 
with the departure from n = D = 1. 

Table 1 
Integral behavior of the model for the six combinations of the spatial dimension D = 1, 2, 3 and g = 1, 2 [7]. Closed-form expressions for α(t) are obtained only for D + g 
≤ 3, the three shaded in grey cells, while for the other three cases only expressions for t(α) are achieved by the integration.  

D g 

1 2 

1 α11 = 1 − exp( − 2t /τ11) α12 =
2t/τ12

2t/τ12 + 1 
2 α21 = tanh2(2t /τ21)

t /τ22 =
1
4

(
α1/2

22
(1 − α22)

+ tanh− 1α1/2
22

)

3 
t

τ31
=

1
12

⎛

⎜
⎝ln

⎛

⎜
⎝

α2/3
31 + α1/3

31 + 1

(1 − α1/3
31 )

2

⎞

⎟
⎠ + 2

̅̅̅
3

√
tan− 1

( ̅̅̅
3

√
α1/3

31

2 + α1/3
31

)
⎞

⎟
⎠

t
τ32

=
1
18

⎛

⎜
⎝

3α1/3
32

1 − α32
+ ln

⎛

⎜
⎝

α2/3
32 + α1/3

32 + 1

(1 − α1/3
32 )

2

⎞

⎟
⎠ + 2

̅̅̅
3

√
tan− 1

( ̅̅̅
3

√
α1/3

32

2 + α1/3
32

)
⎞

⎟
⎠

Fig. 3. Inflection points of the two models – JMAKn and αDg.  
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For similar expressions see Ref. [26], in 2D [46], also [18] and their 
eq. (18), but formulated in terms of a probability for given α. Note that 

1
1− α > 1 when 0 < α < 1. 

Now we expand in Taylor series the logarithm in (30) about α = 0: 

ln
(

1
1 − α

)

=
∑∞

k=1

αk

k
, |α| < 1 (31) 

Truncating (31) only to the linear in α term, i.e. k = 1, we obtain: 

dα
d(t/τJMAK)

= 2nαn− 1
n (1 − α) (32) 

to recover (17) with g = 1 and D = n and, in particular, to get: 

τJMAKn ≡ τD1 

One should keep in mind that the above result holds when α→ 0 and 
we will see below that the two time scales differ overall by a factor of 
about 1.1 for D = 2, 3 and g = 1: 

τJMAKn ≈ 1.1τD1 (33)  

3.2. Inflection points of JMAKn 

The position of the inflection point is of primary importance when 
deciding to fit data with a model that possesses an inflection point but 
the data (still) does not. Also, the different positions of the inflection 
points of two models that are to be compared (cross-fitted) point at 
difference in their time scales and one could judge this difference 
directly. The time to achieve the inflection point could be used for non- 
dimensionalization of a model, logistic [47] or JMAKn [48]. 

It is straightforward to derive the inflection points {(t/τJMAKn)*
⃒
⃒α*}

of JMAKn as: 

{(
t/τJMAKn

)
*
⃒
⃒α*
}
=

{
1
2

(
n − 1

n

)1
n
⃒
⃒
⃒
⃒
⃒
1 − e1− n

n

}

(34) 

In the form of an expression, eq. (34) is presented as: 

t*(α*)=
1
2

(

log
(

1
1 − α*

))1+log(1− α*)

, 0<α* ≤ 1 −
1
e

(35) 

See in Table 3 these for some chosen values of n and comparison with 

the inflection points of αDg in Fig. 3. This is the small difference in the 
numerical values of the inflection points that is to be compensated when 
fitting one of the models with the other leading to the observation(33). 

3.3. Verification: fitting α21 and α31 with JMAKn 

In this subsection we will fit the two most interesting realizations of 
αDg - α21 and α31 with the JMAKn model in the form of (27). For the 
former we have (see Table 1) an analytical expression in terms of α21 =

tanh2(2t/τ21) while for the latter we have only the dependence t = τ31f 
(α31) and this can be used to build a dataset of uniform values of α31 
between 0 and 1 to obtain further the corresponding values of t/τ31. 
Alternatively, one can use the numerical procedure developed in 
Ref. [43] in order to generate values of α31 using uniform values of t/τ31. 
The difference between the two procedures is subtle but leads to a small 
difference in the value of the obtained Avrami exponent n when fitting 
the two datasets with JMAKn, eq. (37). It is n = 2.5 in the former case 
and n = 2.43 in the latter and results from fine differences in the dis-
tribution of the numerical values, see also Table 4 for the resulting 
values of D when fitting (back) JMAKn. As canonical value for the case of 
fitting α31 with JMAKn should be adopted n = 2.43. 

Important aspect of the fitting between the models is that when non- 
dimensional expressions are used, the scales used for non- 
dimensionalization, in our case the time-scales, are not necessarily the 
same. Therefore, (dimensionless) conversion factors cf are to be used: 

τJMAKn = cf τDg (36) 

and then the fitting function that uses JMAKn becomes: 

α= 1 − exp
[

−

(
2t
/

τDg

cf

)n]

(37) 

Note the use of the so called Avrami plot [22] technique, Figs. 5 and 
6, to distinguish between the models. 

The importance of the upper value of αupper to which is fitted a dataset 
was realized in the past [49] but is still not part of the fitting protocols. 
Here, this is quantified in Figs. 7 and 8. In all multiple fits of the same 
dataset the initial value of α is 0. These two figures contain a clear 
message – when fitting data obtained from experiments the results 
depend on the range of the data and this could mask the true model that 
applies in the concrete case. 

Fig. 4. Fitting α31 and α21(inset) with JMAKn, in both cases the time scale is 
τJMAKn = cf τDg , with cf ≈ 1.1 overall. The data points for the α31 dataset are 
drawn using the numerical procedure developed in Ref. [43] instead of using 
the alternative route – from the analytical t(α31) dependence. 

Fig. 5. Avrami plot α21 of together with JMAKn with two exponents n = 1.725 
and 2, note the different conversion factors in the two cases – while JMAK1.725 
fits the overall curve with cf = 1.1, JMAK2 is drawn with cf = 1. 
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4. Towards model validation 

The validation of a new model is not a singular event but a process 
that takes many stages and our aim here is rather to build the lines of 
validation towards a unified protocol that would permit to place the 
further studies in a ready frame. 

4.1. Fitting back JMAKn with αDg 

Here we use the developed numerical procedure (see Appendix 1) in 
which the parameters of our model – D and g are allowed to be real- 
valued and thus to serve as fitting parameters. We are going to fit 
datasets prepared from the JMAKn model with chosen values of n and 
with τJMAKn = 1. Throughout this session we will also fix g = 1 since we 
have already seen, eq. (30), that JMAKn contains also the term (1 − α). 
This is, in fact, an important simplification before relaxing g too since we 
still do not know the numerical behavior of our procedure and, thus, of 
the model. The first datasets prepared are with an “ideal” interval of the 

transformation ratio values - α ∈ [0, 0.9999]. 
It should be noted also that the “globally optimal” (αupper ≈ 1) set of 

fitting parameters (D, g, cf ≈ 1.1) for a particular value of n in JMAKn, 
leads to an αDg curve that is metrically (the so called ‘l2 – norm’) close to 
the curve of JMAKn. Conversely, the Taylor expansion of JMAK results 
in n = D, g = 1, cf = 1 thus leading to a curve that is identical to JMAKn 
only at the beginning of the process and diverges away from it for larger 
transformation ratios. 

4.2. Validation in 2D 

In 2005 Min et al. [50] used TEM to study the kinetics of crystalli-
zation in a quasi-2D system – ALD Ta2O5 films deposited on Si sub-
strates. Using the difference between the crystal and the amorphous 
phase in the TEM images they found for three different selected sub-
strate temperatures – 790 ◦C, 820 ◦C and 850 ◦C, different values of n =
2.5, 1.9 and 1.7, see Fig. 9. It is clearly seen that the rescaled data plotted 
within the original data ranges do not collapse on a single master curve 
due to the differences in n. We digitized their data, Fig. 7 in Ref. [50], 

Fig. 6. Avrami plot of α31 together with JMAKn with two exponents n = 2.43 
and 3. Only when α is close to 0, D = n. JMAK2.43 fits the overall curve and cf 
= 1.1 while JMAK3 is drawn with cf = 1. 

Fig. 7. Changing the upper threshold of the fitting interval of α21 with JMAKn, 
from αupper = 0.3 up to αupper = 0.999 changes the found values of n (on the left 
y-axis) and the conversion factor (lower curve, right y-axis) obtained. In all 
cases the starting value of α21 = 0. The values for αupper = 0 are taken from the 
Taylor expansion of JMAK2. 

Fig. 8. Changing the upper threshold of the fitting interval of α31 with JMAKn, 
from αupper = 0.1 up to αupper = 0.999 changes the values of n(on the left y-axis) 
and the conversion factor (lower curve, right y-axis) obtained. In all cases the 
starting value of α31 = 0. The values for αupper = 0 are taken from the Taylor 
expansion of JMAK3. 

Fig. 9. The three values for n found in Ref. [21] when fitting the crystallization 
data with JMAKn are used here to illustrate how would look the rescaled data, 
with αupper = ~0.4 (790 ◦C), ~0.8 (820 ◦C), ~1 (850 ◦C). 
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and fitted it with α21 = tanh2(2(t-t0)/τ21) as shown in Fig. 10. 
In the course of preparing the present text more data sets were suc-

cessfully analyzed using the same approach, for example [51,52], but 
the results will be published elsewhere. 

4.3. Towards a general validation protocol 

The protocol of model validation should probably start with a 
shortcut to the procedure described above and using the “canonical” 
curves in Figs. 7 and 8 as illustrated in Fig. 13. Such a preliminary check 
does not require additional tools but only a simple procedure of multiple 
fitting the experimental data with JMAKn changing the upper bound of 
the fitting interval αupper. 

Apart from this easy check, one should judge whether the data is 
collected from a system that corresponds to the prerequisites of our 
model – D > 1, rate of transformation that depends on the supersatu-
ration, diffusion-limited regime of growth for g = 1 throughout the 
whole process. Then, one takes the experimental dataset and fits it with 
JMAKn. If the transformation is almost completed, α→ 1 the values of n 
expected are n→2.43 in 3D and n→1.725 in 2D. Still, n below 3 is within 
the range of our model and experiments done in 3D are to be preferred 
since there the difference between the expected n = 3 and the obtained 

one is bigger. Then, one fits again the data with both JMAKn and αD1 but 
this time fixing n = D to obtain the time scales from the two models, then 
the values of R2 could serve for initial judgment. Then one rescales the 
time of the dataset separately by the obtained time scales and plots in 
separate plots the result for JMAKn and αD1 together with the curves of 
the corresponding models to see how the data points collapse on them. 
Yet at that stage one should be able to judge which of the two models 
performs better. As a last tool, one can plot the two corresponding 
rescaled datasets in Avrami [22] plots – the data that are described 
better by JMAKn remain ordered along a straight line there while the 
data that fits better with αD1 is “turning” clock-wise (see Fig. 12), 
starting from the corresponding n and turns almost gradually towards 
lower values of n achieving at the end even lower ones compared with 
the value of n that best fits the αD1 model overall, 1.725 or 2.43 in the 
corresponding dimension. 

5. Discussion and conclusion 

In this paper we derive from the first principles a model of crystal 

Fig. 10. The crystallization data from Ref. [50] fitted with α21, R2 = 0.996, 
0.999, 0.999, respectively. 

Fig. 11. Crystallization data from Ref. [50] rescaled with the fit parameters t0 
and τ21 obtained from fitting with α21. 

Fig. 12. Rescaled data from Fig. 11 plotted in Avrami coordinates. It is clearly 
seen that the experimental data follow the general direction of α21. 

Fig. 13. Comparison between the predicted behavior of the Avrami exponent n 
and the conversion factor cf between the two timescales of α21 and JMAKn and 
the behavior found from the crystallization data reported in Ref. [50] after 
subtracting the initial time from all values of time in order to sidestep the need 
of using t0 in the fit. In order to obtain cf from the experimental data the value 
of τ21 found from fitting the whole dataset, up to α = 0.8, is used. 
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growth dynamics in conditions in which the supersaturation is raised 
only at the beginning of the process and is not sustained further, so, it 
expires due to the crystallization. After formulating the differential 
equation that describes the process (18) for chosen combination of 
spatial dimension and growth order we integrate it we derive expres-
sions for the time evolution of the transformation ratio, Table 1. Further 
we study our model in parallel with the model of Johnson-Mehl-Avrami- 
Kolmogorov and one of the practical reasons to use JMAKn to fit our 
expressions for αD1, D = 2, 3, see Fig. 4, is to bracket the range of 
experimental data to be re-visited by our model, and, more specifically, 
those that are resulting in non-integer values of n when fitted with 
JMAKn. We also show, by obtaining the differential form of JMAKn and 
expanding it in Taylor series around α = 0 that αD1, D = 2, 3 coincide 
with n = 2, 3 including identity of the two timescales τD1 = τJMAKn. 

Fitting successfully published experimental data [50] with α21 we lay 
down the directions of building a general protocol for validating and 
using further our model. 

An interesting corollary of our investigation (and the recipe sug-
gested in III.3) is that the data points that have the largest discriminatory 
power for the different models are those close to the end of the process 
(α→ 1). This can be seen both analytically (JMAKn’s Taylor series vs. 
αD1) or numerically (the “turn” in Avrami plots). Such a conclusion is 
somewhat unintuitive – one expects that close to the equilibrium all 
differences should “even out”, while the quick power law growth (α ∼

tD) at the beginning should be where differences between growth re-
gimes should be most pronounced. 

Thus, the widespread usage of JMAKn could be rationalized on the 
basis of this conclusion. Crystallization is rarely driven to completion, 
especially when the timescale is on the order of days. This, combined 
with the relaxation on the requirement for the exponent n to be an 
integer value has made the JMAKn to produce “artificially good” nu-
merical results, while the understanding of the growth process has been 
somewhat left behind. This should be taken as a general principle when 
modelling sigmoid growth – while a lot of sigmoid curves would most 
likely yield good fitting results, without keeping in mind the assump-
tions under which they were derived, one might find themselves 
attempting to “fit” the experiment to the model, instead of the opposite. 
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Appendix 1. Numerical procedures of fitting with αDg 

Numerical integration 

As it was discussed in the main text of the paper, directly integrating and obtaining a closed-form expression for the curve is not possible in general. 
To sidestep this problem, we develop a simple numerical procedure for solving the main differential equation of our model, eq. (18), based on 
Dormand & Prince RK8 (5,3) – DOP853 in Python. In the SciPy library [53] an implementation of DOP853 with dense output can be found. This allows 
us to run the numeric integration for a given set of parameters - D, g, τDg and time interval - [tinitial, tfinal] once and use 7th – degree polynomial 
interpolation after that to calculate the value of α for arbitrary values of t ∈ [tinitial, tfinal]. 

Using such high order initial-value problem solvers is justified for two reasons – the right-hand side of the only differential equation is 
“computationally cheap” to evaluate, so using a high order RK method would not impact the time-performance much. On the other hand, this allows us 
to obtain highly accurate solutions that would make subsequent numerical methods (such as optimizers, equation solvers, etc.) more stable. 

All our numerical code is freely available on GitHub [43]. 

Non-linear least squares fit (NLSQ) 

Being able to calculate arbitrary values of α for a given integration interval allows us to proceed with fitting the model parameters D, g, τDg to a 
given dataset – either experimental data or datapoints generated from another model such as JMAK-n. Here it is important to constrain the opti-
mization problem with the proper bounds for the parameters. A well-suited procedure for such a constrained non-linear least-squares problem is the 
Trust Region Reflective algorithm (TRF) which is generally robust even when the initial guess is far from the minimum. Again, an implementation of 
TRF can be found in SciPy which only requires as input the initial guess and a function that calculates the residuals vector for a given parameter set. 
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This combined procedure can be found in our “parameter_finder.py” script, which has been the main numerical core for the present investigation. 
Uniform approximation (UNIFORM) 

We can also rewrite the fitting procedure described above in term of uniform (min-max) approximations. This can be done by directly minimizing 
the infinity-norm of the residuals vector (instead of the Euclidean norm) using the Nelder-Mead simplex algorithm provided in SciPy. This can be 
useful, since a least-squares fit guarantees that “the average error” is small, while an uniform approximation guarantees that at all points the error is 
bounded by some maximum value. Even though the maximum norm is continuous, it is not smooth. This has the side effect that the solution might not 
be unique, and it can pose serious problems for a gradient-based optimizer. That is why a simplex algorithm has been used. An implementation of the 
uniform approximation method can be found in the “parameter_finder_uniform.py” script. 
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