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Abstract: Density-based phase-field (DPF) methods have emerged as a technique for simulating
grain boundary thermodynamics and kinetics. Compared to the classical phase-field, DPF gives
a more physical description of the grain boundary structure and chemistry, bridging CALPHAD
databases and atomistic simulations, with broad applications to grain boundary and segregation
engineering. Notwithstanding their notable progress, further advancements are still warranted
in DPF methods. Chief among these are the requirements to resolve its performance constraints
associated with solving fourth-order partial differential equations (PDEs) and to enable the DPF
methods for simulating moving grain boundaries. Presented in this work is a means by which the
aforementioned problems are addressed by expressing the density field of a DPF simulation in terms
of a traditional order parameter field. A generic DPF free energy functional is derived and used to
carry out a series of equilibrium and dynamic simulations of grain boundaries in order to generate
trends such as grain boundary width vs. gradient energy coefficient, grain boundary velocity vs.
applied driving force, and spherical grain radius vs. time. These trends are compared with analytical
solutions and the behavior of physical grain boundaries in order to ascertain the validity of the
coupled DPF model. All tested quantities were found to agree with established theories of grain
boundary behavior. In addition, the resulting simulations allow for DPF simulations to be carried out
by existing phase-field solvers.

Keywords: density phase field; grain boundaries; numerical methods

1. Introduction

Grain boundaries play an out-sized role in determining material properties in metals
such as strength, electrical and thermal conduction, etc. A significant amount of research
has been conducted to determine how particular grain boundary arrangements can be
achieved through different synthesis processes and conditions in order to obtain desired
properties in polycrystalline materials. A more difficult problem has been determining
how to predict and control the evolution of grain boundary networks over time. The
ability to accurately model the evolution of grain boundaries is necessary for being able
to predict how metallic material properties evolve in response to heat, stress, magnetic
fields, and other phenomena [1]. Such modelling has been facilitated by the advent of
high-performance computer systems which now alloww for in silico experiments to extend
from the quantum scale to system/macro level simulations.

Many of today’s open problems in materials science have to do with limitations to
computational modelling associated with length and timescales. The larger the system
modelled, the more underlying physics is often neglected or simplified in order to make
the problem computationally feasible. The problem of grain boundary network evolution
falls into such a category. Classical phase-field methods have emerged on the mesoscale
describing microstructure evolution [2]. Significant progress has been made in phase-
field modeling of grain boundary motion in polycrystalline materials, especially with
the development of the multi-phase-field methods to explore grain boundary junctions,
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vertexes and their dynamics in various setups [3–5]. Yet, grain boundaries exhibit an
incredible level of detail and variation in behavior at the atomic scale (low-angle grain
boundary arrangements, special character boundaries, random high-angle boundaries,
twist vs. tilt configurations, etc.). Atomistic simulations can capture such details of many
if not all of these grain boundary behaviors but are computationally too expensive for
studying the influence of such phenomena on the time scales of grain boundary network
coarsening. The classical phase-field simulations sacrifice much of the aforementioned
details of grain boundary physics in order to operate at lengths and timescales at which
grain boundary coarsening can be observed, relying on phenomenological descriptions
of grain boundaries as opposed to physical models. An overview of the application of
phase-field methods to grain growth problems is given in the following references [6–10].
A broader overview of traditional phase-field theory and capabilities can be found in the
following references [3,4,11,12].

To overcome some of these challenges, density phase-field (DPF) methods have arisen
as an attractive alternative for describing grain boundaries in a more physical manner
than traditional phase-field methods based on logistic-type order parameters (φ) [13–18].
The idea behind DPF simulations is that the free energy of a grain boundary is more
directly related to the atomic density at the grain boundary as opposed to traditional
order parameters. The reduced density and disordered atomic environments at grain
boundaries result in significant bond strains that are the ultimate source of the excess grain
boundary energy. The atomic density order parameter enables DPF simulations to be
integrated with CALPHAD databases while strongly linked with atomistic simulations
in a physically-sound manner. The resulting density-based free energy functional is able
to capture the temperature and composition dependence of grain boundary energetics,
giving an accurate description of grain boundary phase behavior that may not present in
traditional phase-field simulations [19,20]. The remainder of this introduction provides a
brief overview of the types of DPF simulations available, as well as a discussion on the
current technical challenges associated with carrying out DPF simulations.

1.1. Overview of Density Phase-Field Theory

DPF solvers work similarly to their classical counterparts in that they minimize a free
energy functional of the form given by Equation (1) by solving a model A type equation for
unconserved dynamics (Equation (2)).

F =
∫

v
Fv(ρ,∇ρ, . . . ) dV (1)

∂ρ

∂t
= −mρµρ (2)

with the potential function µρ = δFv
δρ . Typically, a normalized form of atomic density is used

such that ρ = 1 at equilibrium associated with the parent bulk phase. One can calculate the
real atomic density simply by multiplying the reference bulk atomic density being studied
(ρ0

atom) by the local value of the normalized density (ρatomic = ρ0
atomicρ). To avoid confusion

between ρ and ρatom, the reference atomic density is expressed as the inverse of the molar
volume (ρatom = V̂−1

0 ). The form of the volumetric free energy function Fv varies between
models. In its most basic and general form, it mirrors classical phase field free energy
functionals in that it is composed of two terms: a bulk term to describe the free energy of
the system as a function of local density plus a gradient energy series to take into account
the energy associated with spatial variations of ρ. The general form of the volumetric free
energy functional is given below.

Fv = fbulk(ρ) + ∑
i

κi|∇iρ|2 (3)
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Kamachali derived the volumetric free energies as a deviation from the bulk free energy
curve of a solid solution [13]. For a regular solution, the free energy is presented in
Equation (4)

Fv = XA

(
EB

Aρ2 + (KB
A + PVA − TSB

A)ρ + κA,1|∇ρ|2 + κA,2|∇2ρ|2
)

+ XB

(
EB

Bρ2 + (KB
B + PVB − TSB

B)ρ + κB,1|∇ρ|2 + κB,2|∇2ρ|2
)

+ ρ2ΩXAXB − T∆SB
mix + κX |∇XB|2 (4)

Equation (4) resembles the standard CALPHAD formulation, upgraded with the
density-dependent terms and the gradient energy terms. Compared to the classical phase-
field models [3], a major advantage of DPF approach is that it allows for the natural
development of grain boundary free energy functional, integrated with the CALPHAD
framework. This allowed for the successful prediction of spinodal decomposition occurring
at the grain boundaries outside of the bulk miscibility gap in the iron alloys [14,19] as well
as in the platinum-gold system [15]. Jacobson et al. took a different approach by using
atomistic theory to derive a free energy functional based on interatomic potentials [21]. The
resulting class of simulations has been termed the Molecular Phase-Field method (MoPF);
the general and Morse forms of which are given by Equations (5) and (6).

Fv =
ρ

V̂0
∑

i

ni
2

Ubond(ρ) + ∑
i

κi|∇iρ|2 (5)

Fv =
ρ

V̂0
∑

i

ni
2

ε

[
e−2α(r∗i ρ

− 1
3−r0) − 2e−α(r∗i ρ

− 1
3−r0)

]
+ ∑

i
κi|∇iρ|2 (6)

The primary advantage of the MoPF model is that the interatomic potential parameters used
as inputs to the model naturally convey material-specific characteristics to the model. For
example, in the absence of gradients, the MoPF method correctly predicts the bulk modulus
of the material. For grain boundaries, the grain boundary free energy is a natural consequence
of the model rather than an objective value that the model must be calibrated for in order to
reproduce. However, the atomistic simulations can be computationally expensive.

There are two key differences between classical phase-field and DPF methods. In a
classical phase-field simulation, the order parameter φ represents crystallographic mis-
orientation, but the association between the misorientation and the order parameter is
rather arbitrary. The atomic density field on the other hand is physically linked with the
substructure of the grain boundary. This constraint is taken into account by modifying the
model A equation. Typically, the model A equation relies on a potential function µρ that
follows a non-conserved variational form given below.

µρ =
δF
δρ

=
∂Fv

∂ρ
−∇ ∂Fv

∂∇ρ
(7)

Considering the mass conservation, the evolution of the density field shall be taken as
below, taking ∆µρ instead of µρ.

∂ρ

∂t
= −mρ∆µρ (8)

Here, the potential difference indicates the relation between the change in density and
mass transfer into or out of the boundary. Assumed in the density-based model is that
the source/sink of these atoms corresponds to a reservoir consisting of a perfect crystal
at constant density (ρ = 1) where the density potential µρ = µ0

ρ. In such a reservoir, the
gradient contribution to the density potential is zero. If we assume that the energy change
due to a change in reservoir volume is negligible (a change in reservoir volume is necessary
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to keep the density constant), the resulting form of µ0
ρ is simply the volumetric free energy

of an unstrained perfect crystal as is shown in Equation (9).

∆µρ =
δF
δρ

(ρ,∇ρ, ...)− Fv(ρ = 1,∇ρ = 0, ...) (9)

In reality, density changes in a grain boundary typically occur through vacancy emission
and absorption [22]. The reservoir concept defined above is meant to provide a simpler
and more computationally efficient means of modelling grain boundary density dynamics
than attempting to model vacancy migration, generation, and elimination at the mesoscale.

Another key difference between the DPF methods and classical phase-field simula-
tions deals with what we term the center boundary condition. Grain boundaries are non-
equilibrium defects that are inherently unstable. If not for the existence of a large activation
barrier associated with grain rotation, grains would simply reorient themselves such that all
grain boundaries were eliminated. The aforementioned activation barrier is a direct result of
the crystallographic misorientation between the two grains composing the boundary. Unfor-
tunately, this activation barrier is not captured in DPF models which necessitates a “center
boundary condition”, i.e., the density at the grain boundary center must be specified and
held constant throughout the simulation. If this was not the case, grain boundaries in DPF
simulations would simply dissipate until the normalized density everywhere equaled one
(the equilibrium value). The density at the center boundary condition is the lowest density in
the entire simulation and is referred to as ρmin. The choice of ρmin can be based on a variety of
criteria but is most often meant to relate with the misorientation angle [13] and to match the
minimum calculated density of a grain boundary generated using molecular dynamics.

1.2. Issues with the Density Phase-Field Method
1.2.1. Theoretical Issues

The DPF model was derived assuming that only attractive interatomic forces were
needed. By doing so, this greatly simplifies the complexity of calculating µρ, but at the ex-
pense of thermodynamic consistency. We illustrate this problem using the single component
free energy functional and its respective density potential difference given below.

Fv = ρ(ρÊA + K̂A + PV̂A − TŜA) + κρ|∇ρ|2 (10)

∆µρ = (2ρ− 1)ÊA − κρ∇2ρ (11)

In the absence of any gradients, ∆µρ(ρ = 1) should equal zero because ρ = 1 is defined
as the equilibrium condition. Due to the simple linear form of the potential energy, this
condition is not naturally met and is imposed by the condition of having ρ ≤ 1 throughout
the system. While being a robust solution for studying static grain boundaries, we have
found that such enforcement schemes introduce non-physical behaviors into dynamic
simulations. This motivated our desire to improve the density-based free energy functional
such that the equilibrium condition is met in a dynamic state.

1.2.2. Computational Challenges

There is a computational challenge associated with the center boundary condition.
Although the center boundary condition is necessary for grain boundaries to exist in DPF
simulations, it makes simulating the motion of grain boundaries difficult. The question
arises as to how can the center boundary condition be moved such that the density field
evolves in a natural manner? Although distinct from DPF, the authors point to the work
by Phillippe et al. to further illustrate the numerical difficulties that arise from solving the
evolution equations of grain boundaries using non-trivial free energy functionals [23].

The gradient energy terms in the DPF free energy functional are another source of dif-
ficulty in carrying out DPF simulations. Classical phase-field models are limited to a single
first-order term in gradient energy. However, higher-order gradient terms are known to sig-
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nificantly improve the accuracy of phase-field models as well as the DPF model. Additionally,
the resulting higher-order partial differential equations (PDEs) are much stiffer and more
computationally intensive to solve than lower-order PDEs. The DPF simulations are shown
to give a smooth density profile with a minimum of first- and second-order gradient terms.
This fact is demonstrated in Figure 1, one computed with only the first-order gradient term
(plot A) and another with both first- and second-order terms (plot B). As a result, the model A
equation for DPF simulations is a fourth-order PDE that is significantly more difficult and
time-consuming to solve numerically than it is for classical phase-field simulations.

Figure 1. Plot (A): the density field of a non-coupled DPF simulation where only the first term of
the gradient energy series is included. Plot (B): the density field of a non-coupled DPF simulation
where the first two terms of the gradient energy series are included. Notice that the inclusion of
the higher-order gradient energy term eliminates the sharp point at the grain boundary center. The
inclusion of the of the higher-order gradient energy terms also results in the larger than bulk density
regions at the grain boundary periphery.

In this study, we seek to address the issues outlined above and answer the following
questions:

• What are the thermodynamic criteria that density phase field free energy functionals
should meet?

• How can the DPF methods be made dynamic?
• How can the performance constraints associated with solving a fourth-order PDE be

overcome?

2. Theory
2.1. General Criteria for Density Free Energy Functionals

This section is dedicated to answering question one from the introduction. Generally,
a thermodynamically consistent density free energy functional needs to, at a minimum,
meet the following criteria:

1. Fv(ρ = 1,∇ρ = 0) = F0
v

2. ∆µρ(ρ = 1,∇ρ = 0) = 0

3. ∂µρ

∂ρ (ρ = 1,∇ρ = 0) > 0

4. Fv(ρ = 0,∇ρ = 0) = 0
5. ∂Fv

∂ρ (ρ = 0,∇ρ = 0) = 0

The first of these criteria is the continuity condition stating that the free energy should
align with the bulk value F0

v , whenever the excess density and its gradients vanish. The
second criteria ensures that the bulk state of (ρ = 1,∇ρ = 0) is a true equilibrium state. The
third criteria ensures that the bulk equilibrium is stable. Criteria 4 and 5 are referred to as
the sparse particle conditions. They ensure that atoms that are far apart have a negligible
influence on one another. It should be noted that these criteria are useful for making the
volumetric free energy more physically accurate across its entire domain, but have limited
effect on the region of the free energy curve (ρ ≈ 1) relevant to grain boundary simulations.
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The original density-based formulation does not meet the second and third criteria because
repulsive interatomic contributions were not included. As noted above, such interactions can be
explicitly modelled using the approach taken by Jacobson et al. by constructing the volumetric
free energy functional from interatomic potentials. Here, we take a simpler approach by deriving
a polynomial from of the bulk component of the volumetric free energy that satisfies criteria
1–5. For a grain boundary at T = 0 K, the kinetic and entropic portions of the free energy
functional are zero. We further assume that the pressure volume contribution is small enough
to be neglected. Thus, the volumetric free energy can be expressed purely in terms of the molar
potential energy ÊA (Fv,bulk = ρ

V̂0
ÊA(ρ).) Recognizing that ÊA(ρ = 1) is the cohesive energy

(Eco), one can write
Fv,bulk = ρEco f (ρ) (12)

Equation (12) meets criteria 1–3 when f (ρ) gives f (ρ = 1) = 1, ∂ f
∂ρ |ρ=1 = 0 and ∂2 f

∂ρ2 |ρ=1 < 0
as Eco < 0. Infinitely many different polynomial forms can be constructed to meet such
criteria. Under the premise that simpler is better, we use the following form of f (ρ).

f (ρ) = ρn(aρ2 + bρ + c) (13)

Parameters n and a are free variables that can be used to change the potential well shape
which corresponds to a change in the bulk properties of the material being modelled. The
characteristic shape of Equation (13) is shown in Figure 2 where the curves illustrated
demonstrate the influence of parameters a and n on the well shape. Once parameters n and
a are chosen, b and c can be determined through the following equations.

b = −(n + 2a) (14)

c = 1 + a + n (15)

A more thorough derivation of the above two expressions is provided in the Appendix A.

Figure 2. Plot (A): the bulk volumetric free energy function from Equations (12) and (13). Plot (B): the
bulk component of the density potential difference corresponding to to Equations (12) and (13). Values of
the cohesive energy and bulk modulus are−1 and 1, respectively (Eco = −1, V̂−0 1 = 1). Parameters a and
n are varied to show their influence on the free energy curve well shape. Notice that for every curve the
density potential difference at a density of one equals zero. This is by design to ensure that the bulk state
(ρ = 1) is a stable equilibrium.

2.2. Linking Order Parameters with Density

Questions two and three can be solved by coupling the density phase-field method
with traditional order parameters. We reintroduce the order parameter φ into the simulation
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as an independent field variable and make the density dependent on φ according to
Equation (16)

ρ = 1− 4(1− ρmin)φ(1− φ) (16)

Doing so resolves the issues of the center boundary condition because the density field is
naturally at a minimum where φ = 0.5. Now the temporal evolution of the density variable
can be achieved by solving the model A equation with respect to φ and recalculating ρ
using Equation (16) after every time step. The evolution equation is derived below.

∂φ

∂t
= mφ

(
δF
δφ
− µ0

φ

)
(17)

δF
δφ

=
∂Fv

∂φ
−∇ ∂Fv

∂∇φ
(18)

The reference component of Equation (17) (µ0
φ) can be calculated simply by appending the

derivative of ρ with respect to φ to the equivalent reference component in Equation (9).

µ0
φ = Fv(ρ = 1,∇ρ = 0)

∂ρ

∂φ
(19)

The first term of Equation (18) can be solved for through use of the chain rule.

∂Fv

∂φ
=

∂Fv

∂ρ

∂ρ

∂φ
(20)

A direct connection between the mobilities (mφ and mρ) is not possible because the use of
the center boundary condition when carrying out density dynamics prevents the expression
∂ρ
∂t = ∂ρ

∂φ
∂φ
∂t from being valid over the entire domain. The second term of Equation (18) can

be solved for explicitly by substituting Equation (16) into the gradient free energy series.
Doing so increases the complexity of the free energy functional though without alleviating
the large performance constraints associated with solving a fourth-order PDE. Instead, we
motivate an approximation that simplifies the free energy functional in addition to making
the evolution equation second order.

The gradient energy term is meant to take into account the excess energy resulting
from non-equilibrium environments associated with the spatial transition of a field variable.
For the case of DPF simulations, the gradient energy is meant to take into account the
disordered bonding environment found at grain boundaries. Atomistic simulations indicate
that the greatest degree of disorder is found at the center of the grain boundary as opposed
to at its periphery. Thus, we can surmise that the gradient energy series should predict a
maximum free energy at the grain boundary center. This is why gradient energy terms
with orders in excess of one are required for non-coupled DPF simulations. At the grain
boundary center, the density gradient must be zero and by extension the first order term of
the gradient energy series is zero. Even when a second order term is included, there are
still non-physical artifacts in the resulting density field. One will notice in Figure 1 that
the sharp grain boundary center is eliminated by the inclusion of the second order term,
but that the density is now overestimated in the periphery of the grain boundary where
the density values exceed 1. It is possible that the addition of more higher-order terms
would eventually yield a satisfactory density profile, but determining the coefficients for
said terms would be non-trivial and the resulting PDEs would be stiff and require time
step sizes that are too small to be considered practical. As a result, we make the following
simplifying assumption.

∑
i

κi|∇iρ|2 ≈ κφ|∇φ|2 (21)

The motivation for this assumption is two-fold. From a computational stand point, it
reduces the evolution equation to second order and simplifies the free energy functional.
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From a theoretical stand point, we simply note that the density profiles obtained using the
approximation given by Equation (21) more closely match density profiles obtained from
atomistic simulations than density profiles obtained using the the density gradient energy
sum. Examples of density profiles obtained from atomistic simulations are shown in the
second figure of the work by Jacobson et al. [21]. The fully coupled form of the volumetric
free energy functional that will be used throughout the remainder of this work is given by
Equation (22)

Fv =
ρn+1

V̂0
Eco(aρ2 + bρ + c) + κφ|∇φ|2. (22)

The order parameter and density profiles resulting from a free energy expression, such as
Equation (22), are given in Figure 3.

Figure 3. Plot (A): the equilibrium order parameter field φ achieved by minimizing a free energy
functional with a volumetric free energy of the form given by Equation (22). Plot (B): the equilibrium
density profile obtained by taking the curve of φ present in plot (A) and using Equation (16) to
determine ρ.

3. Methods

We seek to demonstrate the validity of coupling ρ and φ in addition to the enhanced
functionality afforded by doing so. To this end both one and two dimensional DPF models
were developed that use explicit finite differencing to solve the model A equation for the
time evolution of the density and order parameter fields. This section outlines a series of
tests that are used to validate the use of coupled DPF simulations as well as demonstrate
their ability to accurately describe grain boundary physics.

3.1. Equilibrium Grain Boundary Properties

The two main equilibrium quantities of interest in grain boundary simulations are
the boundary width and excess energy. Real grain boundaries are approximately 1 nm
wide with excess free energies on the order of 1 J

m2 at room temperature. These are average
values under normal conditions with variations possible because of material composition,
grain boundary type, temperature, stress state, etc. We evaluate the fitness of the coupled
DPF model by varying the values of ρmin and κφ in order to see their influence on both
grain boundary width and excess energy. The grain boundary energy is calculated using
Equation (23).

γ =
1
A

∫
[Fv − ρFv(ρ = 1)]dV (23)

The grain boundary width can be calculated from the profile of ρ using a simple threshold
criterion, e.g., the grain boundary region consists of the region of the density curve where
ρ < ρcut). The expression used for ρcut is provided below.

ρcut = 1− 0.01

(
1− ρ0

min
1− ρmin

)
(24)



Metals 2023, 13, 1497 9 of 16

3.2. Dynamic Properties of Planar Grain Boundaries

For planar grain boundaries, the intrinsic driving force for grain growth is zero.
A number of non-intrinsic driving forces for grain growth can be imposed on planar
grain boundaries such that grain boundary motion occurs. A linear relationship exists
between the boundary velocity and the driving force per unit area (pressure) as shown in
Equation (25) where v equals the grain boundary velocity, mGB equals the grain boundary
mobility, and P equals the driving pressure for motion.

VGB = mGBP (25)

In order for a phase-field model to be considered valid, Equation (25) should hold. More
explicitly, the relationship between grain boundary velocity and driving force should be
linear. The means by which an applied driving force can be exerted on a planar grain
boundary in a phase-field simulation is shown below.

The relation between grain boundary velocity and the evolution of the field variable φ
is given by Equation (26).

vGB = φ̇|∇φ|−1 (26)

Combining Equations (25) and (26), one can express the evolution of the order parameter
field in terms of the applied driving force.

φ̇ = mGBP|∇φ| (27)

The grain boundary mobility multiplied by the applied driving pressure we refer to as the
speed factor. Finally, Equation (27) can be added to the model A equation (Equation (17) to
provide a motion equation for the order parameter field that includes the influence of an
external driving force for grain growth.

φ̇ = −mφµφ + mGB|∇φ|P (28)

3.3. The Shrinking Circular Grain Problem

The shrinking circular grain problem is a useful means of evaluating the accuracy of
phase-field methods because it can be compared with an analytical solution. We describe
the mathematics surrounding the problem here as well as the method by which the order
parameter mobility can be determined using the shrinking circular grain problem. The
velocity of a grain boundary can be expressed as a mobility times a pressure.

VGB = mGBP (29)

If we consider the case of a 2D circular grain with radius r, the intrinsic driving pressure
can be expressed in terms of the grain boundary energy and the grain radius.

Pintrinsic =
2γ

r
(30)

For a grain boundary that is moving with constant velocity parallel to the grain boundary
surface normal, the forward motion of the grain boundary can be related to the local rate of
change in the order parameter φ using the equations below.

VGB =
φ̇

|∇φ| (31)

2mGBγ

r
= − 1
|∇φ|

(
mφ∆µφ

)
(32)
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The mobility of the φ field can be obtained by rearranging this equation into the following form.

mφ = −2mGBγ|∇φ|
r∆µφ

(33)

The grain boundary mobility and excess free energy can be determined using molecular
dynamics [24–28]. At the grain boundary center (φ = 0.5), the bulk and reference terms of
the density potential difference are zero such that ∆µφ = −2κφ∇2φ. In order to solve for
∇φ and∇2φ, we assume the order parameter field can be accurately approximated using a
logistic function.

φ =
1

1 + e−k(x−x0)
(34)

In polar coordinates, the gradient and Laplacian of φ are

∇φ = êrkφ(1− φ) (35)

∇2φ =
∂2φ

∂r2 +
1
r

∂φ

∂r
(36)

If we evaluate the Laplacian of φ at φ = 0.5 we obtain the following expression.

∇2φ =
|∇|

r
(37)

Substituting back into Equation (33) we obtain the following relationship for the mobility
of φ.

mφ =
2mGBγ

κφ
(38)

3.4. Free Energy Functional Parameterization

A number of parameters must be determined in order to simulate grain boundary
motion through the minimization of Equation (1) with Equation (22) used as the volumetric
free energy. All relevant parameters are listed in Table 1.

Table 1. Density phase-field simulation parameters.

Symbol Value Description Units

Eco 4.32× 105 The cohesive energy J
mole

V̂0 6.6× 10−6 The equilibrium molar volume m3

mole
n 4 Free energy parameter none
a −4 Free energy parameter none
κφ 1.5× 10−14 Gradient Energy coefficient J

m

mφ 6.5× 106 order parameter mobility 1
Pas

ρmin 0.9 minimum grain boundary density none

The cohesive energy energy and equilibrium molar volume correspond to nickel. Free
energy parameters were chosen because they satisfy satisfy thermodynamic criteria 1–5
and give rise to ideally shaped free energy curves. A “typical” value of ρmin was selected
for grain boundaries studied in the Olmsted database and does not correspond to a specific
grain boundary [29,30]. The value of κφ was set so that in combination with the other
thermodynamic criteria the grain boundary width would equal one. The order parameter
mobility was calculated using Equation (38). We assume that the grain boundary mobility is
100 m

sGPa . In the same vein as for the choice of ρmin, a mobility of 100 m
sGPa is a typical values

for nickel grain boundaries as calculated in the study by Olmsted [29,30]. The authors
emphasize here that the good agreement shown between our work (see results section)



Metals 2023, 13, 1497 11 of 16

and the work performed by Olmsted is indicative that our modifications to the DPF model
are valid.

4. Results
4.1. Equilibrium Results

The equilibrium one dimensional order parameter and density profiles associated
with the coupled DPF free energy functional are presented in Figure 3. As mentioned in the
theory section, the density profiles associated with the coupled form of the volumetric free
energy function results in more accurate density profiles in comparison with atomistics than
does the non-coupled volumetric free energy functional. In particular, the discontinuity in
the first derivative of the density curve is eliminated at the grain boundary center without
the “shoulder regions” and higher computational overhead that results from the inclusion
of higher-order gradient energy terms.

If the gradient energy series is truncated to a single term, the relationship between
grain boundary width and the gradient energy coefficient should follow a square root
relationship [13]. Figure 4 demonstrates that such a relationship is obeyed for physically
relevant grain boundary widths.

4.2. Dynamic Results

Using the coupled free energy expression, the density description of grain boundaries
can be made mobile. For the steady state case of a grain boundary moving at constant
velocity, Equation (25) has been shown to hold both experimentally and using molecular dy-
namic simulations [29,30]. Figure 5 illustrates that coupled density phase-field simulations
also obey this trend.

For transient problems, we use the classic 2D phase-field problem of a shrinking
circular grain to study the motion of coupled DPF boundaries. The analytical relation
between the grain radius and time is given by Equation (39) [5].

r =
√

r2
0 − 4mφκφt (39)

In Figure 6 one can see the comparison of the analytical solution with the numerical
solution of a shrinking 4 nm grain. The numerical solution is nearly identical to the
analytical solution, expressing both the correct magnitude and trend of the radius vs. time
curve. Assumed in Equation (39) is that the radius of the spherical grain is appreciably
larger than the width of the interface, thus the slight deviation of the numerical solution
from the analytical solution for small r values is not surprising.
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Figure 4. Plotted above is the equilibrium grain boundary width vs. the value of the gradient
energy coefficient (data points) as well as a line of best fit corresponding to a square root function
(the expected theoretical relationship). Visually the agreement between simulation and theory is
exemplary and the R2 value of the curve fit is 1 when calculated to three decimal places.

Figure 5. Plotted above are steady state grain boundary velocities achieved through the application of
a synthetic driving force vs. speed factor (the theoretically predicted grain boundary velocity). It can
be seen that there is good agreement between simulation and theory as indicated by the overlapping
of the simulation data points and the solid line that represents the linear relationship between velocity
and the product of grain boundary mobility and applied driving pressure.
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Figure 6. The shrinking circular grain problem modelled using the coupled DPF method. Note that
the radius vs. time plot exhibits the characteristic parabolic shape. The color scale corresponds to the
normalized density field.

5. Discussion

With respect to the derivation presented in Section 2.1, the resulting free energy
functional has more utility than just meeting the thermodynamic consistency criteria.
The well shape of the free energy curves presented in Figure 2 reflects the underlying
atomic interactions that give rise to similarly shaped interatomic potential functions, where
such a well shape motivated Jacobson to base a DPF free energy functional directly off of
interatomic potentials, albeit being theoretically satisfying but computationally expensive.
This computational expense is now avoided by using the traditional phase field order
parameter constructed with the grain boundary center-line constraints. Equation (13)
can easily be manipulated through the a and n parameters to achieve a well shape very
nearly identical to those generated through interatomic potentials without the associated
computational overhead. Furthermore, Equation (13) can be extended through the inclusion
of more polynomial terms such that additional modification to the well shape can be
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achieved. As a result, the correct parameterization of the free energy functional gives rise to
an accurate description of grain boundary physics in addition to some macroscale material
properties such as bulk modulus.

The primary benefits of coupling the density field with an order parameter is that
it provides a means by which to carry out dynamic field simulations in a more compu-
tationally efficient manner. An additional advantage that coupled DPF simulations have
over “regular” DPF simulations is that expressing ρ in terms of φ makes it much easier
to incorporate DPF methods into traditional phase-field solvers. This back compatibility
with existing software will not only make implementation easier, but will also allow for
methods that have been used to accelerate classical phase-field simulations to be used to
accelerate DPF simulations.

6. Conclusions

A set of thermodynamic criteria have been developed that can be used to ensure
thermodynamic equilibrium and stability of the bulk state in density-based free energy
functionals. The density field variable has been expressed in terms of traditional order
parameter type variables in order to make DPF grain boundaries mobile. Approximating
the density gradient energy sum in terms of φ results in a multiple order of magnitude
increase in computational performance as well as a more accurate density profile. Finally,
the dynamic DPF simulations are shown to be physical by simulating a circular grain whose
change in radius with time matches the parabolic analytical solution. The combination
of a more accurate density profile and the excellent agreement between the numerical
and analytical solutions of the circular grain shrinkage problem indicate that coupling
density fields with traditional order parameters in DPF simulations is a sound means by
which to make DPF simulations dynamic while also improving simulation performance
and accuracy.
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Appendix A. Density Polynomial Derivation

General
Fv =

ρ

V̂
F̂ (A1)

F̂(ρ = 1) = Êco (A2)

Criteria

1. F̂(ρ = 1) = Eco

2. F̂(ρ = 0) = 0
3. F̂(0 < ρ < 1) < 0

4. ∂F̂
∂ρ |ρ=1 = 0

5. ∂F̂
∂ρ |ρ=0 = 0
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Assume Eco < 0
Assume the following form of the molar free energy

F̂ = ρn f (ρ)Eco (A3)

We can now determine a second order polynomial form of f (ρ) that satisfies the criteria
listed above assuming that n >= 2.

f (ρ) = aρ2 + bρ + c (A4)

f ′(ρ) = 2aρ + b (A5)

f ′′(ρ) = 2a (A6)

∂F̂
∂ρ

= Eco(nρn−1 f (ρ) + ρn f ′(ρ))

= Ecoρn−1(aρ2(n + 2) + bρ(n + 1) + cn)
(A7)

∂2 F̂
∂ρ2 = Ecoρn−2[(n + 2)(n + 1)aρ2 + (n + 1)nbρ + n(n− 1)c] (A8)

• Criteria 1: 1 = a + b + c
from criteria 4: c = 1 + a + n

• Criteria 2: guaranteed by n >= 1
• Criteria 3:
• Criteria 4: n + 2a + b = 0

b = −(n + 2a)
• Criteria 5: guaranteed by n >= 2
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