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A B S T R A C T   

A new simplified and effective method has been formalised to estimate the Constant Amplitude Fatigue Limit 
(CAFL) of stress-relieved steel welded joints subjected to uniaxial push–pull loading and failing from the weld 
toe. Starting from the sharp V-notch assumption of the NSIF approach and the cyclic R-curve of the material in 
the heat affected zone, the proposed method identifies the CAFL as threshold level of the local stress field at the 
V-notched weld toe in the uncracked configuration. Such threshold stress field assures the crack arrest at the V- 
notched weld toe, according to the cyclic R-curve analysis. The method has been validated against experimental 
results and proved effective for a straightforward assessment of the CAFL of welded joints, as the stable crack 
propagation analysis of classical fracture mechanics approaches can be avoided.   

1. Introduction 

The strength of joints is a crucial aspect in ensuring the safety and 
structural durability of welded structures, as fatigue loading often leads 
to in-service failures at loads far below the static strength of the struc
ture. One important parameter for designing steel welded structures is 
the fatigue limit, which theoretically represents the stress level below 
which an infinite number of constant amplitude loading cycles can be 
applied to the structure without the occurrence of any fatigue failure. 
When it comes to designing welded structures against fatigue, the 
nominal stress approach [1,2] is simple and widespread for industrial 
applications. This method starts by evaluating the applied nominal 
stress adopting standard solid mechanics-based stress calculations 
assuming a linear elastic material behaviour and ignoring any stress 
concentrations caused by the weld bead. The fatigue strength assessment 
is then performed by comparing the applied nominal stress to the fatigue 
strength of the joints, which is obtained directly from the Stress-Life (S- 
N) design curve chosen from a list of classified structural details [1,2]. 

Concerning the Constant Amplitude Fatigue Limit (CAFL), interna
tional standards and recommendations define the number of cycles at 
the knee point of the stress-life (S-N) design curve of the reference detail 
[1,2]. However, it varies depending on the standard (e.g. 5⋅106 cycles for 
Eurocode 3 [1], while 107 cycles for IIW recommendations [2]) indi
cating a lack of knowledge on this concept despite the significant 

implications it has on practical problems. Another limitation of the 
nominal stress approach arises when dealing with welded joints having 
complex geometrical features. In such case, [1,2] suggest conducting 
dedicated and often time-consuming experimental tests to determine the 
corresponding S-N curve, as the standard design curve for the specific 
geometry of the welded detail is not available in the list of classified 
structural details reported in [1,2]. 

On the other hand, the adoption of local approaches based on local 
rather than nominal quantities is advised by many studies in the liter
ature [3,4], justified by the fact that metal fatigue is a localized process 
of crack initiation and propagation. In particular, it is known that the 
fatigue limit of sharply notched components (such as welded joints) is a 
fatigue crack propagation threshold phenomenon, a non-propagating 
crack being typically present at the notch tip when the applied stress 
level equals the fatigue limit [5–10]. In this scenario, damage tolerant 
approaches based on the principles of fracture mechanics [11] proved 
well suited to design structures against fatigue [12]. In more detail, the 
link between the fatigue limit and fracture mechanics is given by the 
fatigue crack propagation threshold ΔKth, which represents the Stress 
Intensity Factor (SIF) range ΔKI (i.e. maximum value minus minimum 
value, KI,max - KI,min) below which long fatigue cracks stop propagating 
[11,12]. However, it is known that the crack propagation threshold 
depends on the crack length, where short cracks usually grow faster than 
long cracks when subjected to the same crack driving force, i.e., the 
same SIF range ΔKI [12–15]. In particular, the fatigue crack propagation 
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Nomenclature 

a Crack length 
a0 Reference crack length for DCPD measurement 
aCPC Crack length after Compression Pre-Cracking (CPC) 
ai Initial crack length 
aPSM Reference geometrical dimension according to the PSM 
aPSM/d Mesh density ratio 
A Cross-sectional area of the main plate 
c/a Elliptical crack aspect ratio 
cw1 Coefficient accounting for mean stress effect according to 

PSM 
d Global size of the finite elements 
Δ Range of cyclic quantities (maximum minus minimum) 
Δa = a - aCPC Crack length increment 
ΔF Axial force range 
ΔKI Stress Intensity Factor (SIF) range 
ΔKI (a) Driving force, i.e. applied SIF dependence on crack length 
ΔKI,Δσ0 (a) Driving force at the plain material fatigue limit 
ΔKI,Δσg,th (a) Driving force at the component fatigue limit 
ΔKth(Δa) Fatigue crack propagation threshold dependence on crack 

size (cyclic R-curve) 
ΔKth,LC Fatigue crack propagation threshold for long cracks 
ΔKth,eff Intrinsic component of the fatigue crack propagation 

threshold 
ΔKth,op Closure-induced component of the fatigue crack 

propagation threshold 
ΔK1

V Notch Stress Intensity Factor (NSIF) range 
ΔK1,th

V Threshold NSIF 
Δσ0 Plain material fatigue limit 
Δσeq,peak Equivalent peak stress based on the PSM 
Δσeq,peak,th Threshold value of the equivalent peak stress 
ΔσFAT,IIW FAT class of the reference detail according to IIW 

recommendations 

ΔσFAT,EC3 FAT class of the reference detail according to Eurocode3 
Δσg Range of the gross nominal stress 
Δσg,th Component fatigue limit 
ΔV Measured potential drop 
ΔV0 Reference the potential drop 
ΔW1 Averaged Strain Energy Density (SED) range 
ΔW1,th Threshold averaged SED range 
e1 Coefficient for evaluating ΔW1 
E Young’s modulus 
fw1 Coefficient for calculating σeq,peak 
H Height of the specimen 
I Magnitude of the electrical current 
KFE* Non-dimensional NSIF parameter based on PSM 
li Fictitious length scales used to fit the cyclic R-curve 
λ1 Stress singularity degree 
Nf Number of cycles to failure 
ν Poisson’s ratio 
νi Weight factors used to fit the cyclic R-curve 
R = (σmin/σmax) Load ratio 
R0 Size of material structural volume according to SED 

criterion 
ρ Notch tip radius 
r, θ, z Coordinates of cylindrical reference system at notch tip 
σg Gross nominal stress 
σrr, σθθ, τrθ In-plane stress components in cylindrical coordinate 

system 
σθθ,θ=0,peak Linear elastic peak stress calculated by FEA according to 

PSM 
σ̄θθ,θ=0,peak Averaged peak stress 
t Main plate thickness 
W Width of the specimen 
y Distance of the potential probe from crack plane  

Fig. 1. Schematic of the cyclic R-curve analysis applied to a welded joint.  
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threshold ΔKth of short cracks is lower than for long cracks ΔKth,LC, due 
to the gradual build-up of the crack closure [13,14,16–18]. In more 
detail, the fatigue crack propagation threshold consists of both an 
intrinsic component ΔKth,eff, depending on the lattice and elastic prop
erties of the material [12,19,20], and of a closure-induced component 
ΔKth,op, which changes as the closure phenomena evolve until the long 
crack regime is achieved [12]. Such evolution of the fatigue crack 
propagation threshold for physically/mechanically short cracks can be 
described using the cyclic R-curve concept [12,14,15,21–25]. 

The fatigue limit of a cracked component can be determined by 
performing the so-called cyclic R-curve analysis (Fig. 1) [14,21,24,26]. 
Similar to the well-established monotonic R-curve analysis, this pro
cedure consists in comparing the driving force of a propagating crack 
(black lines in Fig. 1), which mainly depends on geometry and external 
loads (Δσg in Fig. 1), with the relevant resistance curve (red line in 
Fig. 1), i.e. the cyclic R-curve. The crack propagation occurs whenever 
the crack driving force is higher than the resistance one, while the crack 
is arrested in the opposite case. Consequently, the fatigue limit Δσg,th is 
the maximum applicable stress level at which crack arrest is possible and 
typically results in the crack driving force to be tangent to the resistance 
curve (solid black line in Fig. 1). 

The cyclic R-curve analysis is effective in estimating the fatigue limit 
[25,27,28] but its rigorous application is a complex task as it requires 
time and expertise both in measuring the material properties of short 
cracks, i.e. the cyclic R-curve, and in evaluating the driving force, i.e. the 
applied stress intensity factor for a range of (short) crack lengths. 
Although the applied SIF can be evaluated through analytical expres
sions available for simple geometries (e.g. [2,29–32]), FE calculations 
are necessary for treating more complicated design situations. FE sim
ulations require the local weld bead geometry (weld leg size z, weld toe 
and weld root radius ρ, opening angle 2α, etc.) as well as the location, 
path and shape of the propagating crack to determine the corresponding 
SIF values. As a result, both modelling effort and computational time for 
complex geometries can be significant, as short cracks must be incor
porated into large and tightly meshed geometries. Thus, those limita
tions clearly represent a hindrance in many industrial applications 
where the analysed structures are large, have many welded connections, 
and complex joint geometries. 

In light of the above, the present analysis proposes an effective and 
straightforward assessment of the constant amplitude fatigue limit of 
welded structures with weld toe failure. The novel procedure consists in 
a combination of the cyclic R-curve analysis and the Peak Stress Method 
(PSM), an engineering tool that uses linear elastic finite element ana
lyses to quickly assess the fatigue strength of welded structures [33,34]. 
It is important to underline that this methodology represents an 
important extension of the PSM to the infinite life regime. In fact, until 
now the PSM did not incorporate explicitly the fatigue limit [35]. More 
in detail, the concept of Notch Stress Intensity Factor (NSIF) ΔK1

V, rep
resenting the intensity of the local linear elastic stress field at the weld 
toe, is exploited along with the cyclic R-curve analysis to define the 
fatigue limit of welded structures in terms of a threshold value for the 
NSIF ΔK1,th

V . This way, the CAFL is expressed as the threshold level of the 
local stress field at the weld toe in the uncracked configuration, which 
implicitly takes into account the arrest condition of a propagating crack 
according to the cyclic R-curve analysis. Then, the obtained NSIF at 
threshold ΔK1,th

V is translated into the equivalent peak stress at threshold 
Δσeq,peak,th and included in the fatigue design curve of the Peak Stress 
Method. 

The case of weld toe failure of stress-relieved welded joints made of 
S355J2 + N structural steel under pure mode I fully reversed (R = -1) 
cyclic loading has been considered. The cyclic R-curve has been deter
mined experimentally for the Base Material (BM) and also for the ma
terial in Heat Affected Zone (HAZ). Eventually, the novel procedure has 
been validated reanalysing experimental data relevant to four different 
test series taken from the literature. 

2. The novel approach to estimate the fatigue limit of welded 
joints 

2.1. The cyclic R-curve analysis 

The cyclic R-curve analysis allows to estimate the fatigue limit of a 
component Δσg,th by scaling the driving force ΔKI (a) (the applied stress 
intensity factor vs crack length function), until the tangency condition is 
found with the resistance curve ΔKth(a) (the cyclic R-curve), as depicted 
in Fig. 1. Considering the S355J2 + N structural steel analysed in the 
present investigation, the cyclic R-curve has been experimentally 
determined both for the Base Metal (BM) and the Heat Affected Zone 
(HAZ), the latter being interesting since crack initiation and early crack 
growth phases in welded joints occur within the HAZ. Accordingly, two 
different batches of Single Edge Notch in Bending (SENB) have been 
used. The first batch consisted of specimens made of Base Metal (BM, 
Fig. 2a), while the second was made from a transverse loaded K-groove 
butt weld ground flush to plate (HAZ, Fig. 2b); in all cases residual 
stresses have been relieved by post-weld heat treatment. The crack 
starter notch has been realized by electrical-discharge machining, which 
was made inside the HAZ for the second batch of specimens to investi
gate the propagation within this region (Fig. 2c). 

Specimens have been loaded in pure bending at a load ratio R = -1 
using a RUMUL TESTRONIC 100kN and a RUMUL TESTRONIC 20kN 
resonance-testing machines having working frequency of approximately 
60 Hz and 108 Hz, respectively. The negative load ratio was possible 
thanks to an eight-point-bending device for SENB specimens, which 
allowed the application of fully reversed pure bending cyclic loading 
(Fig. 3a, b, and d). More precisely, during the fatigue crack growth tests 
the test machine has been closed-loop controlled in terms of applied 
force or applied SIF range ΔKI, the latter being calculated adopting the 
equation reported into the standard ISO12108:2018 [36]: 

KI =
F

WH1/2⋅
Smax − Smin

2H
⋅3⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2tan
πa
2H

√

⋅

⎡

⎢
⎣

0.923 + 0.199
(
1 − sin πa

2H

)4

cos πa
2H

⎤

⎥
⎦ (1)  

where F is the applied force, W and H are the width and the height of the 
specimen, respectively, a is the crack length, while Smax and Smin are 
major and minor spans of the 8-point-bending fixtures, respectively, as 
reported in Fig. 3a. 

In-situ real-time crack growth monitoring has been performed using 
the Direct Current Potential Drop (DCPD) method illustrated in Fig. 3a, 
c, and d [22,37]. The DCPD technique is based on the increase of elec
trical resistance following the reduction of the cross section of the 
specimen due to crack growth. Therefore, according to Ohm’s law, the 
increase of the electrical resistance translates into an increase of the 
potential drop, the specimen being subjected to a constant electrical 
current flow. Then, the crack depth is estimated by entering the exper
imentally measured potential drop into a proper calibration curve. In 
case of SENB specimens, the following analytical expression for the 
DCPD calibration curve is available [38]: 

a =
2H
π ⋅acos

cosh πy
2H

cosh
[

ΔV
ΔV0

⋅acosh
(

cosh πy
2H

cos πa0
2H

) ] (2)  

where a is the crack length, ΔV the measured potential, H the specimen 
height, y the distance between the potential probes and the crack plane, 
while ΔV0 and a0 are the potential drop measured before applying fa
tigue loads and the notch depth, respectively (Fig. 3a and d). A DC 
Power Supply HP6033A equipped with a pole-switcher has been 
employed to inject the DC current (I = 4 A) through the specimen and to 
change the current flow direction in order to compensate the thermo
electric effects [37]. Then, a Keithley 2182A Nanovoltmeter has been 
used to measure the potential drop signal (Fig. 3c). Finally, the effect of 
temperature variations on the measured potential drop has been 
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compensated by real-time monitoring the temperature of the specimen 
and by taking advantage of the linear correlation between the electrical 
resistivity of the material and the temperature [39,40]. 

The procedure adopted by Tabernig and Pippan [22] and recently 
updated by Pourheidar et al. [25] has been used to evaluate the cyclic R- 
curve. Accordingly, a closure free crack has been generated at the notch 
tip by applying a standard compression pre-cracking procedure in 
bending with a load ratio R = 20 and using an initial ΔKI = 16 MPa⋅m0.5, 

the value being based on previous experience [22,25,41,42]. After 
compression pre-cracking, the specimen has been loaded under fully 
reversed (R = -1) constant amplitude bending at a load level close to the 
intrinsic threshold ΔKth,eff. At this stage constant ΔF procedure has been 
used. If no propagation occurred, the load range has been increased of 
about 0.5–1 MPa⋅m0.5 (~0.1⋅ΔKth,LC [22,25]). At a SIF range level high 
enough to trigger crack propagation, closure phenomena built up and 
after a certain extension the crack arrested. Then, the load has been 

Fig. 2. SENB specimens made of: a) S355J2 + N, b) welded S355J2 + N, with the EDM notch inside the HAZ, c) macrograph of a welded specimen showing the EDM 
notch location. 

Fig. 3. Experimental setup used to determine the cyclic R-curve with a load ratio R = -1: a) schematic of the experimental setup, b) picture of the testing machine and 
c) of the DCPD device, d) with a focus on the 8-point-bending fixture and the DCPD equipment. 
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increased and the procedure repeated until no crack arrest has been 
observed. At this point the test has been interrupted and the upper part 
of the cyclic R-curve has been determined by increasing stepwise the 
applied SIF range ΔKI. Eventually, at a given ΔKI > ΔKth,LC the crack did 
not arrest and a further constant ΔF procedure has been started to 
describe the long crack propagation curve. The cyclic R-curve has been 
obtained by connecting the arrest points, defined as the crack length 
increments from the initial closure-free crack to each current crack ar
rest Δa = a - aCPC (where aCPC is the size of the crack after the 
compression pre-cracking phase, see Fig. 3a) with the corresponding 
stress intensity factor range ΔKth. Results of the performed tests are 
reported in Fig. 4 both for the BM (black dots in Fig. 4) and the HAZ (red 
dots in Fig. 4). Interestingly, Fig. 4 highlights there are no significant 
differences between BM and HAZ for crack increments smaller than Δa 
< 0.5 mm, with the difference being evident, on the other side, for 
longer cracks (Δa > 0.5 mm, Fig. 4). 

Finally, experimental data have been fitted using the following 
expression (Maierhofer et al. [43]): 

ΔKth = ΔKth,eff +
(
ΔKth,LC − ΔKth,eff

)
⋅

[

1 −
∑n

i=1
νi⋅e−

Δa
li

]

(3)  

where li are length-scale parameters based on the physical idea that each 
crack closure mechanism requires a certain crack extension to build up 
completely, while νi are weights which satisfy the following condition: 
∑n

i=1
νi = 1 (4) 

The best fit has been performed taking advantage of the curve fitting 
tool implemented in Matlab® by imposing i = 2 and the resulting pa
rameters are ν1 = 0.495, l1 = 0.046 mm, ν2 = 1- ν1 = 0.505, l2 = 1.913 
mm, ΔKth,eff = 2.53 MPa⋅m0.5, ΔKth,LC = 10 MPa⋅m0.5, the latter value 
being in good agreement with [44]. The corresponding curve is shown as 
a solid red line in Fig. 4. 

The next step consists in defining the initial crack size ai (see Fig. 1) 
to fully compute the resistance force. In this investigation, the criterion 
used in IBESS [26,29,30,45] has been adopted, although many different 
proposals have been put forward in the literature (the reader is referred 
to the recent review on this topic [26]). According to this criterion, the 
initial crack size ai is obtained by performing a crack arrest analysis, 
consisting in comparing the driving force ΔKI,Δσ0(a) at the fatigue limit 

for smooth specimens (the plain material fatigue limit) with the cyclic R- 
curve ΔKth(a). In more detail, the driving force ΔKI,Δσ0(a) is referred to a 
semi-circular surface crack propagating normal to the load direction in a 
plain specimen under fully reversed (R = -1) axial cyclic loading at a 
stress range equal to the plain material fatigue limit Δσ0. Then, the 
initial crack size ai is obtained by shifting the cyclic R-curve along the 
abscissa until the tangency condition is achieved with the driving force, 
with the cyclic R-curve being fixed along the ordinate but not along the 
abscissa. Zerbst et al. [45] found an initial crack size ai = 17 μm for a 
S355NL structural steel by means of the crack arrest analysis just dis
cussed. Note that, according to the same authors, the largest crack-like 
defect (e.g. non-metallic inclusions, pores, cavities, shrinkages, weld
ments defects, microcracks, surface roughness, undercuts, corrosion 
pits, scratches, …) should be used as initial crack when its size is larger 
than ai obtained from the crack arrest analysis [45]. 

2.2. Threshold notch stress intensity factor ΔK1,th
V 

After determining the initial crack size ai with the resistance curve 
ΔKth(a), the fatigue limit of the welded joint Δσg,th (the component fa
tigue limit) is found by scaling the driving force ΔKI(a) until the 
tangency condition is achieved with the resistance curve, the position of 
the latter being fixed by ai, according to the concept illustrated in Fig. 1. 
Generally speaking, estimating the applied stress intensity factor (SIF) is 
a complex task, since it requires to know the local weld bead geometry 
and the location, path and shape of the propagating crack, which can be 
challenging and possibly requiring the use of complex crack propagation 
algorithms and estimations [46,47]. Moreover, as discussed above, even 
if simplified approaches exist for some simple cases [2,29–32], compu
tation times to determine the value of KI(a) for complex geometries can 
be significant, as short cracks must be incorporated into large and tightly 
meshed geometries, requiring multiple analysis for different values of a. 

In the present investigation, the following simplifying assumptions 
have been introduced to calculate the driving force:  

• Null weld toe radius, ρ = 0.  
• Crack propagating along the V-notch bisector line.  
• Through-the-thickness straight-fronted planar crack. 

In agreement with the worst-case concept [15,48–50], the assump
tion of a null weld toe radius arises from observing that its real value is 

Fig. 4. Experimental cyclic R-curves of BM and HAZ specimens with the curve fitted on HAZ data. The markers’ different filling identifies different specimens from 
the same batch. 
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often very small for arc-welded joints and hence the weld toe is modelled 
as a sharp V-notch having null tip radius (ρ = 0) and opening angle 2α =
135◦ (see Fig. 5). As a consequence of the null tip radius, a singular stress 
field is produced at the weld toe by the external loads, the stresses being 
proportional to 1/r1-λ1 [51], where r is the radial distance from the V- 
notch tip (Fig. 5) and the singularity degree (1-λ1) is a function of the 
opening angle [51,52]. In the framework of linear elasticity, the singular 
stress field is proportional to the external loads and its intensity is 
quantified by the Notch Stress Intensity Factor (NSIF) K1

V [53], which 
represents the natural extension of the SIF KI concept to sharp notches 
having opening angle 2α > 0◦. The NSIF K1

V is defined according to Eq. 
(5) and it has been extensively demonstrated that its range ΔK1

V can be 
used to correlate the fatigue strength of welded joints having different 
geometries and absolute dimensions [49,50]. 

KV
1 =

̅̅̅̅̅
2π

√
⋅lim

r→0

[
σθθ(r, θ = 0)⋅r1− λ1

]
(5) 

Interestingly, the NSIF concept can be very useful to determine the 
SIF KI of short cracks propagating along the bisector line of a sharp V- 
notch. Indeed, the stress field of the cracked configuration is completely 
determined by the stress field of the un-cracked configuration (i.e. by the 
NSIF K1

V) and can be evaluated using the following engineering formula 
[31,54–61]: 

ΔKI = C2α⋅
̅̅̅
π

√
⋅aλ1 − 0.5⋅ΔKV

1 (6) 

where C2α is a constant parameter depending on the V-notch opening 
angle 2α, a is the crack length measured from the V-notch tip (see Fig. 5), 
λ1 is the Williams’ singularity exponent [51,52] and ΔK1

V is the NSIF 
quantifying the intensity of the asymptotic stress distribution ahead of 
the sharp V-notch tip of the uncracked configuration. The geometric 
factor C2α can be evaluated using FE simulations or using some analyt
ical expressions available in the literature, the latter being valid in case 
of a through-the-thickness straight-fronted planar crack propagating 
along the bisector line of a sharp (or rounded) V-notch [31,54–61]. For 
example, Atzori et al. [61] proposed the following expression: 

C2α = − 4.658⋅10− 6⋅(2α)2
+ 1.840⋅10− 4⋅(2α) + 5.629⋅10− 1 (7)  

where 2α is expressed in degrees. 
Since the case of weld toe failure of stress-relieved welded joints 

made of S355J2 + N structural steel under pure mode I fully reversed (R 
= -1) cyclic loading is considered (see Fig. 6), the opening angle has been 

fixed to 2α = 135◦ (λ1 = 0.674 [51,52]) and the driving force has been 
evaluated for different crack lengths a ranging from 0 to 500 μm by 
means of Eq. (6), wherein C2α = 0.503 (Eq. (7)) has been used. Even
tually, the driving force (Eq. (6)) has been scaled by changing the value 
of ΔK1

V and the tangency was found for a threshold value of the NSIF 
range equal to ΔK1,th

V = 32.8 MPa⋅m0.326 (Fig. 6). The obtained param
eter allows to rapidly design welded structures against fatigue in the 
infinite life region. Indeed, its most significant advantage is that it es
timates the fatigue strength of complex structures by analysing only the 
intensity of the local asymptotic stress field at the weld toe. Accordingly, 
the arrest condition of a propagating crack given by the cyclic R-curve 
results into a threshold value for the local stress field at the weld toe in 
the uncracked configuration. This is possible thanks to the NSIF ΔK1

V 

range, which summarizes all pieces of information on geometry, di
mensions, applied loads and boundary conditions (e.g. axial or bending) 
into a single stress parameter. Whenever the applied NSIF is higher than 
the threshold value, i.e. ΔK1

V > ΔK1,th
V , then the welded detail is sub

jected to a stress level higher than its fatigue limit (or in other words the 
driving force will never meet the resistance curve, see Fig. 1 and Fig. 6). 
Otherwise, if ΔK1

V ≤ ΔK1,th
V the corresponding applied stress is lower 

than or equal to the component’s fatigue limit. 

2.3. The peak stress Method: Definition of the constant amplitude fatigue 
limit Δσeq,peak,th 

Among approaches exploiting the NSIF concept to assess the fatigue 
strength of welded joints, the averaged Strain Energy Density (SED) [62] 
criterion deserves a mention. Based on the notch sensitivity observations 
raised by Neuber [63], it assumes the local Strain Energy Density (SED) 
ΔW averaged over a finite material structural volume as fatigue damage 
parameter. In more detail, Lazzarin and Zambardi [62] suggested to 
evaluate the averaged SED ΔW in a circular-shaped material structural 
volume surrounding the weld toe (the latter being modelled as sharp V- 
notch, see Fig. 7a) and having radius R0 = 0.28 mm for arc-welded 
structural steel joints [64] (see Fig. 7b). Assuming an isotropic linear- 
elastic material behaviour under plane strain conditions along with 
the Beltrami total strain energy criterion [65], the range of the average 
SED for a sharp V-notch under pure mode I loading ΔW1 can be written 
as a function of the mode I NSIF range ΔK1

V as follows [62]: 

ΔW̄1 = cw1
e1

E

(
ΔKV

1

R0
1− λ1

)2

(8)  

where E is the Young’s modulus of the material (here assumed to be E =
206000 MPa), e1 is a coefficient depending on the sharp V-notch opening 
angle 2α and the Poisson’s ratio ν (here assumed to be ν = 0.3) [62], 
while cw1 accounts for the mean stress sensitivity in case of stress- 
relieved joints. A parametric polynomial expression has been recently 
introduced to compute the total SED coefficient e1 for a generic V-notch 
opening angle 2α and Poisson’s ratio ν [52] and its value equals e1 =

0.117 at the weld toe of steel arc-welded joints (2α = 135◦, ν = 0.3). 
While cw1 is forced to cw1 = 1 for as-welded joints due to the residual 
stress state [34], for stress-relieved joints cw1 is defined as a function of 
the nominal load ratio R = (σg,min/σg,max) according to the following 
expression [50]: 

cw1(R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + R2

(1 − R)2 if stress − relieved and − 1 ≤ R ≤ 0,

1 − R2

(1 − R)2 if stress − relieved and 0 ≤ R < 1,

1 if as − welded for any R value

(9) 

A threshold value for the averaged SED range ΔW1,th = 0.0633 
Nmm/mm3 can be easily assessed by entering the threshold NSIF ob
tained from the cyclic R-curve analysis ΔK1,th

V = 32.8 MPa⋅m0.326 (Fig. 6) 

Fig. 5. Cylindrical coordinate system (r, θ, z) centered at the sharp V-notch tip 
(2α, ρ = 0) and local stress components in a plane problem. The red line is the 
through-the-thickness straight-fronted crack propagating along the notch 
bisector line. 
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into Eq. (8) with cw1 = 0.5 for R = -1. Then, ΔW1,th has been inserted in 
the SED-based fatigue design scatter band for steel welded joints pro
posed by Lazzarin et al. [66]. This SED-based design curve has an 
endurable averaged SED range ΔW1,A,50% = 0.105 Nmm/mm3 at NA =

2⋅106 cycles, an inverse slope k = 1.5 and a scatter index referred to 
survival probabilities of 2.3%-97.7%, i.e. the mean value ± two stan
dard deviations, TΔW = 3.3 (Fig. 8a). Moreover, as shown in Fig. 8a, 
ΔW1,th = 0.0633 Nmm/mm3 returns a number of cycles to failure Nth ≈

Fig. 6. The cyclic R-curve analysis: driving force of a through-the-thickness straight-fronted crack propagating along the bisector line of a sharp V-notch (ρ = 0) 
having opening angle 2α = 135◦ under fully reversed (R = -1) axial loading. 

Fig. 7. The PSM applied to a full penetration cruciform joint: a) geometry according to the NSIF-based approach. b) Material-dependent structural volume having 
radius R0 centred at the weld toe according to the averaged SED criterion. c) FE model discretized with 10-node tetrahedral finite elements and peak stress at the weld 
toe. d) guidelines to apply the PSM with 10-node tetrahedral finite elements. 
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4.3⋅106 cycles, in good agreement with the knee point proposed by the 
Eurocode3 (5⋅106 cycles) [1]. 

Unfortunately, the effectiveness of the NSIF-based approaches pre
sented above is still limited in industrial applications, the main reason 
being the way NSIFs are evaluated. Indeed, Finite Element Analyses 
(FEA) are the easiest and effective way to compute the NSIF in complex 
geometries, despite analytical solutions are available in the literature for 
some limited cases (e.g. [67–70]). Such FEA allow to compute the NSIF 
by evaluating first the relevant stress distribution in the vicinity of the V- 
notch tip along the bisector line (θ = 0 in Fig. 5) and afterwards by 
performing the limit calculation of Eq. (5). However, the finite element 

size to adopt must be very small (on the order of 10-4 mm [49]), an 
extremely dense mesh pattern being required to capture the gradient of 
the local stress field in the vicinity of the V-notch tip. A first solution to 
this problem is the so-called direct approach [71], which directly cal
culates the SED value ΔW1 (Eq. (8)), inside the material structural vol
ume having radius R0 = 0.28 mm, which can be discretized with finite 
elements having size equal to the control radius R0 itself; however, this 
value may be still small compared to the dimension of the component or 
structure under analysis. Another method is the “volume free”, where 
modelling the material structural volume is unnecessary [72–74], but a 
more refined FE mesh pattern is necessary, the proper finite element size 

Fig. 8. a) SED-based[66] and b) PSM-based [75] design scatter bands with the Constant Amplitude Fatigue Limit (CAFL) relevant to weld toe failure of stress relieved 
welded joints made of S355 structural steel and tested under fully reversed loading. 
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to adopt being a fraction of the control radius R0. 
On the other hand, these limitations can be definitely overcome by 

the so-called Peak Stress Method (PSM) [33], which is a simplified en
gineering approach to rapidly estimate the NSIFs using linear elastic FE 
analyses having rather coarse FE meshes compared to that required for 
applying the NSIFs’ definition (Eq. (5)). According to the PSM, the NSIF 
is estimated as follows: 

KV
1 ≅ K*

FE⋅σθθ,θ=0,peak⋅d1− λ1 (10)  

where KFE* is a calibrated non-dimensional coefficient and d is the 
average size of the finite elements (Fig. 7c). Concerning σθθ,θ=0,peak, it is 
the nodal value of the opening (mode I) peak stress evaluated in a local 
cylindrical coordinate system centred at the V-notch tip, having z-di
rection tangent to the notch tip line, θ = 0 direction aligned with the 
notch bisector line, and r-coordinate along the radial direction. In 
particular, σθθ,θ=0,peak is the opening stress acting normal to the notch 
bisector line (identified by the direction θ = 0◦, Fig. 7c). 

Taking advantage of the PSM, Meneghetti and Lazzarin [75] sug
gested to accelerate the SED evaluation (Eq. (8)) by using Eq. (10) and 
proposed a fatigue damage parameter called equivalent peak stress Δσeq, 

peak [33,34], which was defined by equating the local SED of Eq. (8) to 
an equivalent uniaxial plane strain state according to the following 
expression: 

Δσeq,peak =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2E

1 − ν2⋅ΔW̄1

√

(11) 

Thereafter, a PSM-based fatigue design scatter band has been defined 
for steel welded joints relevant to uniaxial loading [75]. The effective
ness of the equivalent peak stress range Δσeq,peak to correlate the fatigue 
strength of welded joints have been extensively validated in previous 
investigations [33,34,76,77]. 

A threshold value of the equivalent peak stress Δσeq,peak,th = 169 MPa 
has been found by entering the averaged SED range ΔW1,th = 0.0633 
Nmm/mm3 into Eq. (11). The obtained value refers to a survival prob
ability PS = 50% and is valid for weld toe failure (2α = 135◦) of stress- 
relieved welded joints made of S355 structural steel under pure mode I 
fully reversed (R = -1) cyclic loading, according to the hypotheses 
aforementioned. Finally, such CAFL Δσeq,peak,th has been inserted in the 
PSM-based fatigue design scatter band which has an endurable stress 
range Δσeq,peak,A,50% = 214 MPa at NA = 2⋅106 cycles, an inverse slope k 
= 3 and a scatter index referred to survival probabilities of 2.3%-97.7%, 
i.e. the mean value ± two standard deviations, Tσ = 1.90 [75] (Fig. 8b). 
As shown in Fig. 8b, the obtained Δσeq,peak,th = 169 MPa returns a 
number of cycles to failure Nth ≈ 4⋅106 cycles, again in good agreement 
with the knee point suggested by the Eurocode3 (5⋅106 cycles) [1]. 

2.4. FE-based evaluation of the equivalent peak stress range Δσeq,peak 

While the previous paragraph illustrated the PSM from the material’s 
resistance side, the present section describes the load side of the method, 
that is the FE analysis to evaluate the applied equivalent peak stress 
range Δσeq,peak to use with the PSM-based fatigue design curves (Fig. 8b) 
to assess the fatigue strength of the investigated joint. Before going into 
details, it is worth mentioning that the present paper only addresses the 
case of pure mode I loading; however the PSM has been defined and 
successfully adopted also for multiaxial local stresses [34]. Moreover, 
for the sake of brevity, in what follows the theoretical background on the 
PSM will be limited to the case of 3D geometries discretized using 10- 
node tetrahedral elements, the case being of interest for the validation 
that will be presented later. However, the PSM has been calibrated also 
for different 2D and 3D finite elements and the reader is advised to read 
a recent review [34] for more details regarding the method and its 

conditions of applicability. 
Recalling Eq. (11), by substituting Eq. (8) and Eq. (10), the equiva

lent peak stress range Δσeq,peak can be written as follows [34,75]: 

Δσeq,peak =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

cw1⋅f 2
w1⋅Δ̄σ2

θθ,θ=0,peak

√

(12)  

where the coefficient fw1 accounts for the stress-averaging inside the 
material structural volume and the adopted FE size according to the PSM 
[34]: 

fw1 = K*
FE⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅
2e1

1 − ν2

√

⋅
(

d
R0

)1− λ1

(13) 

where the coefficient KFE* is calibrated for 3D finite elements 
available in several commercial FE software packages [34,52,78,79] and 
depends on the V-notch opening angle 2α, the finite element type and 
formulation (in terms of integration scheme and stress extrapolation at 
FE nodes) and the FE mesh pattern generated by the FE software. For 
example, KFE* = 1.21 ± 15% for 10-node tetrahedral elements (SOLID 
187 of Ansys® element library) and opening angle 2α = 135◦ (weld toe) 
[34,52]. As to the 3D tetrahedral finite elements, despite their high ef
ficiency in discretizing very complex 3D geometries, they lead to 
irregular FE mesh patterns along the V-notch tip line, since the FE nodes 
located on it share a different number of tetrahedral finite elements. The 
irregularity of the FE mesh pattern causes a scattered distribution of the 
peak stress σθθ,θ=0,peak even in the case of 3D geometries having rigor
ously constant NSIFs along the V-notch tip line, which is not the case 
according to Eq. (10) applied to regular FE mesh patterns [80]. To 
smooth the peak stress distribution calculated with 10-node tetrahedral 
elements, the peak stress σθθ,θ=0,peak appearing in Eq. (10) has been 
substituted with the corresponding average peak stress σ̄θθ,θ=0,peak, 
calculated as follows [80]: 

σ̄θθ,θ=0,peak,n=k =
σθθ,θ=0,peak,n=k− 1 + σθθ,θ=0,peak,n=k + σθθ,θ=0,peak,n=k+1

3

⃒
⃒
⃒

n=node

(14) 

Accordingly, the average peak stress σ̄θθ,θ=0,peak is defined as the 
moving average of the peak stresses calculated on three adjacent vertex 
nodes and Eq. (14) gives the example for calculating the peak stress at FE 
node n = k (Fig. 7d) Moreover, the peak stresses σθθ,θ=0,peak obtained 
from FE nodes lying on an edge surface (red nodes in Fig. 7d) must be 
neglected, their values being affected by the distorted FE mesh pattern 
originating from those FE nodes [79,81]. Therefore, the first two FE 
nodes nearest to the edge surface of the structure (red nodes and empty 
black nodes in Fig. 7d) cannot be the target FE nodes where to compute 
the average peak stress ̄σθθ,θ=0,peak,n=k (Eq. (14)). An additional rule is that 
only the vertex nodes must be considered in Eq. (14), while the mid-side 
FE nodes are neglected (blue nodes in Fig. 7d). 

Finally, it is important to highlight that the global finite element size 
d to input in the free mesh generation algorithm of the FE software can 
be arbitrarily chosen, provided a certain mesh density ratio aPSM/d is 
satisfied, where aPSM is a reference geometrical dimension of the welded 
joint. The guidelines for selecting aPSM and the minimum aPSM /d to 
adopt in FE analyses are reported elsewhere [34]. For example, aPSM/d 
≥ 1 is required by the PSM to evaluated the peak stress at the weld toe 
(2α = 135◦) under pure mode 1 loading using 10-node tetrahedral finite 
elements, aPSM being half the plate thickness t in the case of the joint 
with double attachments reported in Fig. 7. 

The rapidity and effectiveness of PSM in the pre-processing, solving 
and post-processing phases make this method advantageous for indus
trial applications. In addition, some recent developments of the PSM like 
its extension to variable amplitude multiaxial loading conditions 
[76,77] and its automated implementation [56,57] are making the 
application of the PSM wider, easier and faster. 
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3. Validation with experimental data taken from the literature 

3.1. Sonsino et al. [82] 

Sonsino et al. [82] tested two series of fillet-welded double longi
tudinal stiffeners having different main plate thicknesses (t = 12 mm for 
series 1.1 and t = 20 mm for series 1.2, see Fig. 9) and made of St 52–3 
(previous nomenclature by DIN17100:1980 [83] of the S355J2 
EN10025-2 [84]). All specimens were tested in the stress-relieved con
dition under fully reversed (R = -1) pure axial loading and the authors 
reported that fatigue crack initiation always occurred at the weld toe of 
the main plate (Fig. 9). The recorded number of cycles Nf corresponded 
to complete separation of the specimen, while run-out tests were 
considered between 2⋅107 cycles and 13⋅107 cycles, if no failure was 
detected. 

A 3D free FE mesh pattern of 10-node tetrahedral elements (SOLID 
187 of Ansys® element library) has been defined to calculate the mode I 
peak stresses at the weld toe. Only one quarter of the joint geometry has 
been modelled by taking advantage of the YZ and ZX double symmetry. 
A minimum mesh density ratio aPSM/d = 1 is necessary to analyse the 
weld toe (2α = 135◦) under mode I loading using 10-node tetrahedral 
elements according to the PSM guidelines [34], the characteristic size 
being aPSM = t/2, namely d = 6 mm and d = 10 mm for series 1.1 and 
1.2, respectively; therefore only one finite element on half the thickness 
of the main plate could be adopted (see Fig. 9). Interestingly, if the triple 
symmetry had been exploited and therefore one eighth of the joints had 
been modelled instead of one quarter, the FE node located at the crack 
initiation point would have been in the edge surface of the model, where 
the peak stress cannot be evaluated according to the PSM guidelines 
mentioned previously and reported in Fig. 7d. With one quarter of the 
joint, the symmetry boundary conditions have been applied to YZ (uX =

0) and ZX (uY = 0) symmetry planes, while a uniform tensile stress of 
Δσg = 1 MPa has been applied to the main plate (see Fig. 9). 

After solution, the maximum principal stress Δσ11,peak has been 
evaluated at the three FE nodes located along the weld toe line, by taking 
advantage of the approximate equivalence Δσθθ,θ=0,peak ≈ Δσ11,peak, and 
three values have been used in Eq. (14) to compute the average peak 
stress Δσ̄11,peak. Eventually, the equivalent peak stress has been calcu
lated from Eq. (12) with cw1 = 0.5 (Eq. (9)), all data being referred to 
joints tested in the stress-relieved state. In more detail, the obtained 

values are Δσeq,peak/Δσg = 1.946 (Δσθθ,θ=0,peak/Δσg = 1.647, fw1 =

1.671) and Δσeq,peak/Δσg = 2.172 (Δσθθ,θ=0,peak/Δσg = 1.555, fw1 =

1.975) for series 1.1 and 1.2 (Fig. 9), respectively. 

3.2. Hensel et al. [85] 

The fatigue strength of a fillet-welded longitudinal stiffener (model 
2.1 in Fig. 10) made of S355NL was investigated [85]. All specimens 
were tested under fully-reversed (R = -1) pure axial loading after stress- 
relieving heat treatment. Fatigue cracks always initiated at the weld toe 
of the main plate (Fig. 10) and the reported number of cycles Nf corre
sponded either to the complete specimen’s separation or to the run-out 
condition at 1.5⋅107 cycles. 

The mode I peak stresses at the weld toe have been calculated from a 
3D FE model which has been free-meshed using 10-node tetrahedral 
elements and taking advantage of the YZ symmetry plane (Fig. 10). A 
minimum mesh density ratio aPSM/d = 1 is required to analyse the weld 
toe (2α = 135◦) under mode I loading [34]. Accordingly, a FE mesh 
having global size d = 12 mm could have been used to satisfy the PSM 
requirements, the characteristic size being aPSM = t = 12 mm. However, 
a slightly more refined mesh pattern having finite element size d = t/2 =
6 mm has been adopted (Fig. 10) to ensure that at least one FE node was 
located at the weld toe on XY plane of symmetry where the fatigue crack 
initiated. After solving the model, the maximum principal stress Δσ11, 

peak has been evaluated at FE nodes along the weld toe line (Δσθθ,θ=0,peak 
≈ Δσ11,peak), and the average peak stress Δσ̄11,peak (Eq. (14)) has been 
calculated. Then, the equivalent peak stress range has been computed 
with Eq. (12), by taking again cw1 = 0.5, all joints being tested under 
fully-reversed load in the stress-relieved state. The maximum value of 
the equivalent peak stress occurred where fatigue cracks experimentally 
initiated and was found to be Δσeq,peak/Δσg = 1.831 (Δσθθ,θ=0,peak/Δσg 
= 1.550, fw1 = 1.671). 

3.3. Schönborn and Nitschke-Pagel [86] 

Schönborn and Nitschke-Pagel [86] conducted fatigue tests on dou
ble longitudinal stiffeners with full penetration welds having main plate 
thicknesses t = 12 mm (series 3.1 in Fig. 11). The joints were made from 
S355NL structural steel and were tested under fully reversed axial 
loading under stress-relieved condition. Again, the fatigue crack 

Fig. 9. Sonsino et al. [82]: Specimens’ geometry and FE model according to the PSM guidelines.  
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initiation was found at the weld toe of the main plate. The failure cri
terion was defined as complete separation of the joint, while the run-out 
condition was fixed to 108 cycles. 

A finite element mesh pattern of 3D 10-node tetrahedral elements 
was used to analyse the mode I peak stresses at the weld toe. The joint 
has been modelled using YZ and ZX double symmetry, covering only a 
quarter of the entire joint. A FE mesh having global size d = 6 mm has 
been used, the minimum mesh density ratio being aPSM/d = 1, with a 
characteristic size of aPSM = t/2 = 6 mm (Fig. 11). Finally, the symmetry 
boundary conditions has been applied to the model along with a uniform 
nominal stress of 1 MPa (Fig. 11). Thereafter, the maximum principal 
stress Δσ11,peak has been evaluated at FE nodes located at the weld toe 

(Δσθθ,θ=0,peak ≈ Δσ11,peak) and the corresponding average peak stress 
Δσ̄11,peak has been calculated thanks to Eq. (14). Eventually, the 
maximum equivalent peak stress Δσeq,peak was found at the crack initi
ation point and resulted Δσeq,peak/Δσg = 1.888 (Δσθθ,θ=0,peak/Δσg =

1.598, fw1 = 1.671, cw1 = 0.5). 

3.4. Fatigue strength assessment according to the PSM 

The original references [82,85,86] reported fatigue data in terms of 
number of cycles to failure Nf versus applied nominal stress range Δσg, 
the latter being evaluated with reference to the main plate according to 
the following expression: 

Fig. 10. Hensel et al. [85]: Specimens’ geometry and FE model according to the PSM guidelines.  

Fig. 11. 3.3 Schönborn and Nitschke-Pagel [86]: Specimens’ geometry and FE model according to the PSM guidelines.  
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Fig. 12. Comparison between FAT classes of longitudinal stiffners according to IIW Recommendations [2], Eurocode3 [1], and experimental data from a) Sonsino 
et al. [82], b) Hensel et al. [85], and c) Schönborn and Nitschke-Pagel [86]. 
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Fig. 13. Fatigue strength assessment of welded joints adopting the PSM with the CAFL: comparison between the PSM design scatter band and experimental data from 
a) Sonsino et al. [82], b) Hensel et al. [85], and c) Schönborn and Nitschke-Pagel [86]. 
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Δσg =
ΔF
A

=
ΔF
W⋅t

(15) 

where ΔF is the axial load range, A = W⋅t is the cross-sectional area, 
W being the plate width. Experimental data from [82,85,86] are shown 
in Fig. 12 with inclusion of the uniaxial fatigue resistance curves ac
cording to IIW Recommendations [2] and Eurocode 3 [1]. The design 
curve for joints having 150-mm-long longitudinal stiffners (Figs. 9-11) 
depends on the standard adopted and the fatigue strengths at 2⋅106 

cycles (FAT class) are ΔσFAT,IIW = 63 MPa and ΔσFAT,EC3 = 56 MPa for 
IIW Recommendations [2] and Eurocode 3 [1], respectively. The mean 
stress correction of the fatigue strength is also required, all specimens 
being tested in the stress-relieved state [1,2]. IIW [2] provides an 
enhancement factor f(R), which depends on the level of residual stresses 
and on the applied load ratio R (f(R) = 1.6 in case of stress-relieved 
welded joints under fully reversed loading, R = -1); accordingly, the 
FAT class becomes ΔσFAT,IIW = 1.6⋅63 = 101 MPa (Fig. 12). On the other 
hand, Eurocode 3 [1] suggests using an effective stress range which is 
obtained by considering 60% of the compressive portion of the stress 
range, that is Δσg = |σg,max| + 0.6⋅|σg,min|. In the case of R = -1, this 
approach corresponds to an enhancement factor on the resistance side 
equal to f(R) = 2/1.6 = 1.25, which is lower than the enhancement 
factor suggested by IIW. Therefore, the considered FAT class becomes 
ΔσFAT,EC3 = 1.25⋅56 MPa = 70 MPa (Fig. 12). The corresponding Con
stant Amplitude Fatigue Limits are also shown in Fig. 12, their values 
being Δσth,IIW = 59 MPa at 107 cycles for IIW recommendations [2] and 
Δσth,EC3 = 51 MPa at 5⋅106 cycles for Eurocode 3 [1]. 

Afterwards, original fatigue data (Fig. 12) have been converted from 
nominal stress ranges Δσg (Eq. (15)) to equivalent peak stress ranges 
Δσeq,peak (Eq. (12)) evaluated at the crack initiation point. Thanks to the 
linear elasticity assumption, the nominal stress ranges Δσg have been 
multiplied by the corresponding equivalent peak stress range Δσeq,peak/ 
Δσg obtained from FEA with 1 MPa applied to the model (see para
ghraphs 3.1, 3.2, and 3.3). Then, the fatigue data have been compared 
with the pre-existing PSM-based fatigue design scatter band for steel arc- 
welded joints under pure mode I loading [34,75] (Fig. 8b). The results 
are reported in Fig. 13, which shows that the PSM-based estimations are 
in very good agreement with experimental data in the finite-life region, 
because the design curve having PS = 50 % captures the average 
experimental trend. Concerning the infinite-life region, Fig. 13 shows 

that the novel threshold value for the equivalent peak stress Δσeq,peak,th 
= 169 MPa describes well the CAFL of welded joints tested by Sonsino 
et al. [82] (Fig. 13a) and by Hensel et al. [85] (Fig. 13b), since the Δσeq, 

peak,th (horizontal solid red line) separates with sufficient accuracy the 
data points of broken specimens (black markers) from the run-out ones 
(red markers). Conversely, the PSM overestimates the fatigue strength of 
the joints tested by Schönborn and Nitschke-Pagel [86] in the infinite- 
life region, because the experimental data fall below the CAFL esti
mated with the PSM (Fig. 13c). Similarly, the nominal stress approach 
according both to IIW [2] and Eurocode 3 [1] overestimates the CAFL 
(Fig. 12c). The reasons for this inaccuracy may be due to the angular 
misalignments (defined as the axial angle between the specimens’ ends) 
noted by the authors of the original paper, who reported that the 
measured angular misalignments were ~ 0.4◦ in the as-welded condi
tions and increased to ~ 0.8◦ after the stress-relieving heat treatment 
[86]. The investigation [85] confirms this hypothesis, in that the authors 
state that the reduced fatigue strength found in the study [86] can be 
justified by high bending stresses induced by the angular misalignments. 
In fact, the authors of ref [85] report that care has been taken when 
preparing their specimens to avoid unpredictable and detrimental sec
ondary bending stresses. In particular, the authors proposed a procedure 
to straighten the specimens and reduce their angular misalignment from 
>1.0◦ to values ranging from 0.09◦ and 0.15◦ [85]. Eventually, the same 
authors [85] performed strain gauge measurements to evaluate the de
formations induced by clamping in the test machine both before and 
after the mitigation of the angular misalignments. Interestingly, they 
observed that the secondary bending strains was reduced by a factor of 5 
after reducing the angular misalignments, resulting in almost negligible 
effects on the applied stress [85]. Unfortunately, no considerations 
about angular misalignments are possible for joints tested by Sonsino 
et al. [82], since the authors did not report any value of misalignments 
or secondary bending stresses. 

4. Discussion 

4.1. Effect of the initial crack size ai 

An initial crack size ai = 17 μm has been adopted in the present 
investigation (Fig. 6), according to the crack arrest analysis relevant to a 

Fig. 14. Dependency of the threshold NSIF ΔK1,th
V and the equivalent peak stress Δσeq,peak,th on the initial through-the-thickness straight-fronted crack size ai 

(see Fig. 6). 
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S355NL structural steel [45]. The initial crack size ai is obtained by 
shifting the cyclic R-curve ΔKth(a) along the abscissa until the tangency 
condition with the driving force is achieved, where the latter is evalu
ated at a stress level equal to the plain material fatigue limit ΔKI,Δσ0(a) 
[26,29,30,45]. However, the initial crack size can be defined by means 
of other criteria, which take into consideration [26]:  

• The grain size [87,88].  
• The size of the fatigue process zone [89,90].  
• An intrinsic crack length [91].  
• The size of the cyclic plastic zone [92]. 

An accurate comparison between all cited methods has been carried 
out by Zerbst et al. [26], who considered the case of a S355NL structural 
steel. Interestingly, the authors observed that all criteria result in almost 
the same initial crack size ai, which was found in the range from 10 to 30 
μm for a S355 steel. Accordingly, the cyclic R-curve analysis discussed in 
paragraph 2.2 and reported in Fig. 6 has been repeated assuming 
different values of initial crack size ai from 5 to 200 μm. The results are 
reported in Fig. 14, where the threshold values of the NSIF ΔK1,th

V and 
the equivalent peak stress Δσeq,peak,th are reported as a function of ai. 
Interestingly, Fig. 14 highlights that the variability of ai reported in the 
literature for a S355 steel (10 μm ≤ ai ≤ 30 μm) causes little variations of 
the thresholds ΔK1,th

V and Δσeq,peak,th, which are always smaller than ±
2%. It is worth noting that imposing a very high value ai = 200 μm, 
which is one order of magnitude greater than ai = 17 μm, the threshold 
values are reduced only by approximately 12%. 

4.2. Effects of the crack path and the crack shape c/a 

Evaluating the driving force requires some assumptions concerning 
the location, path and shape of the propagating crack, which are dis
cussed in this section. 

While the crack initiation point could be easily identified with the 
sharp V-notch tip, i.e. the weld toe, Eq. (6) assumes the fatigue crack 
path is aligned with the notch bisector line, this being justified by 
experimental observations made by Livieri and Tovo [56]. In more 
detail, they analysed many welded joint geometries (flange–tube- 

connections, butt-welded joints, cruciform joints) subjected to pure 
mode I loading and observed that fatigue cracks initiated at the weld 
toes propagate along the bisector line in the first stage and subsequently 
the crack path progressively deviates to become perpendicular to the 
load direction [56]. 

As to the crack shape, usually semi-elliptical fatigue cracks are 
assumed to propagate from the weld toe line, characterized by crack 
depth a and aspect ratio c/a (Fig. 15). Although a semi-circular crack c/ 
a = 1 is commonly assumed in the literature (at least at the initiation 
stage) [2,29,30,45], several studies have found higher aspect ratios c/a 
> 1 [29,93–104]. Maddox [100,104] investigated the crack shape on 
fillet-welded longitudinal stiffeners made of BS 968:1962 steel with 
main plate thickness of 12.7 mm. A relatively high aspect ratios c/a was 
found in the short crack regime (Fig. 15) with an approximate linear 
relationship existing between a and 2c, which was written as follows: 

c
a
= 1.290+

3.355
a[mm]

(16) 

Eq. (16) suggests that the smaller the crack size a the higher the 
aspect ratio c/a, i.e. short cracks at the weld toe are practically straight- 
fronted. Interestingly, this outcome is in very good agreement with 
Verreman et al. [105,106], who found a similar behaviour on a different 
joint geometry. According to Verreman et al. [105,106], the reason for 
such a straight-fronted crack shape at early stage of crack propagation is 
the intense stress concentration effect at the weld toe, which promotes 
the propagation along the weld toe line, while slows down propagation 
through the plate thickness, since stresses suddenly decrease beneath 
the surface. A further explanation has been provided by Schork et al. 
[101] and Madia et al. [29], who reported that the very high aspect ratio 
c/a has to be attributed to the coalescence of adjacent small cracks at the 
weld toe. The number of propagating small cracks and therefore the 
development of c/a depends on the applied stress range. 

FE simulations have been carried out to further investigate the effect 
of the aspect ratio c/a on the driving force. In particular, the fillet- 
welded longitudinal stiffeners fatigue tested by Sonsino et al. [82] (see 
series 1.1 in Fig. 9) have been considered. Half the specimen’s geometry 
has been modelled in Ansys Workbench environment by exploiting the 
YZ symmetry plane (Fig. 16). Next, a semi-elliptical crack has been 

Fig. 15. Variation of the crack front shape c/a during fatigue tests of fillet-welded double longitudinal stiffeners. Re-. 
adapted from [100] 
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modelled on the bisector plane of the weld toe line, where the crack was 
centred symmetrically to the XY plane. According to Fig. 16 the crack 
depth a lies on the bisector plane and the crack width 2c lies on the weld 
toe line. The hypothesis of symmetry on the YZ plane was assumed to be 
still valid due to the small crack sizes involved in the analysis, which 
ranged from 50 μm to 500 μm stepped by 50 μm; the aspect ratios have 
been kept constant and equal to c/a = 1, 2, 3, 5, and 10 during the 
propagation. Moreover, the same crack’s depths have been investigated 
assuming the variation of aspect ratio c/a according to Eq. (16). A global 

finite element size d = 1 mm has been adopted to discretize the model by 
means of 10-node tetrahedral elements, while their size has been pro
gressively reduced to dlocal = a/8 – a/10 at the crack front. The sym
metry boundary conditions along YZ plane have been applied to the 
model along with a uniform nominal stress of 1 MPa (Fig. 16). The 
applied SIF has been evaluated at the deepest point of the crack (point A 
in Fig. 16) by using the Fracture Tool implemented in Ansys® Work
bench, which exploits the domain integral method [107,108] to eval
uate the SIF. 

Fig. 17. Effect of the crack shape c/a on the driving force.  

Fig. 16. FE model for investigating the effect of the crack shape on the applied SIF in the specimen’s geometry 1.1 of Fig. 9 (Sonsino et al. [82]).  

L. Vecchiato et al.                                                                                                                                                                                                                               



Theoretical and Applied Fracture Mechanics 127 (2023) 104039

17

The results obtained are reported in Fig. 17, wherein the normalised 
SIF KI/σg, is shown versus the crack length a. Fig. 17 also shows the 
driving force according to Eq. (6) (solid black line in Fig. 17) where the 
NSIF K1

V has been calculated by using the peak stress of paragraph 3.1 
into Eq. (10) (K1

V = KFE*⋅σθθ,θ=0,peak⋅d1-λ1 = 1.21⋅1.647⋅60.326 = 3.574 
MPa⋅mm0.326). It can be seen that an increase of the aspect ratio c/a 
translates into an increase of the applied SIF KI at point A, the highest 
driving force being relevant to a through-the-thickness straight-fronted 
crack (c/a = ∞, solid line in Fig. 17). The results also show that within 
the range of investigated crack sizes no significant differences can be 
found between c/a = ∞ (solid line in Fig. 17) and c/a equal to 5 or 10 
(triangular and circular markers in Fig. 17), the errors being always 
smaller than 7–10% or 2–5%, respectively. A very good agreement exists 
also between Eq. (6) (solid line in Fig. 17) and Eq. (16) (dashed line in 
Fig. 17). Consequently, it can be concluded that the simplifying 
assumption of a through-the-thickness straight-fronted crack provides a 
sufficiently accurate description of the experimental driving force for 
the longitudinal stiffeners analysed in the present investigation. 

5. Conclusions 

The Peak Stress Method (PSM) has been extended to include the 
Constant Amplitude Fatigue Limit (CAFL) in the fatigue design curve. 
The simplifying hypothesis of a through-the-thickness straight-fronted 
crack emanating from a sharp V-notch tip has been adopted to evaluate 
the range of the Notch Stress Intensity Factor (NSIF) at threshold, ac
cording to the crack arrest analysis of the R-curve method. To apply this 
model, the V-notch opening angle has been taken to be 135◦, which is 
appropriate for weld toes, and the R-curve of the material has been 
determined in the heat affected zone (HAZ) by means of dedicated 
experimental tests. The threshold range of the Notch Stress Intensity 
factor has been readily converted to the corresponding threshold range 
of the equivalent peak stress and incorporated in the fatigue design 
curve of the PSM. Eventually, the PSM with inclusion of the CAFL has 
been successfully validated against experimental data taken from the 
literature and relevant to stress-relieved longitudinal stiffeners sub
jected to push–pull uniaxial loading. Within the conditions of applica
bility highlighted in the present investigation, the advantage of the 
proposed method is that time-consuming stress analyses to calculate the 
driving force as a function of the crack length become unnecessary. 
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