
The importance of graph databases and graph learning 
for clinical applications
Daniel Walke  1,2,*,‡,Daniel Micheel2,‡, Kay Schallert3, Thilo Muth  4, David Broneske5, 
Gunter Saake2 and Robert Heyer3,6

1Bioprocess Engineering, Otto von Guericke University, Universitatsplatz 2, Magdeburg 39106, Germany
2Database and Software Engineering Group, Otto von Guericke University, Universitatsplatz 2, Magdeburg 39106, Germany
3Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 
Dortmund 44139, Germany
4Section eScience (S.3), Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, Berlin 12205, Germany
5Infrastructure and Methods, German Center for Higher Education Research and Science Studies (DZHW), Lange Laube 12, Hannover 30159, 
Germany 
6Faculty of Technology, Bielefeld University, Universitatsstraße 25, Bielefeld 33615, Germany
*Corresponding author: Tel: +49 391 6752845; Email: daniel.walke@ovgu.de
‡First authors.

Citation details: Walke, D., Micheel, D., Schallert, K. et al.  The importance of graph databases and graph learning for clinical applications. Database
(2023) Vol. 2023: article ID baad045; DOI: https://doi.org/10.1093/database/baad045

̈
̈

̈

Abstract
The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional 
approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked 
data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that 
are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph 
learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-
dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical 
tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this 
survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph 
applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph 
learning algorithms.

Graphical abstract

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023

https://orcid.org/0000-0001-5094-3566
https://orcid.org/0000-0001-8304-2684
mailto:daniel.walke@ovgu.de
https://creativecommons.org/licenses/by/4.0/


2 Database , Vol. 00, Article ID baad045

Key points

• Review current graph databases and graph learning 
algorithms.

• Review graph learning applications in medicine.
• Clearer understanding by introducing a medical use 

case for applying graph learning algorithms.

Introduction
The amount and the complexity of clinical data is continu-
ously increasing (1). Ongoing digitalization in the biomedical 
domain makes big clinical data sets more available for stor-
age and subsequent analysis. The insights hidden in this data 
offer the potential for improved treatments of patients, e.g., by 
more accurate and faster diagnoses, examination of adverse 
effects and discovering of new drugs for specific targets (2). 
However, the rapidly increasing data present serious prob-
lems in storing and processing these data appropriately (3). 
Traditionally, relational databases store such data in a tab-
ular structure and use SQL (Structured Query Language) 
for querying them. Recently, non-relational stores, so-called 
NoSQL databases, became popular to handle the shortcom-
ings of relational databases for storing and querying big data 

(e.g., less flexible data schemas). NoSQL databases include 
key-value stores, wide-column stores, document stores and 
graph stores (2). Graph databases use graph stores and pro-
vide efficient entity traversals, i.e., they are ideal for handling 
interconnected (i.e., entities with one or multiple relation-
ships/interactions between each other) and heterogeneous 
(i.e., different kind of entities) data, such as clinical data 
(e.g., patients with similar laboratory results having similar 
treatments in a graph with connections based on the labo-
ratory results and treatments of each patient (Figure 1)) (3). 
Graph stores represent data in form of graphs consisting of 
nodes (also called vertices) and edges (also called links or 
relations), which connect nodes with each other (4). Nodes, 
edges, or complete graphs can have labels and features (also 
called attributes) (5). For example, a graph containing patients 
and symptoms might use node labels to distinguish between 
these two types of nodes (Figure 2). Additionally, a patient 
might have further information, e.g., sex, age and pre-existing 
conditions, stored as node features.

A large graph that represents one fact as a triplet consist-
ing of a head-entity (node), a relation (edge) and a tail-entity 
(node) is called a knowledge graph (6). While we would like 
to stick to this definition of Knowledge Graphs for simplic-
ity, there exist some further definitions of knowledge graphs 
(7). Knowledge graphs have several different applications, 
including Health Knowledge Graphs (8–10), Biological

Figure 1. Heterogenous graph with clinical data. Patients (blue nodes) are connected with diagnoses (red nodes) with a red edge and drugs (yellow 
nodes) with a yellow edge. Interactions between different drugs are represented as a purple edge. Patients 1 and 2 were diagnosed with hypertension. 
Therefore, beta-blockers were administered as treatment. Patient 3 was diagnosed with hyperglycemia and cured with insulin. However, patient 4 was 
diagnosed with hypertension and hyperglycemia (199). The administration of beta-blockers and insulin would lead to negative side effects because of an 
increased risk for hypoglycemia. Therefore, angiotensin-converting enzyme (ACE) inhibitors might be administered as treatment (200).

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



Database, Vol. 00, Article ID baad045 3

Figure 2. Example of a graph. A graph consists of nodes (represented as circles) and edges (represented as arrows) that connect nodes with each other. 
Nodes and edges can have labels, e.g., symptom or patient, and additional attributes. Attributes (often referred to as features) contain additional 
information about nodes or edges, e.g., the age and sex of a patient node.

Knowledge Graph (11, 12), Knowledge Graphs for Covid-
Research (13–15) and many others (16–18). Graph databases 
are already used in several other applications, e.g., social net-
works (19–22), recommendation systems (23, 24) and fraud 
detection (25, 26). Several different graph database man-
agement systems (DBMSs) have been proposed, e.g., Neo4J 
(27), NebulaGraph (28), TigerGraph (29), DGraph (30), 
ArangoDB (31) and many more (32). They are distinguished 
from each other in their query language, their data stor-
age model [i.e., labeled property graph (LPG) or resource 
description framework (RDF)], the availability of access con-
trols, the supported programming languages and their license. 
One of the currently most popular graph databases, Neo4j, 
uses native graph storage and processing. The query lan-
guage Cypher is used to query data and Neo4j offers differ-
ent graph analytics algorithms in their Graph Data Science
Library (27).

After choosing a graph DBMS for the desired use case, 
users need to design a graph data model to store their data in 
the graph database. While constructing an appropriate data 
model, users typically face the following challenges:

• Which data should be stored as separate nodes, edges, or 
graphs?

• Which data should be stored as node/link/graph 
attributes?

• What labels should the stored nodes/edges/graphs have?
• How to define attributes to make them accessible for 

further processing steps?

Unfortunately, there is no ‘one size fits all’ solution for 
these questions. It depends on the data, i.e., whether the data 
is numeric (discrete/continuous) or categorical (nominal/ordi-
nal), and the intended use case, i.e., what questions should 
be answered with the data. If the goal is to predict inter-
actions between different drugs, we would model drugs as 
nodes and known interactions as edges (drug–drug interaction 
graph) (33–35). However, if the goal is to predict properties 
of different drugs, we might represent each drug agent in its 
chemical structure as an individual graph with nodes as atoms 
and atomic bonding as edges (36–40).

After storing the data in an appropriate data model, the 
next goal is to analyze the graph data. This is where graph 
learning becomes important. Graph learning is the application 
of machine learning techniques on graph data, i.e., it simplifies 
complex interconnected data to draw conclusions and answer 
specific questions (41). It is distinguished from other machine 

learning techniques by making use of the graph structure 
(nodes and the relations between them). Graph learning con-
sists of two parts, graph representation learning and graph 
analytics. Graph representation learning is used to reduce 
the dimensionality of the input graph, which might include 
millions or even billions of nodes and edges (42). There are 
several graph representation learning techniques, which can 
be divided into (i) matrix factorization-based approaches, 
(ii) random walk-based approaches and (iii) graph neural 
networks (GNNs). The output of graph representation learn-
ing is a set of low-dimensional embedding vectors (i.e., one for 
each node), or a single embedding (i.e., for the entire graph) 
that can then be used in graph analytics for graph mining 
tasks, or visualization tasks. The most commonly used graph 
mining tasks for analytics are node classification, link pre-
diction and graph classification (42). These tasks are already 
used in several clinical real-world use cases, including predict-
ing interactions between different drugs (43) and diagnosing 
patients based on their medical history (44, 45). Graph learn-
ing is not only a promising technology for decision-support 
systems and drug discovery, but also for generating new 
knowledge through Knowledge Graph completion (46, 47). 
Furthermore, modern hardware like GPUs and FPGAs can 
further accelerate analyzing large amounts of graph data by 
parallelizing some calculations (48, 49).

Organization
In this paper, we will define and explain graph databases 
and review several different graph databases (Section 2). 
Then, we illustrate the concept of graph learning, review 
the most important graph learning algorithms, and explain 
their limitations (Section 3). Finally, we show some already 
existing applications for graph learning in the clinical 
domain (Section 4.1–Section 4.4).

Our contributions
There already exist some review articles about graph 
databases and graph learning comparing many different 
approaches and embedding methods (32, 42, 50–53). Besides 
them, there are few publications about either graph databases 
in the biomedical domain or graph representation learning in 
bioinformatics (51, 54, 55). To the best of our knowledge, 
this is the first survey incorporating a complete pipeline from 
data storage, over graph learning to real-world applications 
in clinical domains (Figure 3). Especially for beginners in this 
field, our work helps in getting started with graph databases 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



4 Database , Vol. 00, Article ID baad045

Figure 3. Pipeline for processing graph data. The pipeline consists of two parts, data storage and graph learning. As input users have data and a specific 
use case. After they have chosen a graph database, they need to design a graph data model to store their data appropriately (data storage). In the 
second part, high-dimensional graph data are reduced to obtain low-dimensional embeddings using graph representation learning. These embeddings 
are used in graph analytics for several different clinical applications, e.g., predicting interactions between drugs.

and provides a comprehensive introduction for processing big 
clinical data. While this review primarily focuses on clinical 
applications, the concepts introduced in this work can also 
be applied to many other applications, e.g., recommendation 
systems and fraud detection.

Graph databases
In large-scale machine learning applications, data storage is 
as important as the machine learning algorithms that learn 
patterns in the data (56, 57). Data must be securely stored, 
especially for clinical applications, readily available for train-
ing of machine learning algorithms and remain updateable 
with new information. Databases are organized as collec-
tions of data that, depending on their DBMS support dif-
ferent types of data and allow for access patterns that are 
beneficial in different applications. Historically, relational 
database systems have been used to store the majority of 
data in production settings. In this section, the journey 
from classic relational databases to graph databases will be 
explored. First, the traditional relational database manage-
ment systems will be introduced, as well as the challenges 
that arise from joins in relational databases (Section 2.1). Sec-
ondly, it will be shown how graph databases represent data 
and how the graph data representation can partially over-
come the challenges of relational databases (58) (Section 2.2 
and Section 2.3). Finally, we will explain why we need graph 
query languages and name the most important representatives
(Section 2.4).

Relational Database Management System (RDBMS)
In relational database management systems, single records are 
represented as rows in a defined table structure. The table 
structure is based on columns that represent the attributes 
of the data. Each record can be identified by a primary 
key. A relation can be represented by using the identifiers 
of records as foreign keys. These keys can be used in join 
tables to identify a row in one table with a row in another
table.

Primary keys are a column or set of columns that uniquely 
identify a row in a table. Foreign keys are a column or set of 
columns that identify a row in another table.

SQL is the standard language for accessing and manipulat-
ing records in an RDBMS Most relational databases support 

SQL and it is the standard for data manipulation in RDBMS 
(58, 59).

Joins
Joins are query operations on a relational database that allow 
for the retrieval of multiple records from different tables 
according to a join condition. Joins therefore link these 
records from the RDBMS together based on the join con-
dition. Join conditions are logical comparisons of fields or 
keys between tables. Joins can therefore be used for combined 
retrieval of related entries from two or more tables in the 
RDBMS. This makes Joins the preferred method for query-
ing data based on a relationship between the elements in the 
table that is encapsulated in the logical condition. Joins can 
be separated based on the way the data is retrieved from the 
joined tables.

There are two types of joins defined in SQL: inner joins 
and outer joins. Inner joins return rows from both tables that 
match the join condition. Outer joins return rows from the 
one table that does not match the join condition (Figure 4). 
Therefore, left outer joins return all rows from the left table 
and all rows from the right table that satisfy the join condition. 
Conversely, right outer joins return all rows from the right 
table and all elements from the left table that satisfy the join 
condition. Full outer joins return all rows of both sides pivoted 
on the field in the join condition (60).

References by foreign key can be resolved by the SQL JOIN 
operation. Many-to-many relations in relational DBMSs 
require multiple JOIN operations. Relational DBMSs struggle 
to integrate new ad-hoc relations between records in the table 
structure. New relations that are introduced into the existing 
relational database require join tables that limit the perfor-
mance of the database. However, relational databases provide 
materialized database views that store results from SQL oper-
ations like JOINS in a new materialized table (61). After the 
creation of this materialized table, one can directly query 
these data without requiring any JOIN operations. Thereby, 
views facilitate querying connected data from multiple differ-
ent tables and increase the query performance. Furthermore, 
specific columns in this new table can be indexed to further 
accelerate potentially computational expensive search, com-
parison and filtering operations (62). Another direction to 
overcome performance issues in RDBMS is to use specific 
data structures tailored to the desired use case. One example 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



Database, Vol. 00, Article ID baad045 5

Figure 4. Join Types. There are six different join types: left Outer Join (A), 
right Outer Join (B), left Outer Join with Null (C), right Outer Join with Null 
(D), inner Join (E) and full Outer Join (F). Each circle represents a table 
and the blue color highlights the retrieved data from the joined tables.

might be the integration of more information in a single table
(e.g., denormalization to WideTables (63)) to prevent poten-
tially expensive JOIN operations.

Graph Database Management System (GDBMS)
NoSQL databases are non-relational databases. Contrary to 
relational databases, these databases do not represent their 
data in a table structure. The field of NoSQL databases 
includes a variety of databases with different data mod-
els; these include but are not limited to document-oriented 
databases, key-value databases, wide-column databases, RDF 
stores and native graph databases (2, 58).

Graph database management systems (GDBMS) are 
NoSQL databases that use graph structures for semantic 
queries with nodes, edges and properties to represent and store 
data and the relationships exhibited by the data. A key concept 
of the system is the graph, which can be modeled in various 
ways. The direct relationships of data in the graph allow data 
in the store to be linked together directly and, in many cases, 
retrieved with one operation. These retrievals can be powerful 
when the data is interconnected. A graph database can be used 
to represent any kind of data that has relationships between 
data elements. Therefore, graph databases are often used in 
applications where the underlying data has a lot of relation-
ships between items, or where the relationships between data 
items are more important than the individual items.

Native graph databases
A database that models graph data can be implemented in 
any NoSQL data model and even relational databases (32). 
Different data representations therefore require different con-
cepts to represent nodes, edges, labels and properties con-
tained in a graph. Graph databases exist that are built on 

tuple stores, wide-column databases, key-value databases, 
document databases and relational databases.

However, the LPG and RDF are two data models that 
implement a graph natively for utilization as a database.

Differences between relational and graph databases
Compared to graph databases, relational databases perform 
better in respect to query efficiency and data modeling for 
storing data that can be easily normalized into a tabular 
format (58). Graph databases are better suited for storing 
and accessing data where most data is interconnected, such 
as social data, location data, network data and biomedical 
data (Figure 5). Relational databases are better for online 
transaction processing (OLTP) applications because relational 
databases are better at supporting transactions and maintain-
ing data integrity. Relational databases are typically more 
expensive to maintain and to scale than graph databases 
because inserting new data elements with relationships to old 
data elements requires join operations for the integration into 
the existing tabular data model. Many different data models 
can be used to implement graph databases. The most impor-
tant native Graph data models are RDF stores (64) and LPG 
(32).

Graph data models
Graph model
A graph G(V, E) is composed of an ordered pair of two dis-
joint sets: vertices V (also referred to as nodes) and edges (or 
links) E (32). In information theory, a graph is a representation 
of a set of objects and relationships between them. Graphs 
can be used to model a wide variety of structures, including 
networks, hierarchies, ontologies and other forms of inter-
connected data. In native graph databases, a graph can be 
represented as either an LPG or as RDF triples (64).

Labeled Property Graph (LPG)
Property graphs use a node-edge-property model, where each 
node represents an entity, each edge represents a relation-
ship between two entities, and each property represents an 
attribute of an entity or relationship (Figure 6). The property 
graph model is based on the classical graph model, but intro-
duces labels to vertices, edges, and properties. Labeled vertices 
and edges can represent different classes of data. Properties 
augment the vertices and edges with key-value pairs, where 
the key identifies the property and the value represents the 
feature of the property (32, 65).

Neo4j
Neo4j is a GDBMS that uses native graph storage and pro-
cessing. Neo4j uses the LPG data model and the Cypher query 
language. Neo4j graphs are directed however this limitation 
can be overcome at query time (27, 32, 66).

SparkSee
Sparksee is an LPG graph database management system. 
Sparksee allows directed and undirected graphs. Sparksee uses 
the OpenCypher query language (32, 67).

TigerGraph
TigerGraph is a property graph database, which supports 
the LPG model. TigerGraph uses a SQL-like query language 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



6 Database , Vol. 00, Article ID baad045

Figure 5. Visualization of (A) relational data and (B) graph data of disease, gene and pathway entities in KEGG (201). A disease references to a pathway 
entity and to a gene entity. For receiving information from multiple tables in a relational database, we must perform join operations on the tables. In a 
graph database, we traverse edges to receive information from multiple nodes.

Figure 6. Overview of Labeled Property Graph (LPG). In this example, medical data is transformed into an LPG format. Alice is a doctor and Bob is a 
patient, both are represented as nodes in the LPG. The doctor–patient relationship between Alice and Bob is modeled by a directed edge in the LPG 
with an assigned property, which is the end date of Bob’s treatment by Alice.

(GSQL). TigerGraph offers built-in MapReduce operations 
and parallelism (29, 32).

Resource Description Framework (RDF) stores
The RDF (68) was first published by the World Wide Web 
Consortium (W3C) in 1997 as a collection of specifications 
for the representation of information. The RDF was revised 
in 2014 to version 1.1. The goal of the RDF is the stan-
dardization and simplification of the exchange of ontologies. 
Ontologies are sets of terms and the relationships between 
them. To facilitate this goal, RDF triples use a subject-
predicate-object graph model, where each triple represents 
a relationship between two items in the graph (Figure 7). 
Subjects are Uniform Resource Identifiers (URIs) or blank 
nodes, objects can be URIs, literals or blank nodes and 
predicates are URIs. The collection of these information 
triples forms a collection that is often referred to as a 

triple store. RDF triples are a standard format for linked
data (32, 69).

Graph query languages
Besides their data model, databases can be classified by 
their query language. A query language is used for the 
retrieval and access to data in databases. These query lan-
guages facilitate the access, manipulation, and creation of 
data in the database. In graph databases, the data model 
also influences the used query language. While most RDF 
databases rely on the SPARQL Protocol and RDF Query 
Language (SPARQL) for data access and manipulation, most 
LPG databases employ Cypher, Gremlin, or GSQL as their 
query language (70). Tables 1–3 provide an overview how to 
create a graph (Table 1), create/delete nodes (Table 2), and 
create/delete edges (Table 3) in different query languages.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



Database, Vol. 00, Article ID baad045 7

Figure 7. Overview of Resource Description Framework (RDF). Every information in the Resource Description Framework is organized as a triple and 
every triple follows a subject predicate object structure. In this example, the medical data of Figure 5 is transformed into the RDF format. The 
subject:alice has the predicate rdf:type with the object:doctor and the predicate:name with object ‘Alice’. These RDF triples represent the node of doctor 
Alice in the LPG. The directed nature of the edge TREATS in the LPG is represented by the RDF triples (:rel,:rel_source,:alice) and (:rel,:rel_target,:bob). 
The properties of the edge are represented by the triples (:rel, rdf:type,:treats) and (:rel,:till, 2022–12-12). Bob is represented by the triples (:bob, 
rdf:type,:patient) and (:bob,:name, “Bob).

Cypher
Cypher is Neo4j’s own declarative query language (71). Its 
main building blocks are ‘patterns’. These patterns are con-
structed as nodes in squared brackets and connecting edges as 
arrows (65).

GSQL
GSQL is TigerGraph’s high-level graph querying and update 
language with a declarative semantic. It is closely mod-
eled after SQL from relational databases (SELECT-FROM-
WHERE as the core building block). Therefore, GSQL is 
compatible with SQL (72, 73).

Gremlin
Gremlin is a graph traversal language introduced in 2009. 
Gremlin is maintained and developed by Apache TinkerPop 

(74). Gremlin supports imperative and declarative querying of 
graph data in graph databases. Apache TinkerPop is a graph 
computing framework for both OLTP and online analytical 
processing applications (65, 74).

SPARQL
SPARQL is a semantic query language introduced in 2008. 
SPARQL is able to retrieve, manipulate and store data in the 
RDF format (65, 75).

Graph learning
After loading all data in the chosen graph database in an 
appropriate data model, data analysis becomes important. 
Graphs are non-Euclidean data structures (76), i.e., nodes 
in a graph can have a complex topological structure and do 
not have a natural order like pixels in a picture or words 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



8 Database , Vol. 00, Article ID baad045

Table 1. Overview of how to create graphs using different graph query languages

Query language Create graph

Cypher CREATE DATABASE graphName
GSQL CREATE VERTEX nodeType (PRIMARY_ID idName idType, feature1 featureType)

CREATE UNDIRECTED EDGE edgeType (FROM nodeType, TO nodeType, featureValue featureType)
CREATE GRAPH graphName (nodeType, edgeType)
USE GRAPH graphName

Gremlin graphName = TinkerGraph.open().traversal()
SPARQL Update CREATE GRAPH IRIref

Table 2. Overview of how to create and delete nodes using different graph query languages

Query language Insert nodes Delete nodes

Cypher CREATE (n:nodeType {feature1: value}) MATCH (n:nodeType {feature1: value})
DELETE n

GSQL INSERT_INTO nodeType VALUES (idValue, 
featureValue)

CREATE QUERY queryName() FOR GRAPH 
graphName {

N = {nodeType.*};
DELETE n FROM N:n
WHERE n.feature1 == featureValue;
}
RUN QUERY queryName()

Gremlin graphName.addV().property(id, idValue).prop-
erty(feature1, value).next()

graphName.V().hasId(idValue).drop()

SPARQL Update INSERT DATA {GRAPH IRIref {URI_subject 
URI_predicate value}}

DELETE DATA {GRAPH IRIref {URI_subject URI_predi-
cate value}}

Table 3. Overview of how to create and delete edges using different graph query languages

Query language Insert edges Delete edges

Cypher MATCH (m:nodeType), (n:nodeType)
WHERE m.feature1 = featureValue AND
n.feature1= featureValue
CREATE (m)-[e:edgeType]->(n)

MATCH
(m:nodeType)-[e:edgeType]-> (n:nodeType)
DELETE e

GSQL INSERT INTO edgeType (FROM, TO, feature1)
VALUES (startNode nodeType, endNode nodeType, 

featureValue)

CREATE QUERY queryName() FOR GRAPH 
graphName {

N = {nodeType.*};
DELETE e FROM N:n -(edgeType:e)- nodeType:m
WHERE n.feature1 == featureValue;
}
RUN QUERY queryName()

Gremlin graphName.addE(‘edgeLabel’).from(startN-
ode).to(endNode).property(id, idValue).prop-
erty(feature1, value)

graphName.E().hasId(idValue).drop()

in a sentence. In this work, a topologically complex struc-
tured graph is defined as a graph with a large number of 
nodes (thousands, millions or even billions of nodes) which 
are connected by many edges based on one or multiple rela-
tionships. Several traditional approaches (Section 3.1) were 
proposed within the last decades to analyze graphs with differ-
ent measures, statistics, or kernels (41, 77–84). They represent 
the pioneer works for analyzing graph data, but they are 
transductive (i.e., they can only learn from observed nodes) 
and computationally inefficient. Recently, machine learning 
on graphs (graph learning) has become popular. It consists 
of two parts, graph representation learning (Section 3.2) and 
graph analytics (Section 3.3). Graph representation learning 
transfers a given topologically complex structured input graph 
into a more accessible format. In graph analytics, graph learn-
ing uses this format for several tasks including visualization, 

classification, and prediction tasks. Table 4 lists advan-
tages and disadvantages of traditional approaches, matrix-
factorization-based methods, random-walk-based methods, 
and GNNs. 

Traditional approaches (manual feature extraction)
Traditional approaches can be divided into approaches for 
node-level, graph-level, and edge-level feature extraction. 
Machine learning classifiers (e.g., logistic regression) use the 
resulting features for making predictions. Node-level fea-
tures can encode information like the number of neigh-
bors of each node (node degree), a node’s importance in a 
graph (node centrality), and a node’s neighborhood cluster 
density (clustering coefficient) (85). Graph-level features can 
extract information by aggregating statistics/features from 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



Database, Vol. 00, Article ID baad045 9

Table 4. Advantages and disadvantages of different categories of graph learning approaches used for analyzing graphs

Category Advantages Disadvantages

Traditional approaches (manual 
feature extraction)

Easy to use and understand Require careful, hand-engineered statistics/measures
Time-consuming and expensive design (35)

Matrix-factorization-based Capture global structure (44) Cannot use features, no parameter sharing, transductive, deter-
ministic measure of neighborhood overlap (35, 36), high time 
and memory cost (44)

Random-walk-based Stochastic measures of neighborhood 
overlap (35)

Cannot use features, no parameter sharing, transductive (35)

Graph neural networks Most can use features, Low interpretability, risk of over-smoothing, under-reaching 
and over-squashing (35, 36, 74,76)Most are performant,

Can process large and complex data,
Some are inductive (35, 73)

all nodes within a graph, iterative neighborhood aggre-
gation (Weisfeiler-Lehman kernel), or counting the occur-
rence of different small subgraph structures (graphlet kernel) 
(77–81, 85). Finally, edge-level feature approaches extract 
features by counting the number of neighbors that two nodes 
share (local neighborhood overlap detection) or counting the 
numbers of paths of all length between two nodes (global 
neighborhood overlap detection) (41).

Graph representation learning
Traditional approaches require careful, hand-engineered 
statistics and measures, and their design is time-consuming 
and expensive (42). Graph representation learning provides 
a more flexible approach and aims to find efficient task-
independent representations of nodes in a graph or sub-
graph. Therefore, these algorithms aggregate information of 
each individual node as well as information from its local 
neighborhood into a single vector (embedding). Depending 
on the task (node-level, edge-level, or graph-level task), these 
embeddings are either directly (node-level tasks) passed to 
state-of-the art machine learning (SOTA-ML) algorithms or 
the embeddings are further aggregated (edge-level task or 
graph-level task) and then passed to SOTA-ML algorithms 
for final predictions (graph analytics, Figure 8). Besides 
these so-called graph mining tasks, the resulting embeddings 
can also be used for visualizing data (Section 3.3). Mod-
ern graph representation learning can be divided into three 
broad categories—matrix factorization-based methods, ran-
dom walk-based methods and GNNs.

Matrix-factorization-based methods
Matrix-factorization-based methods represent node connec-
tions in the form of a similarity matrix (e.g., adjacency matrix, 
Laplacian matrix, k-step transition probability matrix) and 
use matrix factorization for generating embeddings (50, 53). 
Intuitively, they aim to learn embeddings so that the multi-
plication of node embedding i and j approximates their sim-
ilarity (42). The factorization-based approaches vary based 
on the matrix properties (53). The most common repre-
sentatives of matrix-factorization-based approaches include 
locally linear embeddings (LLE) (86), Laplacian Eigenmaps 
(87), Graph Factorization (88), HOPE (89) and GraRep
(90, 91).

Random-Walk-based methods
Random-walk-based approaches learn embeddings based on 
random walk statistics (42). Random walks are very powerful 
shown in several applications like Google’s page rank algo-
rithm (92). A random walk collects a series of nodes based 
on their connection (Figure 9A). It starts from a specific node 
and picks the next node randomly from the node’s neighbor-
hood. The latter step is repeated n times, where n represents 
the length of the random walk. As a result, we receive for 
each node a set of node sequences which represent the neigh-
borhood of the node. Finally, we use these neighborhoods 
in an optimization function to find node embeddings (i.e., 
vectors) so that nodes on the same sequence are embedded 
close to each other (i.e., have similar vectors) (Figure 9B). 
Thereby, random-walk-based approaches allow measuring 
the similarity of a node based on its sampled neighborhood 
(42). Random-walk-based approaches include techniques like 
DeepWalk (93) and node2vec (94). DeepWalk uses success-
fully established deep learning techniques of natural language 
processing for graph analysis. Short random walks generate 
latent representations of nodes in a graph to preserve higher-
order proximity between nodes. Obtained random walks are 
then used to train a machine learning model for receiving the 
final embeddings (93). Node2vec is an algorithmic framework 
for generating node embeddings, while making a trade-off 
between breadth-first sampling and depth-first sampling (94). 
Furthermore, Chen et al. proposed HARP, a meta-strategy for 
improving random-walk based methods like DeepWalk and 
Node2vec (95).

Graph neural networks
Matrix factorization-based methods and random walk-based 
methods have two serious limitations. First, they cannot gen-
erate embeddings for unseen nodes (transductive learning), 
i.e., a complete re-computation is needed as soon as new nodes 
appear in the graph. Second, they cannot use features attached 
to nodes, edges, or graphs. GNNs provide (at least par-
tially) solutions for these limitations (42). They can be divided 
into graph autoencoders, recurrent GNNs, convolutional 
GNNs, and spatial-temporal GNNs. Graph autoencoders 
consist of two parts: an encoder and a decoder. While the 
encoder reduces the dimensionality of the high-dimensional 
input, the decoder tries to reconstruct the graph from the 
embedding. Examples of the neighborhood autoencoders 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



10 Database , Vol. 00, Article ID baad045

Figure 8. Overview of graph learning (machine learning on graphs). Graph learning can process a high-dimensional input graph (red rectangle) using 
graph representation learning (blue rectangles) and graph analytics (green rectangles). Graph representation learning allows the generation of 
low-dimensional node embeddings using graph representation approaches (manual feature extraction, matrix-factorization-based, random-walk-based, or 
graph neural networks). These embeddings represent feature information and topological information about a node efficiently. Then, graph analytics use 
these low-dimensional embeddings for graph mining tasks like link prediction to predict new links, node classification to classify nodes or (sub-)graph 
classification to classify entire (sub-)graphs.

are Deep Neural Graph Representations (DNGR) (96) and 
Structural Deep Network Embeddings (SDNE) (97). While 
graph autoencoders can incorporate structural information 
about a node’s local neighborhood, they are still transduc-
tive like random walk-based and matrix-factorization-based 
methods, and they are computationally expensive due to their 
fixed input dimension to the autoencoder (42). Recurrent 
GNNs represent the pioneer works of GNNs and learn node 
representations with recurrent neural architectures (52). Infor-
mation between nodes is constantly exchanged until a stable 
equilibrium is reached. Gated Graph sequence neural net-
works (98) and graph echo state networks (99) are represen-
tatives of recurrent GNNs. The idea of information exchange 
between nodes motivated recently proposed spatial convo-
lutional GNNs. Convolutional GNNs can be divided into 
spectral and spatial approaches and provide solutions for the 
previously mentioned limitations of other graph representa-
tion learning techniques. Spectral approaches introduce filters 
from the perspective of graph signal processing (52). Spa-
tial approaches are based on aggregating information from 
a node’s local neighborhood (message passing framework) 
(100). In the message passing framework node features are 

first transformed using a learnable weight matrix and a non-
linear activation function (e.g., sigmoid function) and then 
aggregated to obtain new node embeddings. The process of 
transformation and aggregation is repeated n times, where n is 
the number of layers. One advantage of spatial convolutional 
GNNs is that the underlying message passing framework 
allows to parallelize the operations on each node (i.e., trans-
formation and aggregation) on modern hardware like GPUs to 
increase computational efficiency. Furthermore, they allow to 
share trainable parameters (i.e., the learnable weight matrix) 
between nodes by using the same weight matrix for all node 
features in one layer which make them statistically and com-
putationally more efficient than spectral approaches. Several 
different spatial convolutional GNNs were proposed which 
differ in their architecture, especially their aggregation (e.g., 
aggregating all neighbors, random walks for aggregation) and 
pooling (e.g., max-pooling, sum-pooling, average-pooling) 
parts (100). It is noteworthy that pooling operations need 
to be permutation-invariant, because of the missing natural 
order of nodes in a graph (42). GNNs can process homo-
geneous graphs (i.e., graphs containing only one type of 
nodes and one type of edges) using homogeneous GNNs

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



Database, Vol. 00, Article ID baad045 11

Figure 9. Example of random walks on a graph (A) and the transformation into node embeddings (B). In (A), three random walks with length two are 
sampled from node 1 to receive node sequences as a result. These node sequences represent the neighborhood of node 1. Then, we aim to find node 
embeddings such that nodes that co-occur often on random walks are embedded closer to each other (B). Note that the sequences generated from the 
random walks and the numbers for representing the final node embeddings are fictitious to make the embedding generation clearer.

(98, 101–104) and heterogeneous graphs (i.e., graphs contain-
ing multiple types of nodes and/or edges) using heterogeneous 
GNNs (105, 106). Spatial-temporal graph neural networks 
(STGNNs) can consider spatial and temporal dependencies 
simultaneously, which becomes especially important when 
analyzing time series on graphs. Therefore, in most cases 
1D-Convolutional Neural Networks (CNNs) are combined 
with graph convolutional layers to learn temporal and spatial 
dependencies respectively (52). The CNN assigns weights and 
biases to different timestamps of the time series to consider 
their importance.

Problems and limitations of GNNs
Although GNNs are powerful graph representation tech-
niques, there exist some problems and bottlenecks for them. In 
the following, we will discuss the problem of over-smoothing, 
under-reaching and over-squashing in GNNs. Homophily 
(i.e., nodes that are connected to each other are similar) is 
an assumption of the message passing framework in GNNs 
and leads to smoothing of graphs. Smoothness means in this 
context that node representations become like each other. 
This smoothness alleviates the classification of nodes in the 
subsequent prediction step. Over-smoothness occurs when 
stacking too many layers in a GNN. Consequently, node 
representations become indistinguishable from each other, 
worsening the classification accuracy of the GNN (107). 
Under-reaching occurs when nodes are more than k-hops 

away from each other, where k is the number of layers in the 
used GNN, i.e., the nodes are unaware of each other. This 
is especially important for problems that require long-range 
information (large problem radius). Adding additional layers 
to the GNN prevents under-reaching (108). The problem is 
that adding further layers increases a node’s receptive field 
(nodes that are k-hops away) exponentially and can thereby 
lead to over-squashing. Messages from the exponentially 
growing receptive field are propagated and compressed into 
fixed-size vectors. Thereby, the graph only learns short-range 
signals and fails message propagation from distant nodes
(108).

Other representation learning approaches
There are also some graph representation learning algorithms 
which cannot be categorized in one of the previous three 
broad categories. They include popular methods like the 
large-scale information network embedding (LINE) (109) and 
GraphGAN (110). LINE can capture first-order and second-
order proximity of each node in a graph. It is an embedding 
technique for handling especially large graphs due to its effi-
ciency (50, 109). GraphGAN consists of a generator and a 
discriminator, which play a game-theoretical minimax-game. 
While the generator tries to approximate the ground-truth 
connectivity distribution of each node in a graph, the dis-
criminator tries to distinguish between the connectivity from 
ground-truth and the generator (50, 110).

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



12 Database , Vol. 00, Article ID baad045

Embedding (sub-)graphs
The previously presented approaches (matrix-factorization-
based, random walk-based approaches, and GNNs) can gen-
erate embeddings for each node in a graph. The obtained node 
embeddings can also be used to generate (sub-)graph embed-
dings by aggregating all node embeddings in the (sub-)graph 
(111). The approaches for aggregating node embeddings can 
differ, e.g., summing (or averaging) node embeddings (112), 
or introducing graph coarsening layers (113, 114). Another 
approach for generating (sub-)graph embeddings is by creat-
ing a virtual super-node connected to all nodes that should be 
included in the (sub-)graph embedding (115). The resulting 
(sub-)graph embedding can be used for graph-level prediction 
tasks in graph analytics.

Graph analytics
After graph representation learning, the obtained low-
dimensional embeddings can be used for several graph ana-
lytic tasks.

Visualization
Most embedding vectors have between 16 and 128 dimen-
sions, i.e. they cannot be visualized directly in a two-
dimensional diagram. Techniques, like t-distributed stochastic 
neighbor embedding (t-SNE) (116) and principal component 
analysis (PCA) (117), can be used to reduce the dimen-
sionality of the embeddings and thereby enable visualizing 
them (Figure 10). Such visualizations help to better under-
stand the model output. It facilitates the identification of out-
liers or anomalies and allows to identify the margins specific 
embeddings differ from each other.

Graph mining tasks
Besides visualization, there are several other graph analytic 
tasks that we sum up to graph mining tasks, including 
link prediction, node classification, (sub-)graph classification, 
link/node/graph regression, graph generation, node cluster-
ing, and network compression. Link prediction aims to find 
new missing edges (relations) or remove wrong (or in the 
future disappearing) edges between existing nodes (118, 119). 
Pairs of node embeddings are used (e.g., by aggregating and 
linearly transforming the embeddings or by calculating their 
dot product) to make link predictions (42). In node classifica-
tion, unlabeled nodes in a graph should be classified based on 
their features and their position in the graph. This is often a 
form of semi-supervised learning (i.e., only a subset of nodes 
has labels) and the goal is to predict the missing labels using 
the final node embeddings (41). The labeling of (sub-)graphs 
is accomplished by (sub-)graph classification with (sub-)graph 
embeddings and provided labels (41). Link/node/graph regres-
sion allows the estimation of specific numeric properties of 
nodes, or (sub-)graphs respectively (41, 120). Graph genera-
tion allows the generation of new graphs with specific desired 
properties and structures (120). Based on the structure and/or 
properties of nodes, a graph can have multiple different clus-
ters that can be identified with node clustering (e.g., spectral 
clustering (121)). With the help of network compression, the 
information stored in a graph is compressed to reduce space 
requirements (e.g., by utilizing graph embeddings) (52).

Applications of graph learning
Several different applications of graph learning highlight the 
potential of utilizing a graph structure and graph learning in 
various clinical use cases (54, 55). In this section, we clas-
sify several clinical applications based on the following graph 
mining tasks:

• Link prediction (Section 4.1);
• Node classification (Section 4.2);
• (Sub)graph classification (Section 4.3);
• And further graph mining tasks (Section 4.4).

Furthermore, we want to clarify the application of graph 
learning on a specific use case for a clearer understanding of 
graph learning (Supplementary Graph learning use case).

Applications of link prediction
Link prediction aims to find missing or wrong associa-
tions between nodes and involves different applications, 
including modeling drug-drug interactions (43, 122), drug–
protein interactions (123), protein–protein interactions (124), 
disease–disease interactions (125), and knowledge graph com-
pletion (46, 91, 126). Drug–drug interactions are used to 
predict adverse side effects when a patient takes multiple 
drugs simultaneously (122), and to study drug similarity for 
inferring novel properties of drugs for drug discovery (127). 
Use cases of drug-protein networks include predicting drug-
target interactions for finding new therapeutic effects of drugs 
(123). Predicting protein-protein interactions improves our 
understanding of biological interactions in cells (124). In a 
comorbidity network (i.e., a graph where diseases are linked if 
the disease couple affects at least one patient), link prediction 
is used to predict the onset of future diseases (125). Real-
world knowledge graphs widely suffer from incompleteness 
(91). Therefore, knowledge graph completion is an important 
task for finding missing relations and inferring new facts (e.g., 
in medical knowledge graphs). Several different models were 
proposed for this purpose (47, 128–133). It becomes espe-
cially important for dynamic knowledge graphs that change 
over time (91). Besides predicting missing links in a graph, 
link prediction can also be used for predicting whether links 
might disappear in the future (negative links), e.g., in a gene 
expression or medical referral network (119, 134).

Applications of node classification
Node classification aims to find labels for unlabeled nodes in 
a graph. This task is important for population-based datasets, 
i.e., one graph represents an entire community, and one node 
represents a single patient. Node classification is used for 
predicting autism spectrum disorder (135, 136), Alzheimer’s 
disease (135–138), Parkinson’s disease (137, 138), attention 
deficit hyperactivity disorder (139), and depression (140). 
Often imagery data (e.g., functional Magnetic Resonance 
Imaging (fMRI) data, electroencephalography (EEG) data) 
and non-imagery data (e.g., gender, age) are used as features 
attached to individual nodes. In histopathology, node classifi-
cation was used for segmenting images into diagnostically rel-
evant regions (e.g., for diagnosing prostate cancer) (141). Ma 
and Zhang proposed AffinityNet for disease type prediction 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



Database, Vol. 00, Article ID baad045 13

Figure 10. t-SNE. Visualization of final node embeddings after applying two graph convolutional layers on the Cora citation dataset (202) (PyTorch 
Geometric (203), embedding-dimension: 128). Each color represents a research topic for a node (circle).

and applied it to cancer genomic data (142). Furthermore, 
node classification was applied for annotating protein func-
tions (94, 102, 143). Besides, Yue et al. classified semantic 
types of medical terms in a medical term co-occurrence graph 
(134).

Applications of (sub-)graph classification
Instead of representing an individual patient as a node with 
attached features, imagery data from fMRI, EEG, or com-
puter tomography (CT) can be represented as an entire graph. 
Therefore, data is transferred into a graph structure and graph 
classification is applied afterwards. Several use cases highlight 
the applicability of this procedure using EEG data, including 
seizure prediction (144) and detection (145–147) in epileptic 
patients, identification of visual stimuli (148), emotional video 
classification (149), emotion recognition (150–156), and sleep 
stage classification (157). Furthermore, graph classification 
was applied to MRI and fMRI data for diagnosing Alzheimer’s 
disease (158, 159), bipolar disorder (160), autism spectrum 
disorder (161), early mild cognitive impairment (162), Parkin-
son’s disease (163), for discovering novel biomarkers (e.g., 
for neurological disorders) (161, 164), for subject-sex classifi-
cation (159), for measuring functional connectivity between 
different brain regions (165), and for the identification of 
regions of interest in epilepsy networks (166). Histopatholog-
ical images were represented as a graph to apply GNNs for 
the identification of lung cancer subtypes (167, 168), breast 

cancer (169, 170), basal cell carcinoma (171), prostate cancer 
(172), classification of intestinal glands (173), and predict-
ing lymph node metastasis (174). It was also applied to CT 
data for COVID-19 induced pneumonia (175) and detecting 
COVID-19 (175, 176). Finally, graph classification was used 
in drug discovery for predicting molecular properties (115) 
and protein interfaces (177).

Applications of further graph mining tasks
Besides applications for the previously mentioned most 
prominent graph mining tasks, there are further ones for other 
graph mining tasks. For example, node regression was applied 
for predicting the brain age of human subjects (178). The gap 
between the estimated brain age and the true (chronological) 
age is important for understanding biological pathways rele-
vant to aging, assessing risks for brain disorders, and devel-
oping new therapies. Another application of graph learning 
is learning the graph structure of Electronic Health Records 
to improve the performance of downstream prediction tasks, 
e.g., heart failure prediction (179). Graph regression was 
applied for predicting survival outcomes for glioma and clear 
cell renal carcinoma (180), and for determining colon cancer 
stage (181) in histopathology. Furthermore, Sureka et al. pro-
posed an approach for modeling histology tissue as a graph 
of nuclei and used convolutional GNNs for visualization and 
diagnosis of diseases like breast and prostate cancer (182). 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



14 Database , Vol. 00, Article ID baad045

Another graph mining task is module (or subgraph) iden-
tification in biological graphs (e.g., protein–protein or gene 
co-expression networks) which helps to better understand and 
treat diseases (183, 184). Finally, graph learning was also used 
for recommending medication combinations for patients with 
complex health conditions (185, 186).

Conclusion and future directions
In this paper, we reviewed current state-of-the-art approaches 
for storing and analyzing datasets with the help of an under-
lying graph structure. A graph structure is especially useful 
for representing interconnected data like clinical data. In this 
context, we highlight several existing applications that exploit 
the potential of using graphs and graph learning approaches. 
Furthermore, we classified these applications according to the 
used graph mining tasks (link prediction, node classification, 
(sub-)graph classification). This classification is important to 
find an appropriate graph learning algorithm for the desired 
use case. It is noteworthy that sometimes one can transfer 
one or multiple graphs with a specific graph mining task 
to another graph mining task, e.g., by transferring a single 
patient node with features (node classification) into a graph 
with features as nodes (graph classification). The question 
one needs to ask in advance is which data representation 
and therefore which graph mining task performs better for 
a specific use case.

Currently, each application has its individual method (e.g., 
for data pre-processing, and graph generation) even for the 
same kind of data (e.g., fMRI data). A generic framework 
for transferring clinical data into a graph and applying graph 
learning afterwards, would help to solve several scientific 
issues quicker and to make the methodology more repro-
ducible. Furthermore, scientists could use previously trained 
models as a foundation for their use case (transfer learning). 
Currently, the implementation of such a generic framework is 
especially difficult due to diverse data formats and the large 
heterogeneity of clinical data.

Modern graph representation learning techniques such as 
GNNs consider the input features and thereby decide which 
features are more important than others. An interesting ques-
tion might be how much features that are automatically 
extracted by tools like GNNs differ from features selected by 
domain experts.

Several advantages of graph databases facilitate storage, 
retrieval, and exploration of data. First, graph databases pro-
vide a higher flexibility in their data schema than relational 
databases (187). Second, graph query languages like Cypher 
prevent the formulation of complex Join operations. Third, 
the easy visualization of complex interconnected graph data 
(e.g., with Neo4j Bloom (188)) provides a comprehensive 
overview about the underlying data.

Currently, there are only limited advances in applying 
machine learning algorithms directly on a graph database, 
e.g., Neo4j’s graph data science library (189) and Tiger-
Graph’s data science library (190). Furthermore, to the best 
of our knowledge, there is no framework that can process 
graph data from various graph databases with modern graph 
learning approaches. This strategy is quite promising, because 
querying only the necessary data might increase the perfor-
mance for extremely large datasets. Such a graph learning 
framework could standardize and unify the various query 
languages of different graph databases (e.g., Cypher and 

GSQL), integrate state-of-the-art deep learning frameworks 
like PyTorch (191), TensorFlow (192), Deeplearning4j (193), 
Microsoft CNTK (194), or flux (195), and allow clear visu-
alizations. A framework using relational databases already 
exists (196) and showed the potential for easy application of 
machine learning algorithms and visualizations of the results 
(197).

However, there are still some other limitations in using 
graph databases and graph learning algorithms. First, rela-
tional databases are much more common in industry making 
them preferred over graph databases due to their decades-
long utilization. Some graph learning algorithms have serious 
limitations in their performance, and some cannot use fea-
tures attached to nodes/edges/graphs. Although GNNs seem 
promising for improving computation efficiency and feature 
utilization, there are still some problems like over-smoothing, 
underreaching and over-squashing. Finally, missing standards, 
diverse formats, lexical disparities, class imbalances, data pri-
vacy and the enormous heterogeneity of clinical data makes 
applying machine learning algorithms even more complex. A 
combination of implementing further graph learning appli-
cations, establishing swarm learning (198) and standardiz-
ing data and formats will help to overcome the mentioned 
problems.

Supplementary material
Supplementary material is available at Database online.

Data availability
All required material is contained in the Supplementary mate-
rial.

Funding
German Research Foundation (DFG) under the project ‘Opti-
mizing graph databases focusing on data processing and inte-
gration of machine learning for large clinical and biological 
datasets’ [Grant Numbers HE 8077/2-1, SA 465/53-1]).

Conflict of interest
The authors declare that they have no conflict of interests.

Acknowledgements
We thank all co-authors for contributing to the manuscript. 
Furthermore, we thank the German Research Foundation 
(DFG) for funding this project [grant numbers HE 8077/2-1, 
SA 465/53-1].

References
1. Belle,A., Thiagarajan,R., Soroushmehr,S.M.R. et al. (2015) Big 

data analytics in healthcare. Biomed. Res. Int., 370194.
2. Davoudian,A., Chen,L. and Liu,M. (2019) A Survey on NoSQL 

Stores. ACM Comput. Surv., 51, 1–43.
3. Park,Y., Shankar,M., Park,B.-H. et al. (2014) Graph databases 

for large-scale healthcare systems: A framework for efficient data 
management and data services. In: 2014 IEEE 30th International 
Conference on Data Engineering Workshops, Chicago, IL, USA . 
IEEE, pp. 12–19.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baad045#supplementary-data


Database, Vol. 00, Article ID baad045 15

4. Angles,R. and Gutierrez,C. (2008) Survey of graph database 
models. ACM Comput. Surv., 40, 1–39.

5. Ehrig,H., Prange,U. and Taentzer,G. (2004) Fundamental the-
ory for typed attributed graph transformation. In: Ehrig H (ed) 
Graph transformations: Second international conference, ICGT 
2004/Hartmut. 3256. Springer, Berlin, London. pp. 161–177.

6. F ̈arber,M., Bartscherer,F., Menne,C. et al. (2017) Linked data 
quality of DBpedia, freebase, opencyc, wikidata, and YAGO. SW,
9, 77–129.

7. Ehrlinger,L. and Wöß,W. (2016) Towards a definition of knowl-
edge graphs. Conference: Joint Proceedings of the Posters and 
Demos Track of 12th International Conference on Semantic Sys-
tems - SEMANTiCS2016 and 1st International Workshop on 
Semantic Change & Evolving Semantics (SuCCESS16), Leipzig, 
Germany  12 - 15 September 2016.

8. Rotmensch,M., Halpern,Y., Tlimat,A. et al. (2017) Learning a 
health knowledge graph from electronic medical records. Sci. 
Rep., 7, 5994.

9. Shi,L., Li,S., Yang,X. et al. (2017) Semantic health knowledge 
graph: semantic integration of heterogeneous medical knowledge 
and services. Biomed. Res. Int., 2017, 2858423.

10. Gyrard,A., Gaur,M., Shekarpour,S. et al. (2018) Personalized 
health knowledge graph. In: CEUR Workshop Proc 2018, Mon-
terey, USA, October 8th, 2018.

11. Walsh,B., Mohamed,S.K. and Nová ̌cek,V. (2020) BioKG. In: 
d’Aquin M, Dietze S (eds.) Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Management. 
Association for Computing Machinery, New York, NY, pp. 
3173–3180.

12. Unni,D.R., Moxon,S.A.T., Bada,M. et al. (2022) Biolink Model: 
A universal schema for knowledge graphs in clinical, biomedical, 
and translational science. Clin Transl Sci, 15, 1848–1855.

13. Reese,J.T., Unni,D., Callahan,T.J. et al. (2021) KG-COVID-
19: A framework to produce customized knowledge graphs for 
COVID-19 response. Patterns, 2, 100155.

14. Domingo-Fernández,D., Baksi,S., Schultz,B. et al. (2021) 
COVID-19 knowledge graph: a computable, multi-modal, cause-
and-effect knowledge model of COVID-19 pathophysiology. 
Bioinformatics, 37, 1332–1334.

15. Wise,C., Ioannidis,V.N., Calvo,M.R. et al. (2020) COVID-19 
knowledge graph: accelerating information retrieval and discov-
ery for scientific literature. In: Proceedings of Knowledgeable 
NLP: the First Workshop on Integrating Structured Knowl-
edge and Neural Networks for NLP, Publisher: Association for 
Computational Linguistic, Suzhou, China, December 2020. pp. 
1–10.

16. Vrande ̌ci ́c,D. (2012) Wikidata. In: Mille A, Gandon F, Misselis 
J et al. (eds) Proceedings of the 21st international conference 
companion on World Wide Web. ACM, New York, NY, p. 1063.

17. Mendes,P., Jakob,M. and Bizer,C. (2012) DBpedia: a multilin-
gual cross-domain knowledge base. In: Proceedings of the Eighth 
International Conference on Language Resources and Evaluation 
(LREC’12), Publisher: European Language Resources Associa-
tion (ELRA), Istanbul, Turkey, pp. 1813–1817.

18. Suchanek,F.M., Kasneci,G. and Weikum,G. (2007) Yago. In: 
Williamson C, Zurko ME (eds) WWW 2007: Proceedings of 
the 16th International Conference on World Wide Web, Banff, 
Alberta, Canada, ACM Press, New York. May 8–12, 2007. p. 
697.

19. Soussi,R., Aufaure,M.-A. and Baazaoui,H. (2010) Towards social 
network extraction using a graph database. In: 2010 Second 
International Conference on Advances in Databases, Knowledge, 
and Data Applications. Menuires, France , IEEE. 11-16 April 
2010 .

20. Warchal L (2012) Using Neo4j Graph Database in Social Net-
work Analysis. STUDIA INFORMATICA 33.

21. Miller Justin,J. (2013) Graph database applications and concepts 
with Neo4j. In: Southern Association for Information Systems 
(SAIS) 2013PProceedings, USA, p. 24.

22. Padgett,J.F. and Ansell,C.K. (1993) Robust action and the rise of 
the medici, 1400-1434. Am. J. Sociol., 98, 1259–1319.

23. Yi,N., Li,C., Feng,X. et al. (2017) Design and implementation of 
movie recommender system based on graph database. In: 2017 
14th Web Information Systems and Applications Conference 
(WISA). Liuzhou, Guangxi Province, China , IEEE. November 
11–12, 2017 .

24. Giabelli,A., Malandri,L., Mercorio,F. et al. (2021) Skills2Job: A 
recommender system that encodes job offer embeddings on graph 
databases. Appl Soft Comput, 101, 107049.

25. Magomedov,S., Pavelyev,S., Ivanova,I. et al. (2018) Anomaly 
detection with machine learning and graph databases in fraud 
management. Int. J. Adv. Comput. Sci. Appl., 9.

26. Sadowski,G. and Rathle,P. (2014) Fraud detection: Discovering 
connections with graph databases. Neo4j. Neo4j. US, Germany, 
Singapore, Sweden, UK. https://we-yun.com/doc/neo4j-.

27. Neo4j Graph Data Platform (2022) Neo4j graph data platform 
– the leader in graph databases. https://neo4j.com/ (27 October 
2022, date last accessed).

28. Min,W., Xinglu,Y., Hui,Y. et al. (2022) NebulaGraph: open 
source and distributed graph database. https://www.nebula-
graph.io/ (27 October 2022, date last accessed).

29. TigerGraph (2022) Graph analytics platform | graph database | 
tigerGraph. https://www.tigergraph.com/ (27 October 2022, date 
last accessed).

30. Dgraph | graphql cloud platform (2022) dgraph home. https://
dgraph.io/ (27 October 2022, date last accessed).

31. ArangoDB Oasis (2022) ArangoDB oasis. https://www.
arangodb.com/ (27 October 2022, date last accessed).

32. Besta,M., Peter,E., Gerstenberger,R. et al. (2019) Demystifying 
Graph Databases: Analysis and Taxonomy of Data Organization, 
System Designs, and Graph Queries. Arxiv. Cornell University. 
20th October 2019.

33. Boning,L., Xia,Y., Xie,S. et al. (2021) Distance-enhanced 
graph neural network for link prediction. In: The 
2021 ICML Workshop on Computational Biology (Vir-
tual Conference), https://www.semanticscholar.org/paper/
Distance-Enhanced-Graph-Neural-Network-for-Link-Li-Xia/
732f8f1a44c8994dafa77ed9d2dd0b8661ef7f63.

34. Al_Rabeah Mh, Lakizadeh A (2022) GNN-DDI: a new data inte-
gration framework for predicting drug-drug interaction events 
based on graph neural networks. https://www.researchgate.net/
publication/361978426_GNN-DDI_A_New_Data_Integration_
Framework_for_Predicting_Drug-Drug_Interaction_Events_
Based_on_Graph_Neural_Networks (June 2022).

35. Shtar,G., Rokach,L. and Shapira,B. (2019) Detecting drug-drug 
interactions using artificial neural networks and classic graph 
similarity measures. PLoS One, 14, e0219796.

36. Jiang,D., Wu,Z., Hsieh,C.-Y. et al. (2021) Could graph neural 
networks learn better molecular representation for drug discov-
ery? A comparison study of descriptor-based and graph-based 
models. J Cheminform, 13, 12.

37. You,J., Liu,B., Ying,Z. et al. (2018) Graph convolutional policy 
network for goal-directed molecular graph generation. In: Ben-
gio S, Wallach H, Larochelle H et al. eds. Advances in Neural 
Information Processing Systems. USA. Curran Associates, Inc, 
Cambridge, MA.

38. Mercado,R., Rastemo,T., Lindelöf,E. et al. (2021) Graph net-
works for molecular design. Mach. Learn.: Sci. Technol., 2, 
25023.

39. Mercado,R., Bjerrum,E.J. and Engkvist,O. (2022) Exploring 
graph traversal algorithms in graph-based molecular generation. 
J Chem Inf Model, 62, 2093–2100.

40. Wieder,O., Kohlbacher,S., Kuenemann,M. et al. (2020) A 
compact review of molecular property prediction with 
graph neural networks. Drug Discov. Today Technol., 37,
1–12.

41. Hamilton WL Graph Representation Learning. 14th edn. Morgan 
and Claypool, Kentfield, CA, USA.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023

https://we-yun.com/doc/neo4j-
https://neo4j.com/
https://www.nebula-graph.io/
https://www.nebula-graph.io/
https://www.tigergraph.com/
https://dgraph.io/
https://dgraph.io/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.semanticscholar.org/paper/Distance-Enhanced-Graph-Neural-Network-for-Link-Li-Xia/732f8f1a44c8994dafa77ed9d2dd0b8661ef7f63
https://www.semanticscholar.org/paper/Distance-Enhanced-Graph-Neural-Network-for-Link-Li-Xia/732f8f1a44c8994dafa77ed9d2dd0b8661ef7f63
https://www.semanticscholar.org/paper/Distance-Enhanced-Graph-Neural-Network-for-Link-Li-Xia/732f8f1a44c8994dafa77ed9d2dd0b8661ef7f63
https://www.researchgate.net/publication/361978426_GNN-DDI_A_New_Data_Integration_Framework_for_Predicting_Drug-Drug_Interaction_Events_Based_on_Graph_Neural_Networks
https://www.researchgate.net/publication/361978426_GNN-DDI_A_New_Data_Integration_Framework_for_Predicting_Drug-Drug_Interaction_Events_Based_on_Graph_Neural_Networks
https://www.researchgate.net/publication/361978426_GNN-DDI_A_New_Data_Integration_Framework_for_Predicting_Drug-Drug_Interaction_Events_Based_on_Graph_Neural_Networks
https://www.researchgate.net/publication/361978426_GNN-DDI_A_New_Data_Integration_Framework_for_Predicting_Drug-Drug_Interaction_Events_Based_on_Graph_Neural_Networks


16 Database , Vol. 00, Article ID baad045

42. Hamilton,W.L., Ying,R. and Leskovec,J. (2017) Representation 
learning on graphs: methods and applications. IEEE Data Eng. 
Bull, 40, 52–74.

43. Lin,X., Quan,Z., Wang,Z.-J. et al. (2020) KGNN: knowledge 
graph neural network for drug-drug interaction prediction. In: 
desJardins M M, Bessiere C (eds.) Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence. 
International Joint Conferences on Artificial Intelligence Organi-
zation, California, pp. 2739–2745.

44. Liu,Z., Li,X., Peng,H. et al. (2020) Heterogeneous similarity 
graph neural network on electronic health records. In: 2020 IEEE 
International Conference on Big Data (Big Data). Virtual Event , 
IEEE, [S.l.]. 10-13 December 2020, pp. 1196–1205.

45. Li,Y., Qian,B., Zhang,X. et al. (2020) Graph neural network-
based diagnosis prediction. Big Data, 8, 379–390.

46. Chen,Z., Wang,Y., Zhao,B. et al. (2020) Knowledge Graph 
Completion: A Review. IEEE Access, 8, 192435–192456.

47. Lin,Y., Liu,Z., Sun,M. et al. (2015) Learning entity and rela-
tion embeddings for knowledge graph completion. In: AAAI’15: 
Proceedings of the Twenty-Ninth AAAI Conference on Artificial 
Intelligence, Austin, Texas, USA, pp. 2181–2187.

48. Auten,A., Tomei,M. and Kumar,R. (2020) Hardware acceleration 
of graph neural networks. In: 2020 57th ACM, San Francisco, 
California, USA, IEEE, Piscataway, NJ. pp. 1–6.

49. Heintz,A., Razavimaleki,V., Duarte,J. et al. (2020) Accelerated 
charged particle tracking with graph neural networks on FPGAs. 
In: Third Workshop on Machine Learning and the Physical Sci-
ences (NeurIPS 2020 (Virtual Conference)), https://arxiv.org/abs/
2012.01563

50. Zhang,D., Yin,J., Zhu,X. et al. (2017) Network Representation 
Learning: A Survey. IEEE Transactions on Big Data.

51. H-c,Y., You,Z.-H., Huang,D.-S. et al. (2022) Graph representa-
tion learning in bioinformatics: trends, methods and applications. 
Brief. Bioinformatics, 23.

52. Cai,H., Zheng,V.W. and Chang,K.-C.-C. (2018) A comprehen-
sive survey of graph embedding: problems, techniques, and 
applications. IEEE Trans. Knowl. Data Eng., 30, 1616–1637.

53. Goyal,P. and Ferrara,E. (2018) Graph embedding techniques, 
applications, and performance: A survey. Knowl. Based Syst.,
151, 78–94.

54. Ahmedt-Aristizabal,D., Armin,M.A., Denman,S. et al. (2022) 
A survey on graph-based deep learning for computational 
histopathology. Comput Med Imaging Graph, 95, 102027.

55. Ahmedt-Aristizabal,D., Armin,M.A., Denman,S. et al. (2021) 
Graph-based deep learning for medical diagnosis and analysis: 
past, present and future. Sensors (Basel), 21.

56. Elshawi,R., Sakr,S., Talia,D. et al. (2018) Big data systems meet 
machine learning challenges: towards big data science as a ser-
vice. Big Data Research, 14, 1–11.

57. Kumar,A., Boehm,M. and Yang,J. (2017) Data management in 
machine learning. In: Chirkova R (ed) Proceedings of the 2017 
ACM International Conference on Management of Data. ACM, 
New York, NY, pp. 1717–1722.

58. Stonebraker,M. (2010) SQL databases v. NoSQL databases. 
Commun. ACM (Association for Computing Machinery), 53, 
10–11.

59. Ricardo,C.M. (2003) Structured Query Language. In: Encyclo-
pedia of Information Systems. Elsevier, Amsterdam, Netherlands, 
pp. 279–297.

60. Halpin,T. and Morgan,T. (2008) 12-relational languages Morgan  
Kaufmann. In: Information Modeling and Relational Databases. 
2nd edn. Elsevier, Amsterdam, Netherlands, pp. 527–635.

61. Chaudhuri,S., Krishnamurthy,R., Potamianos,S. et al. (1995) 
Optimizing queries with materialized views. In: Yu PSE, Chen 
ALPE (eds) Data engineering: 11th International conference: 
Papers, Taipei, Taiwan , IEEE Computer Society Press, 6–10 
March 1995 , pp. 190–200.

62. Roussopoulos,N. (1982) View indexing in relational databases. 
ACM Trans. Database Syst., 7, 258–290.

63. Li,Y. and Patel,J.M. (2014) WideTable. Proc. VLDB Endow., 7, 
907–918.

64. Stothers,J.A.M. and Nguyen,A. (2020) Can Neo4j replace post-
greSQL in healthcare? AMIA Jt. Summits Transl. Sci. Proc., 
646–653.

65. Thomasian,A. (2022) Structured, unstructured, and diverse 
databases. Storage Systems. Elsevier, Amsterdam, Netherlands, 
pp. 493–563.

66. Angles,R., Arenas,M., Barceló,P. et al. (2018) Foundations of 
modern query languages for graph databases. ACM Comput. 
Surv., 50, 1–40.

67. Fernandes,D. and Bernardino,J. (2018) Graph databases com-
parison: allegrograph, arangoDB, infinitegraph, Neo4J, and Ori-
entDB. In: Proceedings of the 7th International Conference 
on Data Science, Technology and Applications, Porto Portugal  
SCITEPRESS-Science and Technology Publications, pp. 373–380.

68. Sparsity Technologies Sparsity-Technologies – Out-of-core graph 
database for edge computing. https://www.sparsity-technologies.
com/ (27 October 2022, date last accessed).

69. World Wide Web Consortium (2018) RDF 1.1 concepts 
and abstract syntax. https://www.w3.org/TR/rdf11-concepts/ (27 
October 2022, date last accessed).

70. ric Miller (Online Computer Library Center), Bob Schloss 
(IBM),Ora Lassila (Nokia Research Center), Ralph R. Swick 
(World Wide Web Consortium), Tsuyoshi Sakata (DVL), Mur-
ray Maloney In:(Grif), Bob Schloss (IBM), Naohiko URAMOTO 
(IBM), Bill Roberts (KnowledgeCite) Ron Daniel (LANL), 
Andrew Layman Chris McConnell (Microsoft), Jean Paoli 
(Microsoft), R.V. Guha (Netscape), Ora Lassila (Nokia), Ralph 
LeVan (OCLC), Eric Miller (OCLC), Misha Wolf In:(Reuters), 
Lauren Wood (SoftQuad), Tim Bray (Textuality), Paul Resnick. 
(UMich), Tim Berners-Lee (W3C), Dan Connolly (W3C), Jim 
Miller (W3C), Ralph Swick (W3C) (2017) RDF Model and 
Syntax.

71. Francis,N., Green,A., Guagliardo,P. et al. (2018) Cypher. In: Das 
G, Jermaine C, Bernstein P (eds) Proceedings of the 2018 Inter-
national Conference on Management of Data. ACM, New York, 
NY, pp. 1433–1445.

72. Holzschuher,F. and Peinl,R. (2013) Performance of graph query 
languages. In: Guerrini G (ed) Proceedings of the Joint 
EDBT/ICDT 2013 Workshops. ACM, New York, NY, USA, pp. 
195–204.

73. Deutsch,A., Xu,Y., Mingxi,W. et al. (2019) TigerGraph: A Native 
MPP Graph Database. ArXiv abs/1901.08248. In: arxiv.

74. TigerGraph (2022) GSQL: graph query language | tigerGraph. 
https://www.tigergraph.com/gsql/ (16 March 2023, date last 
accessed).

75. The Apache Software Foundation (2022) Apache TinkerPop. 
https://tinkerpop.apache.org/gremlin.html (27 October 2022, 
date last accessed).

76. World Wide Web Consortium (2018) SPARQL 1.1 query 
language. https://www.w3.org/TR/sparql11-query/ (27 October 
2022, date last accessed).

77. Bronstein,M.M., Bruna,J., LeCun,Y. et al. (2017) Geometric deep 
learning: going beyond euclidean data. IEEE Signal Process. 
Mag., 34, 18–42.

78. Kriege,N.M., Johansson,F.D. and Morris,C. (2020) A survey on 
graph kernels. Appl. Netw. Sci., 5.

79. Shervashidze,N., Schweitzer,P., van Leeuwen,E.J. et al. Weisfeiler-
lehman graph kernels. (2011) J. Mach. Learn. Res., 12, 
2539–2561.

80. Vishwanathan,S.V.N., Borgwardt,K.M., Kondor,I.R. et al. Graph 
kernels. J. Mach. Learn. Res., 11, 1201–1242.

81. Kashima,H., Tsuda,K. and Inokuchi,A. (2003) Marginalized ker-
nels between labeled graphs. In: ICML’03: Proceedings of the 
Twentieth International Conference on International Conference 
on Machine Learning, pp. 321–328.

82. Borgwardt,K.M. and Kriegel,H. (2005) Shortest-path kernels on 
graphs. In: Fifth IEEE International Conference on Data Mining, 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023

https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2012.01563
https://www.sparsity-technologies.com/
https://www.sparsity-technologies.com/
https://www.w3.org/TR/rdf11-concepts/
https://www.tigergraph.com/gsql/
https://tinkerpop.apache.org/gremlin.html
https://www.w3.org/TR/sparql11-query/


Database, Vol. 00, Article ID baad045 17

Houston, TX, USA , IEEE/Institute of Electrical and Electronics 
Engineers Incorporated. pp. 74–81.

83. YANG S. (2013) Networks: an introduction by M. E. J. Newman. 
The J. Math Sociol., 37, 250–251.

84. In: Burges,C.J., Bottou,L., Welling,M. et al. (eds) (2013) 
Advances in Neural Information Processing Systems. Curran 
Associates, Inc, Red Hook, NY.

85. Watts,D.J. and Strogatz,S.H. (1998) Collective dynamics of 
‘small-world’ networks. Nature, 393, 440–442.

86. Newman,M.E.J (2018) Networks. Second. Oxford University 
Press, Oxford.

87. Roweis,S.T. and Saul,L.K. (2000) Nonlinear dimensionality 
reduction by locally linear embedding. Science, 290, 2323–2326.

88. Belkin,M. and Niyogi,P. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In: NIPS’01: Proceedings 
of the 14th International Conference on Neural Information 
Processing Systems: Natural and Synthetic, Vancouver British 
Columbia, Canada, January 2001, pp. 585–591.

89. Ahmed,A., Shervashidze,N., Narayanamurthy,S. et al. (2013) 
Distributed large-scale natural graph factorization. In: Schwabe 
D (ed) Proceedings of the 22nd international conference on World 
Wide Web. Rio de Janeiro, Brazil 13-17 May 2013. International 
World Wide Web Conferences Steering Committee, Republic and 
Canton of Geneva, pp. 37–48.

90. Ou,M., Cui,P., Pei,J. et al. (2016) Asymmetric transitivity pre-
serving graph embedding. In: Krishnapuram B, Shah M, Smola A 
et al. (eds) Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. ACM, 
New York, NY, pp. 1105–1114

91. Cao,S., Lu,W. and Xu,Q. (2015) GraRep. In: Bailey J, Moffat 
A, Aggarwal CC et al. (eds) CIKM’15: Proceedings of the 2015 
ACM International Conference on Information and Knowledge 
Management: October, 19–23, 2015, Melbourne, Australia., 
Assocation for Computing Machinery, New York. pp. 891–900.

92. Cai,B., Xiang,Y., Gao,L. et al. (2022) Temporal knowledge graph 
completion: a survey. In: arxiv. https://arxiv.org/abs/2201.08236.

93. Brin,S. and Page,L. (1998) The anatomy of a large-scale hyper-
textual web search engine. Comput. Netw. ISDN Syst., 30, 
107–117.

94. Perozzi,B., Al-Rfou,R. and Skiena,S. (2014) DeepWalk. In: Mac-
skassy S, Perlich C, Leskovec J et al. (eds.) Proceedings of the 
20th ACM SIGKDD international conference on Knowledge 
discovery and data mining. ACM, New York, NY, USA, pp. 
701–710.

95. Grover,A. and Leskovec,J. (2016) node2vec: scalable feature 
learning for networks. In: KDD’16: Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (San Francisco USA), pp. 855–864.

96. Chen,H., Perozzi,B., Hu,Y. et al. (2017) HARP: hierarchical 
representation learning for networks. Proceedings of the AAAI 
Conference on Artificial Intelligence. Palo Alto, California, USA.

97. Cao,S., Lu,W. and Xu,Q. (2016) Deep neural networks for 
learning graph representations. In: AAAI’16: Proceedings of the 
Thirtieth AAAI Conference on Artificial Intelligence, Palo Alto, 
California, USA, pp. 1145–1152.

98. Wang,D., Cui,P. and Zhu,W. (2016) Structural deep network 
embedding. In: Krishnapuram B, Shah M, Smola A et al. (eds) 
Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. ACM, New 
York, NY, pp. 1225–1234.

99. Li,Y., Tarlow,D., Brockschmidt,M. et al. (2015) Gated graph 
sequence neural networks. Iclr 2016. Caribe Hilton, San Juan, 
Puerto Rico.

100. Gallicchio,C. and Micheli,A. (2010) Graph echo state networks. 
In: Neural Networks (IJCNN), The 2010 International Joint 
Conference on, Barcelona, Spain , 18–23 July 2010. IEEE. pp. 
1–8.

101. Veli ̌ckovi ́c,P. (2022) Message passing all the way up. In: arxiv. 
https://arxiv.org/abs/2202.11097

102. Veli ̌ckovi ́c,P., Cucurull,G., Casanova,A. et al. (2017) Graph 
attention networks. Iclr 2018. Vancouver Convention Center, 
Vancouver, Canada.

103. Hamilton,W.L., Ying,R. and Leskovec,J. (2017) Inductive repre-
sentation learning on large graphs. In: 31st Conference on Neural 
Information Processing Systems (NIPS 2017), Long Beach, CA, 
USA.

104. Kipf,T.N. and Welling,M. (2016) Semi-supervised classification 
with graph convolutional networks. In: ICLR 2017 (Palais Des 
Congrès Neptune. Toulon, France.

105. Xu,K., Hu,W., Leskovec,J. et al. (2018) How powerful are graph 
neural networks? ICLR 2019 (Ernest N. Morial Convention 
Center, New Orleans.

106. Zhang,C., Song,D., Huang,C. et al. (2019) Heterogeneous graph 
neural network. In: Teredesai A, Kumar V, Li Y et al. (eds.) 
KDD ‘19. Association for Computing Machinery, New York, pp 
793–803.

107. Wang,X., Ji,H., Shi,C. et al. Heterogeneous graph attention 
network. In: WWW ‘19: The World Wide Web Conference (Asso-
ciation for Computing Machinery, New York, United States), 
May 2019, pp. 2022–2032.

108. Chen,D., Lin,Y., Li,W. et al. (2019) Measuring and relieving the 
over-smoothing problem for graph neural networks from the 
topological view. Aaai 2020. New York, New York, USA.

109. Alon,U. and Yahav,E. (2020) On the bottleneck of graph neural 
networks and its practical implicationsIclr 2021. Vienna, Austria.

110. Tang,J., Qu,M., Wang,M. et al. (2015) LINE: Large-scale Infor-
mation Network Embedding. In: International World Wide Web 
Conference Committee (IW3C2) WWW 2015, May 18–22, 
2015, Florence, Italy.

111. Wang,H., Wang,J., Wang,J. et al. (2017) GraphGAN: graph 
representation learning with generative adversarial nets. In: 
AAAI’18/IAAI’18/EAAI’18: Proceedings of the Thirty-Second 
AAAI Conference on Artificial Intelligence; Applications of Arti-
ficial Intelligence Conference and Eighth AAAI Symposium on 
Educational Advances in Artificial Intelligence, New Orleans, 
Louisiana, USA, 306. pp. 2508–2515.

112. Zhang,M., Li,P., Xia,Y. et al. (2020) Labeling trick: a theory 
of using graph neural networks for multi-node representation 
learning. In: 35th Conference on Neural Information Processing 
Systems (NeurIPS 2021), Virtual Conference.

113. Duvenaud,D., Maclaurin,D., Aguilera-Iparraguirre,J. et al.
(2015) Convolutional networks on graphs for learning molec-
ular fingerprints. In: NIPS’15: Proceedings of the 28th 
International Conference on Neural Information Process-
ing, Palais des Congrès de MontréalMontréal CANADA, pp.
2224–2232.

114. Defferrard,M., Bresson,X. and Vandergheynst,P. (2016) convo-
lutional neural networks on graphs with fast localized spectral 
filtering. In: 30th Conference on Neural Information Processing 
Systems (NIPS 2016), Barcelona, Spain.

115. Bruna,J., Zaremba,W., Szlam,A. et al. (2013) Spectral networks 
and locally connected networks on graphs.

116. Li,J., Cai,D. and He,X. (2017) Learning Graph-Level Represen-
tation for Drug Discovery. arxiv.

117. van der Maaten,L. and Hinton,G. (2008) Visualizing data using 
t-SNE. J. Mach. Learn. Res., 9, 2579–2605.

118. Ma ́ckiewicz,A. and Ratajczak,W. (1993) Principal components 
analysis (PCA). Comput Geosci, 19, 303–342.

119. Lü, L. and Zhou,T. (2011) Link prediction in complex networks: 
A survey. Phys. A: Stat. Mech. Appl., 390, 1150–1170.

120. Almansoori,W., Gao,S., Jarada,T.N. et al. (2012) Link prediction 
and classification in social networks and its application in health-
care and systems biology. Netw. Model Anal. Health Inform. 
Bioinforma., 1, 27–36.

121. Zhou,J., Cui,G., Hu,S. et al. (2020) Graph neural networks: A 
review of methods and applications. AI Open, 1, 57–81.

122. von,L.U. (2007) A tutorial on spectral clustering. In: Statistics and 
Computing. Springer Link, pp. 395–416.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023

https://arxiv.org/abs/2201.08236
https://arxiv.org/abs/2202.11097


18 Database , Vol. 00, Article ID baad045

123. Zitnik,M., Agrawal,M. and Leskovec,J. (2018) Modeling 
polypharmacy side effects with graph convolutional networks. 
Bioinformatics, 34, i457–i466.

124. Lu,Y., Guo,Y. and Korhonen,A. (2017) Link prediction in drug-
target interactions network using similarity indices. BMC Bioin-
form., 18, 39.

125. Lei,C. and Ruan,J. (2013) A novel link prediction algorithm for 
reconstructing protein-protein interaction networks by topologi-
cal similarity. Bioinformatics, 29, 355–364.

126. Folino,F. and Pizzuti,C. (2012) Link prediction approaches for 
disease networks. In: Böhm C (ed) Information technology in 
bio- and medical informatics: Third International Conference, 
ITBAM 2012, Vienna, Austria, pp. 99–108.

127. Gao,M., Lu,J. and Chen,F. (2022) Medical knowledge graph 
completion based on word embeddings. Information, 13, 205.

128. Ma,T., Xiao,C., Zhou,J. et al. (2018) Drug similarity integration 
through attentive multi-view graph auto-encoders. In: Twenty-
Seventh International Joint Conference on Artificial Intelligence 
(IJCAI-18), Stockholmsm ̈assan´, Stockholm.

129. Bordes,A., Usunier,N., Garcia-Durán,A. et al. (2013) Translating 
embeddings for modeling multi-relational data. In: Advances in 
Neural Information Processing Systems 26 (NIPS 2013). Lake 
Tahoe, Nevada, United States.

130. Wang,Z., Zhang,J., Feng,J. et al. (2014) Knowledge Graph 
Embedding by Translating on Hyperplanes. In: AAAI’14: Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial 
Intelligence, Québec City, Québec, Canada, pp. 1112–1119.

131. Yang,B., Yih,W., He,X. et al. (2014) Embedding entities and rela-
tions for learning and inference in knowledge bases. Iclr 2015. 
San Diego, CA, USA.

132. Socher,R., Chen,D., Manning,C.D. et al. (2013) Reasoning With 
Neural Tensor Networks for Knowledge Base Completion. In: 
Burges CJ, Bottou L, Welling M et al eds. Advances in Neural 
Information Processing Systems. Curran Associates, Inc, Lake 
Tahoe Nevada , California, USA.

133. Trouillon,T., Welbl,J., Riedel,S. et al. (2016) Complex Embed-
dings for Simple Link Prediction.

134. Yang,S., Tian,J., Zhang,H. et al. (2019) TransMS: knowledge 
graph embedding for complex relations by multidirectional 
semantics. In: Kraus S (ed) Proceedings of the Twenty-Eighth 
International Joint Conference on Artificial Intelligence (IJCAI-
19). International Joint Conferences on Artificial Intelligence, 
California, pp. 1935–1942.

135. Yue,X., Wang,Z., Huang,J. et al. (2020) Graph embedding on 
biomedical networks: methods, applications and evaluations. 
Bioinformatics, 36, 1241–1251.

136. Parisot,S., Ktena,S.I., Ferrante,E. et al. (2018) Disease predic-
tion using graph convolutional networks: Application to Autism 
Spectrum Disorder and Alzheimer’s disease. Med Image Anal, 48, 
117–130.

137. Huang,Y. and Chung,A.C.S. (2020) Edge-variational Graph Con-
volutional Networks for Uncertainty-aware Disease Prediction. 
In: MICCAI 2020: Medical Image Computing and Computer 
Assisted Intervention – MICCAI 2020. Lima, Peru, pp. 562–572.

138. Vivar,G., Kazi,A., Burwinkel,H. et al. (2020) Simultaneous impu-
tation and classification using Multigraph Geometric Matrix 
Completion (MGMC): Application to neurodegenerative disease 
classification. 117.

139. Kazi,A., Shekarforoush,S., Arvind Krishna,S. et al. (2019) Graph 
Convolution Based Attention Model for Personalized Disease 
Prediction. In: Shen D, Liu T, Peters TM, Zhou S, Yap P-T, Khan 
A (eds.) Springer, Cham, Switzerland, pp. 122–130.

140. Wang,X., Yao,L., Rekik,I. et al. (2022) Contrastive Graph Learn-
ing for Population-based fMRI Classification. MICCAI 2022: 
Medical Image Computing and Computer Assisted Intervention 
– MICCAI 2022 (Resort World Convention Centre Singapore), 
221–230.

141. Wang,D., Lei,C., Zhang,X. et al. (2021 - 2021) Identification of 
Depression with a Semi-supervised GCN based on EEG Data. 

In: 2021 IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM). IEEE, pp. 2338–2345.

142. Anklin,V., Pati,P., Jaume,G. et al. (2021) Learning Whole-Slide 
Segmentation from Inexact and Incomplete Labels using Tissue 
Graphs. Med. Image Comput. Comput. Assist. Interv, 636–646.

143. Ma,T. and Zhang,A. (2018) AffinityNet: semi-supervised few-
shot learning for disease type prediction.

144. Fan,J., Cannistra,A., Fried,I. et al. (2017) A Multi-Species Func-
tional Embedding Integrating Sequence and Network Structure. 
biorxiv.

145. Lian,Q., Qi,Y., Pan,G. et al. (2020) Learning graph in graph 
convolutional neural networks for robust seizure prediction. J. 
Neural. Eng., 17, 35004.

146. Covert,I., Krishnan,B., Najm,I. et al. (2019) Temporal Graph 
Convolutional Networks for Automatic Seizure Detection. In: 
Proceedings of Machine Learning Research 106 (JMLR Work-
shop and Conference Proceedings). pp. 1–19.

147. Mathur,P. and Chakka,V.K. (2020) Graph Signal Processing of 
EEG signals for Detection of Epilepsy. In: 2020 7th Interna-
tional Conference on Signal Processing and Integrated Networks 
(SPIN). Noida, India. 27-28 February 2020. IEEE, [S.l.], pp. 
839–843.

148. Wang,J., Gao,R., Zheng,H. et al. (2022) SSGCNet: A Sparse 
Spectra Graph Convolutional Network for Epileptic EEG Signal 
Classification. In: IEEE Transactions on Neural Networks and 
Learning Systems. pp. 1–15.

149. Jang,S., Moon,S.-E. and Lee,J.-S. (2018) EEG-based video iden-
tification using graph signal modeling and graph convolutional 
neural network. In: Conference: ICASSP 2018 - 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing 
(ICASSP). Rodos Palace, Greece.

150. Jang,S., Moon,S.-E. and Lee,J.-S. (2019) EEG-based Emotional 
Video Classification via Learning Connectivity Structure. IEEE 
Trans. Affect.,14, 1586–1597.

151. Wang,Z.-M., Zhou,R., He,Y. et al. (2020) Functional Integration 
and Separation of Brain Network Based on Phase Locking Value 
During Emotion Processing. IEEE Trans Cogn Dev Syst (United 
States), p. 1.

152. Wang,X., Zhang,T., Xu,X. et al. (2018) EEG Emotion 
Recognition Using Dynamical Graph Convolutional Neural 
Networks and Broad Learning System. In: Zheng H (ed) 
2018 IEEE International Conference on Bioinformatics and 
Biomedicine. Madrid, Spain: IEEE, [Piscataway, NJ], pp.
1240–1244.

153. Song,T., Zheng,W., Song,P. et al. (2020) EEG Emotion Recogni-
tion Using Dynamical Graph Convolutional Neural Networks. 
IEEE Trans. Affect. Comput, 11, 532–541.

154. Wang,Z., Tong,Y. and Heng,X. (2019) Phase-Locking Value 
Based Graph Convolutional Neural Networks for Emotion 
Recognition. IEEE Access, 7, 93711–93722.

155. Yin,Y., Zheng,X., Hu,B. et al. (2021) EEG emotion recognition 
using fusion model of graph convolutional neural networks and 
LSTM. Appl Soft Comput, 100, 106954.

156. Zhong,P., Wang,D. and Miao,C. (2019) EEG-Based Emotion 
Recognition Using Regularized Graph Neural Networks. In: 
IEEE Transactions on Affective Computing. IEEE.

157. Liu,S., Zheng,W., Song,T. et al. Sparse Graphic Attention LSTM 
for EEG Emotion Recognition. In: Gedeon T, Wong KW, Lee M, 
Tom G, Kok Wai W, Minho L (eds.) vol. 1142. Springer, Cham, 
Switzerland, pp. 690–697.

158. Jia,Z., Lin,Y., Wang,J. et al. (2020) GraphSleepNet: Adaptive 
Spatial-Temporal Graph Convolutional Networks for Sleep Stage 
Classification. In: desJardins M, Bessiere C (eds.) Proceedings 
of the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence. International Joint Conferences on Artificial 
Intelligence Organization. California, pp. 1324–1330.

159. Supekar,K., Menon,V., Rubin,D. et al. (2008) Network analysis 
of intrinsic functional brain connectivity in Alzheimer’s disease. 
PLoS Comput. Biol., 4, e1000100.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023



Database, Vol. 00, Article ID baad045 19

160. Gopinath,K., Desrosiers,C. and Lombaert,H. (2019) Learnable 
Pooling in Graph Convolution Networks for Brain Surface Anal-
ysis. IEEE Trans. Pattern Anal. Mach. Intell., 44, Issue 864–876.

161. Yang,H., Li,X., Wu,Y. et al. (2019) Interpretable Multimodality 
Embedding of Cerebral Cortex Using Attention Graph Network 
for Identifying Bipolar Disorder. In: Shen D, Liu T, Peters TM 
et al. (eds.) Medical image computing and computer assisted 
intervention—MICCAI 2019: 22nd International Conference, 
Shenzhen, China, Part III/Dinggang Shen, Tianming Liu, Terry 
M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-
Thian Yap, Ali Khan (eds.). Springer, Cham, Switzerland, pp. 
799–807.

162. Li,X., Dvornek,N.C., Zhou,Y. et al. Graph Neural Network for 
Interpreting Task-fMRI Biomarkers.

163. Xing,X., Li,Q., Wei,H. et al. (2019) Dynamic Spectral Graph 
Convolution Networks with Assistant Task Training for Early 
MCI Diagnosis. In: Shen D, Liu T, Peters TM, Zhou S, Yap P-
T, Khan A (eds.) vol. 11767. Springer, Cham, Switzerland, pp. 
639–646.

164. McDaniel,C. and Quinn,S. (2019) Developing a Graph 
Convolution-Based Analysis Pipeline for Multi-Modal Neu-
roimage Data: An Application to Parkinson’s Disease. In: 
Proceedings of the 18th Python in Science Conference. SciPy 
Austin, Texas 8. pp. 42–49.

165. Li,X., Zhou,Y., Dvornek,N. et al. (2021) BrainGNN: inter-
pretable brain graph neural network for fMRI analysis. Med 
Image Anal, 74, 102233.

166. Kim,B.-H., Ye,J.C. and Kim,-J.-J. (2021) Learning dynamic graph 
representation of brain connectome with spatio-temporal atten-
tion. NeurIPS 2021, Virtual Event.

167. Zhang,X., Tokoglu,F., Negishi,M. et al. (2011) Social network 
theory applied to resting-state fMRI connectivity data in the iden-
tification of epilepsy networks with iterative feature selection. J. 
Neurosci. Methods, 199, 129–139.

168. Adnan,M., Kalra,S. and Tizhoosh,H.R. (2020) Representation 
Learning of Histopathology Images using Graph Neural Net-
works. In: Conference: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW). 
Seattle, WA, USA.

169. Zheng,Y., Jiang,B., Shi,J. et al. (2019) Encoding Histopatho-
logical WSIs Using GNN for Scalable Diagnostically Relevant 
Regions Retrieval. In: Shen D, Liu T, Peters TM, Dinggang S, 
Tianming L, Terry M, Peters, Lawrence H, Staib, Zhou S, Yap 
P-T, Khan A (eds.) Vol. 11764. Springer, Cham, Switzerland, pp. 
550–558

170. Rhee,S., Seo,S. and Kim,S. (op. 2018) Hybrid Approach of Rela-
tion Network and Localized Graph Convolutional Filtering for 
Breast Cancer Subtype Classification. In: Lange J (ed) IJCAI. 
International Joint Conferences on Artificial Intelligence, [S. l.], 
pp 3527–3534.

171. Pati,P., Jaume,G., Foncubierta,A. et al. (2021) Hierarchical 
Graph Representations in Digital Pathology. In: Medical Image 
Analysis. Science Direct (Elsevier), Amsterdam, Netherlands, p. 
102264.

172. Wu,J., Zhong,J.-X., Chen,E.Z. et al. (2019) Weakly- and Semi-
supervised Graph CNN for Identifying Basal Cell Carcinoma on 
Pathological Images. In: Zhang D, Zhou L, Jie B et al. (eds) Graph 
Learning in Medical Imaging: First International Workshop, 
GLMI 2019, held in conjunction with MICCAI 2019. Shenzhen, 
China, 2019, Proceedings/Daoqiang Zhang, Luping Zhou, Biao 
Jie, Mingxia Liu (eds.) 11849. Springer Cham, Switzerland, pp. 
112–119.

173. Wang,J., Chen,R.J., Lu,M.Y. et al. (2019) Weakly Supervised 
Prostate TMA Classification via Graph Convolutional Networks. 
In: 2020 IEEE 17th International Symposium on Biomedical 
Imaging (ISBI). Iowa City, Iowa, USA

174. Studer,L., Wallau,J., Dawson,H. et al. (2021) Classification of 
Intestinal Gland Cell-Graphs Using Graph Neural Networks. In: 
Vezzani R (ed.) Proceedings of ICPR 2020: 25th International 

Conference on Pattern Recognition: Milan. IEEE, Piscataway, NJ, 
pp. 3636–3643.

175. Zhao,Y., Yang,F., Fang,Y. et al. Predicting Lymph Node 
Metastasis Using Histopathological Images Based on Multiple 
Instance Learning With Deep Graph Convolution. In: 2020 
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 13–19 June 2020 Seattle, WA, USA, pp. 4836–4845.

176. Yu,X., Lu,S., Guo,L. et al. (2021) ResGNet-C: A graph convo-
lutional neural network for detection of COVID-19. Neurocom-
puting, 452, 592–605.

177. S-y,L., Zhang,Z., Zhang,Y.-D. et al. (2021) CGENet: A Deep 
Graph Model for COVID-19 Detection Based on Chest CT. 
Biology (Basel), 11.

178. Fout,A., Byrd,J., Shariat,B. et al. (2017) Protein interface predic-
tion using graph convolutional networks. In: 31st Conference 
on Neural Information Processing Systems (NIPS 2017). Long 
Beach, CA, USA.

179. Stankevi ̌ciūt ̇e,K., Azevedo,T., Campbell,A. et al. (2020) Popula-
tion Graph GNNs for Brain Age Prediction. biorxiv.

180. Choi,E., Xu,Z., Li,Y. et al. (2019) Learning the Graphical Struc-
ture of Electronic Health Records with Graph Convolutional 
Transformer. In: The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence (AAAI-20). New York, USA.

181. Chen,R.J., Lu,M.Y., Wang,J. et al. (2022) Pathomic Fusion: An 
Integrated Framework for Fusing Histopathology and Genomic 
Features for Cancer Diagnosis and Prognosis. IEEE Trans. Med. 
Imaging, 41, 757–770.

182. Levy,J., Haudenschild,C., Barwick,C. et al. (2021) Topologi-
cal Feature Extraction and Visualization of Whole Slide Images 
using Graph Neural Networks. In: Altman R (ed.) Biocomput-
ing 2021: Proceedings of the Pacific Symposium. World Scientific 
Publishing, Singapore, pp. 285–296.

183. Sureka,M., Patil,A., Anand,D. et al. (2020) Visualization for 
Histopathology Images using Graph Convolutional Neural Net-
works. In: IEEE 20th International Conference on Bioinformat-
ics and Bioengineering (BIBE). Cincinnati, OH, USA.

184. Choobdar,S., Ahsen,M.E., Crawford,J. et al. (2019) Assessment 
of network module identification across complex diseases. Nat. 
Methods, 16, 843–852.

185. Cowen,L., Ideker,T., Raphael,B.J. et al. (2017) Network prop-
agation: a universal amplifier of genetic associations. Nat. Rev. 
Genet., 18, 551–562.

186. Shang,J., Ma,T., Xiao,C. et al. (2019) Pre-training of Graph 
Augmented Transformers for Medication Recommendation. 
IJCAI2019. Macao, China.

187. Shang,J., Xiao,C., Ma,T. et al. (2018) GAMENet: Graph 
Augmented MEmory Networks for Recommending Medication 
Combination. Aaai 2019. Honolulu, Hawaii, USA.

188. Batra,S. (2013) Comparative analysis of Relational and Graph 
databases. In: 2018 1st International Conference on Computer 
Applications & Information Security (ICCAIS). Riyadh, Saudi 
Arabia). https://ieeexplore.ieee.org/document/8441982.

189. Neo4j Graph Data Platform (2022) Bloom. https://neo4j.com/
product/bloom/ (18 Nov 2022, date last accessed).

190. Neo4j Graph Data Platform (2022) The Neo4j Graph Data Sci-
ence Library Manual v2.2 - Neo4j Graph Data Science. https://
neo4j.com/docs/graph-data-science/current/ (28 Oct 2022, date 
last accessed).

191. TigerGraph (2022) TigerGraph Graph Algorithms | Obtain 
Insights at Scale. https://www.tigergraph.com/graph-data-
science-library/ (28 October 2022, date last accessed).

192. Paszke,A., Gross,S., Massa,F. et al. PyTorch: An Imperative 
Style, High-Performance Deep Learning Library. In: NIPS’19: 
Proceedings of the 33rd International Conference on Neural 
Information Processing Systems. Vancouver Convention Center, 
Vancouver, CANADA. December 2019. Article No: 721, pp.
8026–8037.

193. Abadi,M., Barham,P., Chen,J. et al. (2016) TensorFlow: A 
System for Large-Scale Machine Learning, Savannah, GA, 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023

https://ieeexplore.ieee.org/document/8441982
https://neo4j.com/product/bloom/
https://neo4j.com/product/bloom/
https://neo4j.com/docs/graph-data-science/current/
https://neo4j.com/docs/graph-data-science/current/
https://www.tigergraph.com/graph-data-science-library/
https://www.tigergraph.com/graph-data-science-library/


20 Database , Vol. 00, Article ID baad045

USA. In: OSDI’16: Proceedings of the 12th USENIX confer-
ence on Operating Systems Design and Implementation, pp.
265–283

194. Deeplearning4j (2022) Deeplearning4j Suite Overview. https://
deeplearning4j.konduit.ai/ 28 October 2022, date last accessed

195. Seide,F. and Agarwal,A. (2016) CNTK. In: Krishnapuram B, Shah 
M, Smola A et al. (eds) Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data 
Mining. ACM. New York, NY, p. 2135

196. Innes,M., Saba,E., Fischer,K. et al. (2018) Fashionable Mod-
elling with Flux. In: 32nd Conference on Neural Information 
Processing Systems (NIPS 2018), Montréal, Canada.

197. MindsDB (2022) Machine Learning In Your Database Using 
SQL. https://mindsdb.com/ (28 October 2022, date last 
accessed).

198. Nascimento,M. and Lopes,P. (2022) Internet of things and 
machine learning applied to the thermal comfort of internal 
environments. Indoor Built Environ., 31, 2274–2290.

199. Warnat-Herresthal,S., Schultze,H., Shastry,K.L. et al. (2021) 
Swarm Learning for decentralized and confidential clinical 
machine learning. Nature, 594, 265–270.

200. Vonbach,P., Dubied,A., Kr ̈ahenbühl,S. et al. (2008) Prevalence of 
drug-drug interactions at hospital entry and during hospital stay 
of patients in internal medicine. Eur. J. Intern. Med., 19, 413–420.

201. McFarlane,S.I., Kumar,A. and Sowers,J.R. (2003) Mechanisms 
by which angiotensin-converting enzyme inhibitors prevent dia-
betes and cardiovascular disease. Am. J. Cardiol., 91, 30H–37H.

202. Kanehisa,M. and Goto,S. (2000) KEGG: kyoto encyclopedia of 
genes and genomes. Nucleic Acids Res., 28, 27–30.

203. McCallum,A.K., Nigam,K., Rennie,J. et al. (2000) Automating 
the Construction of Internet Portals with Machine Learning. Inf 
Retr Boston, 3, 127–163.

204. Fey,M. and Lenssen,J.E. (2019) Fast Graph Representation 
Learning with PyTorch Geometric. In: ICLR 2019 (RLGM 
Workshop), New Orleans, Louisiana, USA. https://arxiv.org/abs/
1903.02428.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad045/7222237 by BAM

 user on 15 August 2023

https://deeplearning4j.konduit.ai/
https://deeplearning4j.konduit.ai/
https://mindsdb.com/
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428

	The importance of graph databases and graph learning for clinical applications
	 Introduction
	 Organization
	 Our contributions

	 Graph databases
	 Relational Database Management System (RDBMS)
	 Joins

	 Graph Database Management System (GDBMS)
	 Native graph databases
	 Differences between relational and graph databases

	 Graph data models
	 Graph model
	 Labeled Property Graph (LPG)
	 Neo4j
	 SparkSee
	 TigerGraph
	 Resource Description Framework (RDF) stores

	 Graph query languages
	 Cypher
	 GSQL
	 Gremlin
	 SPARQL


	 Graph learning
	 Traditional approaches (manual feature extraction)
	 Graph representation learning
	 Matrix-factorization-based methods
	 Random-Walk-based methods
	 Graph neural networks
	 Problems and limitations of GNNs
	 Other representation learning approaches
	 Embedding (sub-)graphs

	 Graph analytics
	 Visualization
	 Graph mining tasks


	 Applications of graph learning
	 Applications of link prediction
	 Applications of node classification
	 Applications of (sub-)graph classification
	 Applications of further graph mining tasks

	 Conclusion and future directions
	Supplementary material
	 Data availability
	Funding
	Conflict of interest
	Acknowledgements
	References


