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Abstract: This paper presents reported machine learning approaches in the field of Brillouin dis-
tributed fiber optic sensors (DFOSs). The increasing popularity of Brillouin DFOSs stems from
their capability to continuously monitor temperature and strain along kilometer-long optical fibers,
rendering them attractive for industrial applications, such as the structural health monitoring of large
civil infrastructures and pipelines. In recent years, machine learning has been integrated into the
Brillouin DFOS signal processing, resulting in fast and enhanced temperature, strain, and humidity
measurements without increasing the system’s cost. Machine learning has also contributed to en-
hanced spatial resolution in Brillouin optical time domain analysis (BOTDA) systems and shorter
measurement times in Brillouin optical frequency domain analysis (BOFDA) systems. This paper
provides an overview of the applied machine learning methodologies in Brillouin DFOSs, as well as
future perspectives in this area.

Keywords: distributed fiber optic sensors; Brillouin scattering; BOTDA; BOFDA; machine learning;
artificial neural networks; structural health monitoring; strain and temperature measurements

1. Introduction

Over the last few years, machine learning has revealed the untapped potential for ad-
vanced signal processing and provided new avenues for innovation and progress in the field
of distributed fiber optic sensors (DFOSs). DFOSs enable continuous measurements along
the entire length of an optical fiber, which can be up to hundreds of kilometers. This has
already made DFOSs attractive for a wide range of applications, including structural health
monitoring of civil and geotechnical structures [1–5], pipeline and borehole monitoring for
leak detection [6], seismic activity monitoring [7–10] or even the condition monitoring of
high-voltage submarine cables [11] and deep earth dynamics in oceans [12]. Even though
the most common measurands are temperature and strain, DFOSs can directly or indirectly
measure the humidity [13–15], pressure [16], displacement [4,17], radiation [18–20], gas
concentration [21,22], etc.

DFOSs are primarily categorized based on the scattering mechanisms, which can be
Rayleigh, Brillouin or Raman [23]. Rayleigh-based DFOSs rely on the detection of the
backscattered light generated by the interaction between the light and the fiber’s inherent
refractive index fluctuations. This technique provides the strongest signal and is ideal for
dynamic sensing applications, such as distributed acoustic sensing (DAS). Rayleigh-based
DFOSs do not require signal averaging and can provide real-time monitoring. For the sake
of completeness, we mention that many Rayleigh-based DFOSs operating either in the
time or frequency domain have been developed and proposed. Similar to Brillouin-based
DFOSs, these sensors can be used for temperature and strain monitoring [24–27]. Brillouin-
based DFOSs rely on the detection of the Brillouin scattering generated by the interaction
between the light and the acoustic waves propagating along the fiber. This technique is
highly sensitive and provides accurate measurements of temperature and strain. However,
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Brillouin scattering is relatively weak in comparison to Rayleigh scattering, and signal
averaging is typically required to obtain signals of a high signal-to-noise ratio (SNR).
Therefore, a Brillouin-based DFOS is better suited for static or quasi-static monitoring
applications where the changes occur over longer periods and real-time monitoring is not
required. Nonetheless, it is worth noting that solutions for dynamic Brillouin DFOSs have
also been proposed [28–31].

Brillouin DFOSs are typically classified into two main categories: time domain and
frequency domain systems. Both techniques offer long measurement ranges and high
spatial resolution [32]. Specifically, measurement lengths of up to 200 km [33–35] and
spatial resolutions even on centimeter or millimeter scales [36–38] have been reported.
Time domain systems, such as Brillouin optical time domain analyzers (BOTDAs), directly
measure the pulse response, while the frequency domain systems, such as Brillouin optical
frequency domain analyzers (BOFDAs) retrieve the pulse response by applying inverse
fast Fourier transformation to the measured complex transfer function [39]. Regardless,
time domain analysis is significantly faster than frequency domain analysis; the latter
does not necessitate the use of fast sampling circuits, which positively affects the system’s
cost [32,39].

The emergence of machine learning methodologies in DFOSs has been driven by
several important factors. First, state-of-the-art DFOS systems allow for continuous and
long-range monitoring, generating massive amounts of data that are difficult and time-
consuming to analyze manually [40–43]. This creates opportunities for advanced signal
processing and analysis using machine learning techniques, which can effectively extract
meaningful insights from the vast amounts of data generated by the DFOS. Second, recent
progress in big data and cloud technologies provides tools for the efficient storage and pro-
cessing of large volumes of data. Third, the significant progress and successful application
of machine learning in various fields prior to its use in DFOSs motivated and facilitated the
adoption of machine learning techniques to DFOSs. Last, the development of powerful
graphical processing units (GPUs) enabled fast and advanced machine learning analysis.

DAS allows for continuous and real-time monitoring, which can result in enor-
mous amounts of data over time. This motivated the use of machine learning, which
has been used to process big amounts of data in order to detect and classify events or
damages [44–46]. Specifically, artificial neural networks (ANNs) have been proposed for
classifying external intrusion signals to increase safety in oil and gasoline pipelines [47–53].
Furthermore, machine learning has been also proposed in DFOSs for monitoring railway
tracks and trains and detecting patterns and anomalies that could indicate potential is-
sues [54–57]. Apart from infrastructure condition monitoring, deep neural networks have
also been proposed to accurately detect earthquakes from data collected by DAS [58].
In addition to these specific applications, machine learning has also enabled significant
advances in DAS systems that are independent of the application. As an example, machine
learning algorithms have been used to denoise signals [59–62] faster than conventional
denoising algorithms, allowing for extended measurement lengths [63], and have replaced
less efficient signal processing algorithms, such as cross-correlation [64,65]. For the sake of
completeness, we note that machine learning has also been applied.

Machine learning in Brillouin DFOSs has been applied in various stages of the signal
processing. Specifically, machine learning algorithms have been employed to enhance
the measurement accuracy and shorten the signal processing time without increasing
the system’s cost [40,66,67]. Machine learning has also contributed to enhanced spatial
resolution in BOTDA systems [68] and shorter measurement times in BOFDA systems [69].
Furthermore, the problem of temperature and strain cross-sensitivity has been addressed
using machine learning in both BOTDA and BOFDA systems [70–73]. As we discuss later
in Section 2, the decoupling of temperature and strain effects has also been achieved using
methods, including a two-fiber configuration [74], hybrid systems employing more than
one scattering effect [75–78], and specialty fibers [79–83]. However, machine learning does
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not increase the system’s cost or hardware complexity and can be applied even in standard
telecom optical fibers [70].

The aim of this paper is to succinctly present a concise overview and comparison of the
machine learning approaches reported in Brillouin DFOSs. Furthermore, we identify the
challenges associated with these approaches and suggest areas for further investigations
in the future. The paper is structured as follows: after this introduction, we present the
most-known types of Brillouin DFOS systems and describe the basic signal processing
methods. The third section of the paper describes the machine learning methodologies
that have been applied mostly in time domain systems to enhance temperature and strain
accuracy. The first part of this section compares machine learning methodologies applied
for Brillouin frequency shift (BFS) extraction, which is the most conventional feature for
estimating temperature and strain changes. The second part of the section provides an
overview of the machine learning-based denoising methods and compares them with
others employed mostly in the field of image processing. The third part discusses machine
learning approaches for temperature and strain extraction directly from the Brillouin gain
spectrum (BGS) without feature extraction, such as BFS. The fourth section presents machine
learning methodologies applied in BOFDA sensors for shortening the measurement time
and measuring simultaneous temperature and strain, as well as temperature and humidity.

2. Brillouin Distributed Fiber Optic Sensors (DFOSs)

In this section, we describe the most-known types of Brillouin DFOS systems and the
conventional signal processing for temperature or strain extraction. Rayleigh scattering is
elastic and arises from the non-propagating density fluctuations of the medium. Because
this scattering effect is the strongest, no signal averaging is needed, and thus, Rayleigh
DFOSs are widely used for vibration monitoring. Brillouin and Raman scattering effects are
inelastic and originate from the interaction of the propagating light with the acoustic and
optical phonons, respectively. Furthermore, the frequency downshifted and upshifted com-
ponents resulting from these interactions are called “Stokes” and “anti-Stokes”, respectively.
Raman DFOSs are mainly used for temperature sensing, while Brillouin DFOSs provide
temperature and strain information. We note that in Brillouin DFOS, the temperature and
strain information is related to the frequency difference between the incident and the scat-
tered Stokes or Anti-stokes light. This frequency difference is called the Brillouin frequency
shift (BFS). A schematic representation of the scattering effects is shown in Figure 1.
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Three well-known types of Brillouin DFOSs that are reported in the literature are
the time domain, frequency domain and correlation (coherence) domain systems [23].
Time domain approaches make use of pulses that travel down the fiber and get scattered
and finally detected by a photodiode. The recorded pulse response over time can be
converted into a spatially resolved gain profile, providing that the refractive index of
the medium is known. On the other hand, the frequency domain systems make use of
RF-modulated continuous waves and measure the system’s complex transfer function [39].
The complex function can in turn be converted into the time domain through inverse fast
Fourier transformations. The interrogation approach in correlation domain systems differs
significantly from the previous approaches. The correlation domain technique is position-
selective, which allows for measurements even at small regions of the optical fiber and
offers enhanced spatial resolution [85–87]. The position to be measured is determined based
on the interference characteristics of two RF-modulated continuous waves. Furthermore,
we note that all the aforementioned techniques can be implemented using the single-
end or the double-end configuration. The difference between these two configurations is
that the first is based on spontaneous Brillouin scattering, while the second is based on
stimulated Brillouin scattering. The stimulated scattering requires an additional continuous
counterpropagating wave with a frequency equal to the spontaneous Brillouin scattered
wave. The frequency tunning of the counterpropagating wave is performed by an EOM
which is driven by an RF signal generator. Even though the double-end configuration
requires access to both ends of the fiber, the signal is stronger than that obtained by the
single-end systems [23]. The time, frequency and correlation domain systems based on
the double-end configurations are conventionally called Brillouin optical time domain
analysis (BOTDA), Brillouin optical frequency domain analysis (BOFDA) and Brillouin
optical correlation domain analysis (BOCDA), respectively. If only the end of the fiber is
used, then the system that works, for example, in time domain, is called Brillouin optical
time domain reflectometry (BOTDR). Figure 2 provides a schematic of the most common
Brillouin DFOS systems, including only some basic key components.
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Even though the data acquisition process differs from system to system, the signal
processing for temperature and strain extraction from the so-called Brillouin gain spectrum
(BGS) is similar. The most conventional feature is the Brillouin frequency shift (BFS),
which is extracted by performing Lorentzian curve fitting (LCF) on the BGS data. We
note that, apart from Lorentzian curves, Gaussian or pseudo-Voigt curves have also been
employed and in some cases delivered a more accurate BFS [88,89]. Furthermore, BFS
extraction based on cross-correlation is also common in the literature [90,91]. The BFS
depends linearly on temperature and strain, and thus, the temperature or strain change
can be estimated, providing that the temperature and strain coefficients are known. These
coefficients are unique for every fiber, and unless they are provided by the manufacturer,
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their estimation requires a preliminary analysis of the BFS under different temperature and
strain conditions.

Simultaneous measurements of temperature and strain are not trivial due to the cross-
sensitivity effects. This means that changes in one parameter can be measured as long as the
other one is constant. This problem has been addressed by using two optical fibers, placed
in parallel and close to each other with the one being mechanically isolated [74]. However,
the two-fiber configuration is impractical for many applications. Temperature and strain
discrimination has been demonstrated using hybrid systems employing more than one
scattering effect or specialty fibers [75–78]. Some specialty fibers, such as large effective area
fibers (LEAFs) [79–81], photonic crystal fibers [82], and dispersion compensating fibers [83]
offer a multipeak BGS with at least two Brillouin peaks, with different temperature and
strain sensitivities. In that case, one extracts simultaneously the temperature (T) and strain
(ε) by solving a system of equations, as follows:

BFSpeak1 = Cpeak1
T T + Cpeak1

ε ε (1)

BFSpeak2 = Cpeak2
T T + Cpeak2

ε ε (2)

where CT and Cε are the temperature and strain coefficients, respectively.

3. Machine Learning Applied in Brillouin Time Domain Sensors

The conventional signal processing can be cumbersome, especially when the SNR is
relatively low. When the data are noisy, the Lorentzian fitting optimization is significantly
slower, and erroneous estimations of the BFS are expected. Machine learning has been
proposed to partly or completely replace the conventional signal processing methods.
Specifically, machine learning has been utilized to accelerate the BFS extraction, denoise the
BGS, enable fast temperature extraction directly from the BGS and discriminate temperature
and strain effects.

3.1. Machine Learning for Feature Extraction from the Brillouin Gain Spectrum

Many types of machine learning were proposed to extract the BFS. The LCF can be
cumbersome, especially in cases with low SNR, which in turn, results in slow and inaccu-
rate temperature or strain estimations. Machine learning was applied to overcome these
limitations and provide a more efficient way to extract the BFS leading to more accurate and
faster temperature or strain measurements. To this end, many types of machine learning al-
gorithms were proposed, including artificial neural networks (ANNs), convolutional neural
networks (CNNs), support vector machines (SVMs), k-nearest neighbors (KNNs), etc.

Figure 3 shows a schematic of the ANN methodology for BFS extraction reported
by Liang et al. [92]. Instead of performing LCF on the data points of the BGS, those data
points were given as inputs to an ANN. The proposed ANN consisted of two hidden layers.
The hidden layers of the ANNs consist of nodes that are nothing more than activation
functions applied to the weighted sums of the outputs of all the nodes of the previous
layer. The ANN training aims at optimizing the weights so that the error of the output is
minimized. The optimization algorithm is based on backpropagation [93]. Liang et al. [92]
trained an ANN and evaluated its performance using synthetic and experimental data,
respectively. To increase the model’s robustness, the training dataset included different
frequency ranges, linewidths and noise levels. The authors note that both the inputs and
the outputs were normalized before training. The normalization of the input and the output
facilitates the model generalization based on the BGS with different gains and different
scanning frequencies, respectively.

The optimization of the hyperparameters (number of hidden layers, number of nodes,
type of activation function, etc.) is of great importance in all machine learning models.
Liang et al. [92] used a validation dataset to optimize the ANN during training and applied
early stopping to avoid overfitting. For the sake of completeness, we mention that overfit-
ting refers to the model’s failure to generalize based on new data [94], while early stopping
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stops the training procedure when the model’s performance based on the validation dataset
starts degrading [95]. We note that the complexity of the ANN architectures is strongly
related to the prediction times. Therefore, the relatively simple architecture proposed
by Liang et al. [92] proved to be very fast. Specifically, the final ANN model required
approximately only 1.2 s to process 100,000 BGSs. Even though ANNs can deliver fast
predictions, the training time is usually time-consuming. In this case, the reported training
time was approximately three hours. Furthermore, the authors tested the final ANN model
based on real experimentally obtained data using a BOTDA system. The BFS errors were
found to be very close to the LCF errors.
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The described training and model’s evaluation procedure is shown in Figure 4. This
training pipeline is very common in machine learning and has been used in the majority of
the papers that are discussed here. The train and validation data usually consist of synthetic
data, while the test data result from lab or field experiments. Before training and testing,
all data are normalized. During the training process, the algorithm undergoes multiple
iterations (epochs) based on the training dataset. After each epoch, the model’s performance
is evaluated by assessing its ability to generalize based on the validation dataset. This
training procedure is repeated many times with different hyperparameter settings. This
hyperparameter tuning process is a common practice in machine learning, as it helps to
find the most effective settings for the algorithm. The final model is selected based on the
performance using the validation dataset. Finally, to assess the overall effectiveness of the
trained model, it is evaluated using a separate and independent dataset called the test data.
This step provides an unbiased measure of the model’s performance based on unseen data,
confirming its generalization capabilities.

We note that apart from the described training pipeline, methods based on cross-
validation are also used, especially when the datasets are limited. Specifically, cross-
validation is based on data resampling and repeatedly splits the dataset into train and
validation sets. This technique has been widely applied in machine learning providing an
unbiased estimation of the model’s performance [96].

In a more recent paper, Liang et al. [97] improved the ANN model to deal with a dis-
torted BGS, caused by nonlocal effects. BGSs with nonlocal effects were simulated to acquire
a new training dataset. The new ANN model resulted in significantly reduced BFS errors,
although the network’s architecture changed only slightly (minus 10 and 5 nodes in the first
and second layer, respectively). In comparison to the previous ANN and the conventional
LCF method, an at least a five-fold reduction in the estimated BFS errors is reported. These
results highlight the importance of the dataset in machine learning applications.
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Recently, Chen et al. [98] proposed one-dimensional CNNs for BFS extraction and
compared their approach with the conventional LCF and the simple ANN. Specifically, the
authors used a special type of CNN, called wavelet convolutional neural network. The
architecture of the proposed network is shown in Figure 5. It consists of two paths of
convolutional layers, which end up in a fully connected neural network after a residual
connection is applied. The term “wavelet” arises from the type of activation function that is
used in the fully connected network. The authors assert that the wavelet activation function
was employed to cover more local characteristics in the frequency domain. The input of
the CNN is a single normalized BGS consisting of 100 frequency scanning points, while the
output is a single value indicating the BFS. The batch normalization and max pooling layers
are used to address the covariance shift problem and to down-sample the data, respectively.
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Figure 5. Architecture of the “wavelet” convolutional neural network (CNN) consisting of two paths
of convolutional layers (top) and a stack of fully connected wavelet layers (bottom). One-dimensional
convolutional layer (Conv 1D); Batch normalization (BN). Reprinted with permission from [98] ©
Optica Publishing Group.

Similar to the previous methodology, the authors made use of synthetic data for
training. The data consisted of different BFSs, linewidths and SNRs. The model’s evaluation
based on experimental data, obtained by a BOTDR system, showed an improvement in
terms of temperature error in comparison to the conventional LCF and a simple ANN
consisting of two hidden layers. Specifically, the results indicated that the temperature
root mean square error (RMSE) of the CNN is approximately 1 ◦C lower than that of the
conventional LCF method. However, the improvement of the CNN in comparison to the
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ANN seems to highly depend on the temperature. For example, the error difference at
61.62 ◦C is around 1 ◦C, while at 65.82 ◦C, it becomes negligible. The results are shown in
Figure 6. We note that the authors trained the ANN and CNN using the same hardware
and software.
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Figure 6. The root mean square error (RMSE) of the extracted temperature using Lorentzian curve
fitting (LCF), artificial neural networks (ANN) and convolutional neural networks (CNN), adapted
with permission from [98] © Optica Publishing Group.

Chang et al. [99] reported that due to the correlation of the BGS in the time domain, a
two-dimensional (2D) CNN that extracts distributed the BFS directly from distributed BGSs
could be advantageous. Specifically, they demonstrated a CNN architecture, as shown
in Figure 7, which consists of a 2D convolutional layer, a batch normalization layer and
a single max pooling layer. After the max pooling layer, which reduces the dimensions
of the processed data, a residual subnetwork consisting of a series of convolutional and
batch normalization layers, is placed. The authors claimed that the use of that subnetwork
facilitates the feature perception in the time and frequency domain as well. The last part
of the CNN consists of consecutive 2D convolutional layers with a decreasing number of
filters. In contrast to the CNN architecture in Figure 5, this CNN does not include fully
connected layers. The size of the input layer, 151 × N, refers to the number of data points
of the BGS and the number of distributed BGSs, respectively.
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extraction. Reprinted with permission from [99] © Chinese Laser Press.

Similar to the previous methods, both the inputs and the outputs were normalized.
The training set arose from synthetic data, including the BGS with different BFSs, linewidths
and SNR values. The reported training time was approximately two hours using an Nvidia
GTX 1080 GPU. It is notable that in comparison to a CPU, a GPU results in significantly
faster training times [100].

The performance evaluation based on experimental data, collected with a BOTDA
system, showed that in comparison to the conventional LCF method, the CNN has slightly
improved the error of the BFS estimation. However, the authors are confident that the
performance could be further improved by optimizing the CNN architecture and the
training dataset. Furthermore, the authors reported that the CNN required only 0.13 s for
the processing of 1000 BGSs, while the corresponding computation time for the conventional
LCF approach was 0.81 s. A similar speed enhancement was also reported by Qi et al. [101].

Ge et al. [68] showed that similar 2D CNNs can also result in enhanced spatial resolu-
tion in BOTDA and particularly when long pulses are used. Long pulses in BOTDA result in
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longer measurement lengths but on the other hand, decrease the spatial resolution. Conven-
tionally, this trade-off problem can be alleviated by implementing a differential pulse-width
pair (DPP), but at the cost of a two-fold increase in measurement time. Ge et al. [68] showed
that a CNN-assisted BOTDA is capable of reaching the resolution of the DPP-BOTDA with-
out increasing the measurement time. An example of the BFS estimation accuracy is shown
in Figure 8. Caceres et al. [102] used similar CNNs to enhance the spatial resolution in
BOCDR/BOCDA sensors.
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Figure 8. Brillouin frequency shift (BFS) estimation using a conventional BOTDA, a DPP-BOTDA
and a CNN-BOTDA. Reprinted with permission from [68] © IEEE.

Lalam et al. [103] aimed at increasing the reliability of the neural networks. They
proposed probabilistic neural networks that provide not only a point estimate of the BFS
but also the prediction’s uncertainty, which is a measure to assess the model’s confidence.
Therefore, when the model’s prediction is not precise enough, this is indicated by the
provided uncertainty. Furthermore, the neural network outputs the full width at half
maximum (FWHM) of the Lorentzian curve as well. The structure is shown in Figure 9.
For the sake of completeness, we note that BFS uncertainties were also extracted using LCF
and classic [104] or Bayesian statistics [105].
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Apart from neural networks, simpler machine learning methods, including SVM,
AdaBoost and KNN, have been applied for BFS extraction. SVMs are supervised learning
models that have been widely used in classification and regression analysis [93]. In contrast
to ANNs that require a big amount of data, SVM proved very efficient even if the available
dataset is limited [106]. SVMs separate classes by constructing hyperplanes (decision
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surfaces) in high-dimensional spaces. SVM is named after the so-called support vectors,
which are the data points that determine the orientation and position of the hyperplanes.
Furthermore, SVM is based on kernels, which can be specified by e.g., linear, polynomial
and radial basis functions [106]. Yao et al. [107] compared the influence of different kernel
functions on the BFS estimation and found that the Gaussian radial basis function delivers
the lowest errors. However, the width of the Gaussian kernel needs to be optimized so that
overfitting is addressed. Yao et al. [107] also commented on the training speed of the SVM,
which in general, is shorter than that of the ANNs. Specifically, the authors mentioned that
the training of the SVM lasted only several minutes, which is a significant advantage over
the ANN.

Zheng et al. [108] applied AdaBoost to extract the FBS. The AdaBoost algorithm trains
many weak classifiers, which are weighted depending on the classification rate that they
provide [109,110]. In the end, a strong classifier consisting of many weak classifiers arises.
The weak classifiers that the authors chose were simple decision trees. The authors claimed
that in cases of low SNR, where the LCF fails, the AdaBoost predicts the BFS with relatively
low errors (approximately 1 MHz). However, no information was provided about the
training and the prediction times. Furthermore, the trained AdaBoost is a classifier, which
means that no interpolation is possible. We believe that this problem could be addressed
by applying linear decision trees for regression [111,112].

In contrast to the previous algorithms, KNNs do not learn any model, and thus, no
training is needed [113]. This is a great advantage over other algorithms that require time-
consuming training (such as ANN and CNN). However, a dataset, including a plethora of
BGSs and BFSs is required because the KNN predictions are based on feature similarity.
Furthermore, the KNNs are characterized by two hyperparameters, namely the distance
function and the number of neighbors (k-value) to be considered. Zheng et al. [114,115]
made use of the Euclidean distance and optimized the k-value after a systematic analysis
of its impact on the BFS extraction. The results based on experimental data showed that the
KNNs provide lower BFS errors than those from the conventional LCF approach but only
if the SNR is low. This indicates that KNNs are more tolerant against noise than the LCF.

Even though the proposed machine learning algorithms for BFS extraction have
proved very efficient, the requirement for fixed input dimensions is a significant limitation.
It is known that machine learning algorithms, in general, make predictions only based on
data with the same dimensions as the data that were provided to the algorithm during
training. This is of course impractical because the number of scanning frequencies, as
well as the frequency range, can vary depending on the application. To address this issue,
Liang et al. [92] applied linear interpolation based on the BGS so that the BGS always
consists of the same number of frequencies before it is processed by the machine learning
model. Furthermore, Xiao et al. [116] and Yao et al. [107] addressed this issue by regulating
the input dimensions with principal component analysis (PCA). Apart from this, PCA also
had a positive impact on the training time. We note that PCA is commonly used in data
analysis to reduce the dimensions of the data without losing significant information [117].

Among the most common weaknesses in machine learning is the long training times
that are related to the complexity of the algorithms. Usually, the more complex the algo-
rithm, the longer the training. ANN and CNN are considered very complex, and usually,
the training lasts several hours. Considering also the optimization of the hyperparameters,
the total training time increases dramatically. This could be addressed to some extent using
simpler architectures and state-of-the-art optimization techniques [118–120].

Interpretability is of great importance for every machine learning algorithm. Although
some simple algorithms, such as linear and polynomial regression, are considered inter-
pretable by themselves, ANNs and CNNs are usually treated as black boxes. This arises
from their complexity, which renders the interpretation of their decisions very difficult.
However, in the last few years, interpretable machine learning has gained much attention
and has already made significant progress. As an example, we mention that sensitivity
analysis, Taylor decomposition, deconvolution, guided backpropagation and layer-wise
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relevance propagation are among the state-of-the-art techniques that have been proposed
to shed light on the neural networks’ decisions [121]. Other algorithms, such as KNN,
SVM and AdaBoost (decision trees), are easier to interpret. We note that in comparison to
all the aforementioned machine learning algorithms, KNN offers the fastest and easiest
interpretation [122]. We believe that further research on the interpretation of the proposed
machine learning algorithms for BFS extraction will create more trust, contribute to a more
efficient hyperparameter optimization and open the way for wider use in the future.

3.2. Machine Learning for Denoising the Brillouin Gain Spectrum

Denoising techniques have resulted in enhanced BFSs and temperature accuracy in
Brillouin DFOSs when the SNR is low. Low SNR usually arises either from short mea-
surements, including only a few signal averages, or from distant positions in long optical
fibers. However, conventional denoising methods are based, in general, on time-consuming
optimization algorithms. For this reason, neural network-based denoising methods have
been proposed. Although the training of such algorithms is usually time-consuming, the
denoising process is very fast. This is attributed to the fact that, once a neural network
model is trained, the predictions themselves do not include any optimization task.

Several neural network architectures have been proposed. Wang B. et al. [123,124]
reported on BGS denoising using an encoder/decoder structure, as shown in Figure 10a.
This structure consists of an input layer, an intermediate layer and an output layer. The
input corresponds to the noisy BGS, while the output to the clean BGS. Therefore, the
network learns to map the noisy BGS to the clean (denoised) BGS. The intermediate layer
was used for dimension reduction and feature extraction. Furthermore, once the training of
the model was finished, the authors used the outputs of the intermediate layer to directly
predict temperature without applying LCF. In other words, they built a stacked neural
network architecture combining the encoder network with the previously described ANNs
for temperature extraction. The training of the encoder/decoder neural network was
performed using synthetic data, which consisted of additive Gaussian white noise. The
stacked neural network was tested with BOTDA experimental data.
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Wu et al. [126] and Zheng et al. [127] proposed CNNs that consider the spatial
and spatio-temporal similarities, respectively. Specifically, the CNNs demonstrated by
Wu et al. [126] accept 2D BGSs (Figure 10b) with the dimensions defined by the number of
frequency scanning points and the number of the spatially resolved sensing points. They
reported that the BM3D had a negative effect on the system’s set spatial resolution, which
was not observed when CNN denoisers were used. Zheng et al. [127] designed a CNN with
three dimensions including the time. The authors concluded that the 3D CNN provides
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higher SNR than the 2D CNN, with the reported improvement being 3.6 dB. However,
we note that the SNR improvement is expected to be related e.g., to the number of signal
averages during the experiments.

The results of these two papers indicated that the CNN denoisers are approximately
more than two orders of magnitude faster than the conventional BM3D denoiser. This
enabled the real-time denoising of the experimentally obtained BGS allowing for even
dynamic strain sensing [127]. However, we need to mention that even though the de-
noising itself is fast, the training of the CNNs is time-consuming, and it can last up to
45 h as reported in [126]. It is of high importance to note that these training times were
acquired using a state-of-the-art GPU. The use of a CPU is expected to increase the training
time dramatically.

Very recently, Yang et al. [125] proposed a 2D CNN, namely attention-guided denois-
ing CNN, which has been widely used in the field of image recognition to shorten the
computation time of deep CNN architectures [128,129]. The authors claimed that the new
CNN architecture could result in more accurate BFS estimations than the one used in [126].
However, more investigations including experimental data are required.

Even though neural network-based denoisers resulted in BGSs with high SNR and
short computation times, more investigations are required for a wider use in the future. As
mentioned previously, no optimization is performed once the denoising model is trained,
which renders the CNN denoisers faster than the BM3D conventional image denoising
method, as reported in [126]. To the best of our knowledge, a similar comparison between
CNN denoisers and other conventional denoising algorithms, such as non-local means
(NLM) and wavelet denoising (WD) using GPUs, has not been reported yet. Nevertheless,
a comparison between the three denoising algorithms, BM3D, NLM and WD, using a
CPU showed that WD is two orders of magnitude faster than the BM3D and NLM [130].
Therefore, even if the CNN denoisers are faster than the BM3D, further studies should
investigate whether the CNN denoisers are faster than the WD as well. We note that
the use of the same hardware (i.e., GPU) is of high importance when computation times
are compared.

A limitation of the neural network denoisers that needs to be addressed in the future
arises from the fact that the size of the input images should always match the network’s
input size. This means that all the images should consist of the same number of sampling
points and the same number of frequencies. For this reason, methods to address this issue,
such as zero-padding and interpolation, should be tested [131].

3.3. Machine Learning for Temperature and Strain Predictions Directly from the Brillouin
Gain Spectrum

Machine learning has also been used to extract temperature directly from BGSs.
Azad et al. [132,133] and Wang L. et al. [134] proposed a signal post-processing method
based on ANNs to predict temperature without extracting the BFS. First, an ANN was
trained based on the normalized BGS corresponding to different temperatures. The training
dataset consisted of ideal synthetic data with varying linewidths. We note that in contrast
to other training datasets, Azad et al. [133] did not add noise to the ideal synthetic data.

The authors trained separate ANNs for BGSs recorded using different frequency
scanning steps. This results from the fact that the set frequency scanning step affects the
number of data points of the BGS, and thus, ANNs with different nodes in the input layer
are required. Figure 11 compares the performance of the ANN to that of the LCF and
cross-correlation method (XCM) when different frequency scanning steps are used. The
performance is calculated in terms of the temperature RMSE when the fiber is exposed to
controlled-temperature conditions. In general, the ANNs perform better than the conven-
tional methods, which according to the authors, is attributed to the fact that the ANNs are
trained and optimized for each frequency step separately. However, we observe that the
ANNs perform significantly better than the conventional methods when the set frequency
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step is greater than 2. These results agree with those reported by Wang J. et al. [135] and
Cao et al. [136] and indicate that ANNs can handle sparse data very well.
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Madaschi et al. [137] proposed a similar ANN for direct temperature extraction that
could handle BGS acquired with different frequency scanning steps. Specifically, they
applied spline interpolation based on the BGS, so that the data points of the BGS are equal
to the number of nodes in the input layer of the ANN. This solution increases the flexibility
of the ANN, but according to the authors, the extracted temperature accuracy of this
approach is slightly lower than the temperature accuracy of the separately trained ANNs.
We note that a BGS interpolation has also been proposed and tested by Liang et al. [92] for
BFS extraction as mentioned in the previous chapter.

Azad et al. [133] and Madaschi et al. [137] highlighted the improvement in terms of
computation time that the ANNs offer in comparison to the conventional methods. Both
reports agree that the temperature extraction through ANNs can be even two orders of
magnitude faster than the LCF approach.

Li et al. [138] studied the impact of the training dataset on the temperature accuracy
of the ANNs. Specifically, they created three different training datasets using synthetic
BGS consisting of (a) Lorentzian functions, (b) Pseudo-Voigt functions and (c) Pseudo-Voigt
functions with artificial noise. The authors tested the three different trained models on data
collected by a BOTDR system and concluded that the model trained with noisy Pseudo-
Voigt functions delivered the most accurate temperature predictions. However, because
the shape of the BGS that is obtained by systems that are based on pump pulses, such as
BOTDR and BOTDA, depends on the pump pulse power and width [88,139], a general
conclusion cannot be drawn.

The implementation of ANNs for temperature extraction has been also studied by
other research groups [123,140–144]. For example, Wang M. et al. [141] brought together
the state-of-the-art ANN-based signal processing with the internet of things (IoT) [145] to
facilitate automatization and enhance data management and analytics.

Zhang et al. [146] extracted temperature, applying kernel extreme learning machines
(K-ELM). ELM is a special case of ANNs consisting of a single hidden layer, where the
first weight matrix is randomly initialized [147,148]. This means that only the last weight
matrix is optimized, and thus, the training is faster. K-ELM is a modified version of the
simple ELM that introduces intrinsic kernel mapping [147]. In comparison to the simple
ELM, the K-ELM algorithm does not require either the number of nodes in the hidden
layer to be specified or the feature mapping to be known. According to Zhang et al. [146],
K-ELM proved to be very robust and in comparison to the conventional LCF approach, they
slightly reduced the extracted temperature error by 0.3 ◦C and improved the temperature
extraction time by 120 times. The authors also applied simple ELM and found that they
perform significantly worse than the conventional LCF.

Apart from neural networks, SVMs have also been applied to extract temperature
from BGSs [149]. SVMs are simpler than ANNs, and fewer hyperparameters need to be
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optimized. Furthermore, the SVM average training procedure is significantly faster than
that of the ANNs. Wu et al. [149] used SVMs to extract temperature and concluded that
SVMs outperform the conventional LCF when the SNR of the data is low. At high SNR
values, the temperature accuracy of the SVM is comparable with that of the LCF method.
The authors stated that these results are very promising for long-range sensing because, at
distant positions, the SNR is significantly lower. Furthermore, the performance difference
between the SVMs and the LCF increases with the frequency scanning step. This agrees
completely with the results shown in [133] and indicates that not only the ANNs but
also the SVMs can handle sparse data very well. Wu et al. [149] also mentioned that the
training time, as well as the prediction time, is very short. As an example, the training
time of an SVM was approximately 1 s, while the prediction time of 101,500 BGSs was
less than 16 s. We note that even though the prediction times of the SVMs and the ANNs
are similar, the SVMs can be trained much faster than the ANNs. In another paper, the
same authors used PCA to further reduce the data processing time without sacrificing
temperature accuracy [150]. The results reported by the authors indicate that the PCA
reduced the prediction time by up to 20%.

Nordin et al. [151–153] proposed the use of GLM to extract temperature. GLM is a gen-
eralized form of linear regression that does not assume that the response variables (targets)
are normally distributed. Similar to the previously mentioned machine learning algorithms,
GLM is capable of predicting the temperature directly from the BGS without estimating
the BFS. The authors concluded that GLM extracts temperature faster and more accurately
than the conventional LCF. Specifically, the temperature extraction time was approximately
two orders of magnitude faster than the LCF, while the temperature error improvement
varied from approximately 0.4 ◦C to 5 ◦C, depending on the frequency-tuning step and
the temperature conditions. The authors in [151] concluded that GLM in combination
with conventional BFS extraction methods, such as LCF, results in a significant increase
in temperature accuracy even when the SNR is low. The most important characteristic of
the GLM is the easy interpretation, which arises from the algorithm’s simplicity and its
straightforward implementation.

In another publication, Nordin et al. [154] trained different machine learning algo-
rithms for direct temperature extraction and found that random forest performs slightly
better than the GLM in terms of temperature precision. We note that random forest is an
ensemble of decision trees that usually outperforms single decision trees but at the cost of
complexity [155]. The authors also applied ANNs, but surprisingly, they found that they
perform worse than the conventional LCF. This is in contrast to all the aforementioned
studies [132–134,141] that showed that ANNs outperform the conventional LCF. However,
we note that in comparison to other machine learning algorithms, such as random forest,
SVM and GLM, ANNs require, in general, much larger datasets and the hyperparameter
tuning is more complex and time-consuming. Therefore, the relatively low ANN perfor-
mance reported by Nordin et al. [154] may be attributed to an insufficient dataset or to a
not well-optimized neural network structure.

Apart from direct temperature extraction, similar machine learning approaches have
been proposed for direct strain extraction [156–160]. As an example, we mention that
Song et al. in 2020 proposed deep ANNs to detect microcracks in structural elements [156].
Even though the algorithm performed very well, in 2021 they made use of PCA and SVM
for the same purpose, asserting that the deep ANNs were difficult to implement and
interpret [158].

In comparison to the approaches presented in Section 3.1, the temperature or strain
predictions directly from the BGS represents a more compact solution and allows for
predictions based not only on the BFS but also on other features that can be extracted from
the BGS, such as linewidth and gain. Because, in many cases, these features depend on
the experimental settings, e.g., pulse width and power, most of the authors trained the
machine learning models using synthetic data, so that no relationship between linewidth
or gain and the measurand can be learned. However, we note that the use of additional
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features can potentially result in improved temperature errors, and this can be investigated
in the future.

Due to temperature and strain cross-sensitivity, the direct temperature (or strain)
extraction from the BGS can completely fail if strain (or temperature) changes occur. This is
a clear disadvantage compared to the previous approaches described in the Section 3.1, and
thus, methods to extract temperature and strain simultaneously using machine learning
have also been proposed.

Researchers used machine learning to simultaneously predict two parameters address-
ing the well-known cross-sensitivity problem. This is of great importance for accurate
temperature or strain monitoring but also for industrial applications, where simultaneous
temperature and strain monitoring is needed.

Wang B. et al. [72] proposed ANNs for temperature and strain discrimination using
a LEAF fiber. LEAF fibers are characterized by a BGS with two peaks, as illustrated in
Figure 12. These two peaks have different temperature and strain sensitivities, which means
that the two parameters could be decoupled even with the conventional equation-solving
method as described in Section 2. However, if the SNR is low, the conventional approach
comes at the cost of large errors, which does not allow for any practical application.
Wang B. et al. [72] trained the ANN with a synthetic double-peak BGS. The ANN was
tested not only on synthetic data but also on BOTDA experimental data resulting from an
optical fiber of 24 km. They concluded that ANNs provide temperature and strain RMSE of
4.2 ◦C and 134.2 µε, respectively. These temperature and strain errors were approximately
seven and five times lower than those obtained from the conventional equation-solving
method, respectively.
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Yang et al. [73] followed a similar methodology but used one-dimensional CNNs
instead of ANNs. Specifically, they used a synthetic two-peak BGS and experimental data
to train and test the CNN, respectively. They employed an approximately 20 km optical
fiber and concluded that CNNs provide a temperature and strain RMSE of 2 ◦C and 32.3 µε,
respectively.

Ruiz-Lombera et al. [71] reported on simultaneous temperature and strain sensing
in a standard optical fiber using PCA and ANN, but using a classification instead of a
regression algorithm. Specifically, the ANN was trained to predict 40 temperature and
strain classes, in total. The temperature and strain ranges were from 22 ◦C to 62 ◦C and
from 0 µε to 1536 µε, respectively. With the hyperparameters of the ANN being optimized,
the classification rate reached almost 90%. Even though the classification accuracy is high,
we have to note that the set temperature and strain steps were 10 ◦C and approximately
200 µε, respectively.

The majority of the authors estimated the performance of their machine learning
models in terms of the BFS, temperature or strain error. However, we need to note that the
reported performances do not depend only on the applied machine learning algorithm, but
on a plethora of factors, such as the experimental parameters (length of the fiber, spatial
resolution, measurement settings [161]), the error estimation methodology and metric, the
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stability of the climate chambers, the accuracy of the reference sensors, the precision of the
fiber optic stretchers, etc.

Apart from accuracy, many authors estimated the performance of their methods by
considering the prediction time. However, this criterion alone cannot be used to compare
the various reported machine learning methodologies. This limitation arises from the fact
that prediction time is influenced not only by the machine learning algorithm itself but
also by the hardware and software utilized. Factors, such as the type and number of CPU
threads, the computational power of the GPU and the machine learning framework em-
ployed (e.g., Keras, PyTorch, TensorFlow), strongly affect the prediction time [92,100,162].
Consequently, it is not reliable to compare previously employed methodologies solely
based on errors or the prediction time. Hence, it is crucial to carefully consider the context
and specific details of each study when evaluating the reported performance of machine
learning algorithms.

To enhance the understanding of the appropriate application and suitability of each
algorithm, a comprehensive table is provided below (Table 1), outlining the strengths and
weaknesses of the employed machine learning methodologies.

Table 1. Comparison of the strengths and weaknesses of the applied machine learning algorithms.
The last column provides the references that apply the corresponding machine learning algorithms.

Algorithm Strengths Weaknesses References

ANN/CNN Handle complex patterns and
relationships in large data

Time-consuming training,
requires a large amount of data

[68,92,97–99,101–103,116,123–
127,132–

138,141,146,156,160,161,163,164]

KNN No training is required, simple
and intuitive Relatively slow predictions [114,115]

SVM Fast training and predictions,
works well with small datasets Not suitable for large datasets [107,149,150,158,165,166]

GLM Easy to interpret Difficult to handle non-linear and
complex data [144,151,153,154]

4. Machine Learning Applied in Brillouin Frequency Domain Sensors

This section discusses the advances in machine learning-assisted BOFDA sensors,
in particular. In contrast to BOTDA, where the pulse response is measured directly, in
BOFDA, the pulse response is retrieved by applying inverse fast Fourier transformations to
the obtained complex transfer function, as described in Section 2. This has the advantage
that no ultra-fast electronics are required, which, on the one hand, has a positive impact
on the system’s cost but, on the other hand, increases the measurement time significantly.
For this reason, a machine learning method for time-efficient BOFDA measurements was
proposed [69,167].

BOFDA measurements can be shortened by reducing the number of averages, but this
comes at the cost of a lower SNR. Figure 13 shows the relationship between temperature
error resulting from the conventional LCF method and measurement time (or the number
of averages). The dashed red line corresponds to the CNN performance based on low
SNR data obtained using 4 min measurements. The results show that the LCF reaches the
performance of the CNN model after 36 min, which indicates that the application of the
CNN resulted in a nine-fold measurement time reduction. We note that these results agree
with other studies that showed that CNNs are tolerant to noise [68,99]. Furthermore, the
long measurement time is a drawback of BOFDA when compared to BOTDA, and thus,
the time reduction is of great importance for its wider application in the future.
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Besides the measurement time, the problem of cross-sensitivity is also of great impor-
tance towards a wider use of BOFDA in industrial applications in the future, and thus,
Karapanagiotis et al. [70] proposed simple machine learning to discriminate temperature
and strain in standard telecom optical fibers. The use of these fibers opens the way for
fiber optic monitoring using the already existing laid-out fiber optic networks. The authors
demonstrated a BOFDA system of high SNR to obtain the multipeak spectrum of the legacy
standard SMF28® (Corning®) optical fiber. The multipeak spectrum of the standard fiber is
not easily obtainable, and thus, a high SNR is required [168]. That spectrum is characterized
by three secondary peaks, of which the amplitude is more than two orders of magnitude
lower than the fundamental. The BFSs were extracted using the conventional LCF method,
as described in the Section 2. Ridge regression [155] ,which is nothing more than a simple
polynomial regression, including a penalty term to avoid overfitting, was used. The algo-
rithm managed to capture nonlinearities in the data and delivered temperature and strain
errors of 2.6 ◦C and 58 µε, respectively. We note that both the training and test datasets
consisted of experimental data, and the errors were calculated using cross-validation. Gaus-
sian process regression (GPR) [169], which is based on Bayesian statistics was also used to
extract temperature and strain and delivered 22% lower temperature and strain errors than
the ridge regression. We note that the optical fiber’s total length was approximately 400 m,
and the temperature and strain errors resulting from the equation-solving method were
5 ◦C and 114 µε, respectively. The proposed methodology is shown in Figure 14.
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Apart from temperature and strain discrimination, temperature and relative humidity
effects were also decoupled by using a humidity sensitive Polyimide (PI)-coated optical
fiber [170,171]. We note that humidity causes the PI coating to sweal, which in turn,
induces strain to the optical fiber, and thus, the BFS changes. Due to the high SNR of the
system, the authors managed again to obtain a multipeak spectrum and followed a similar
methodology with [70]. The difference lies in the fact that the temperature and humidity
effects could not be separated by using only the BFS, and thus, the linewidths were also
employed. Algorithms, such as ridge regression, decision trees and ANNs, were used.
ANNs seemed to outperform the other algorithms delivering temperature and relative
humidity errors of 0.9 ◦C and 6.5%RH, respectively.

Unlike the previous machine learning approaches for temperature and strain discrimi-
nation in BOTDA sensors [71–73], which used the entire BGS as input, these last papers
employed, as inputs, spectral parameters extracted via LCF. The advantage of extracting
features is that they render the interpretability easier. For example, in [171] the authors used
backward feature elimination [155] to study the feature importance and found that only
the features extracted from the first two peaks contributed to the algorithm’s decision. This
finding indicates that half of the spectrum does not need to be obtained, which positively
affects the measurement time. However, we need to mention that the feature extraction via
LCF may be challenging in cases of low SNR.

We note that these methods, as described above, can potentially be combined so
that simultaneous multiparameter sensing, including temperature, strain and humidity,
is demonstrated. Specifically, this could be achieved by applying machine learning and
using the two-fiber configuration, including an acrylate-coated fiber and a PI-coated fiber,
placed in parallel and close to the other. With the acrylate-coated fiber measuring strain
and temperature and the PI-coated fiber measuring humidity, temperature and strain, a
multiparameter Brillouin DFOS could be feasible.

The aforementioned algorithms can also be employed in other Brillouin DFOS systems
(e.g., BOTDA and BOCDA) providing that those sensors are able to record a high SNR
multipeak BGS similar to the one shown in Figure 14. This results from the fact, that the au-
thors in [70,170,171] made use of spectral properties that can be extracted via conventional
LCF in all Brillouin DFOS systems.

Time domain systems are more commonly employed in both research and industry
compared to frequency domain systems. As a result, the majority of machine learning
approaches have been primarily implemented in the context of time domain systems.
Nevertheless, it is worth noting that in many instances, machine learning methodologies
employed in time domain systems can be readily adapted and applied to frequency domain
systems as well.

5. Conclusions and Future Perspectives

We reviewed machine learning approaches applied in Brillouin DFOSs. In recent
years, Brillouin DFOSs have been greatly impacted by the emergence of machine learning.
This is attributed to the opportunities for advanced signal processing that the sensing
data provide, the already reported successful applications of machine learning in other
fields of research and the advancements in computational capabilities with GPU. Moreover,
machine learning offers solutions that do not significantly increase the cost of the system,
except for a small increment in the case of using a GPU.

Machine learning algorithms have been employed to the signal processing of the Bril-
louin DFOS to extract features (such as BFSs and linewidths) or directly predict temperature,
strain or humidity from the BGS. Due to the problem of cross-sensitivity in optical fibers,
machine learning approaches that output one parameter (e.g., temperature) are prone to
errors, if the other parameters (e.g., strain or humidity) are altered. To this end, machine
learning approaches for decoupling two parameters even in standard optical fibers, have
been reported. Furthermore, machine learning has been applied for denoising, and reports
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showed that they can potentially outperform well-known denoising algorithms, such as
BM3D and NLM.

While most of the machine learning approaches can be applied to Brillouin DFOS
systems, regardless of whether they operate in the time or frequency domain, there are some
approaches that have been specifically tailored to specific systems. For instance, machine
learning has enabled a simple BOTDA system to achieve the same spatial resolution as
a more complex DPP-BOTDA setup. Additionally, in BOFDA sensors, machine learning
contributed to a significant reduction of the measurement time, which is expected to render
BOFDA more attractive for applications in the field.

In the future, machine learning can also be combined with other newly developed
signal processing techniques. Recently, compressed sensing, for example, has gained
increasing attention for reconstructing signals that have been sampled below the Nyquist
frequency [172]. Compressed sensing has already been applied in Brillouin DFOSs to
reduce the recorded data and consequently, to shorten the measurement time [173–175]. We
believe that compressed sensing in combination with machine learning will contribute to the
further development of Brillouin DFOSs. We note that the combination of machine learning
and compressed sensing is already known in the literature as compressed learning [176].

In this paper, we highlighted the achievements that machine learning has brought in
Brillouin DFOSs, and we also clarified the weaknesses, so that the limits will be pushed
even further in the future. Among the most important weaknesses of the proposed method-
ologies is related to the interpretability. However, we believe that with the help of new
techniques that recently shed light on complex machine learning algorithms, we will
soon start witnessing an increasing number of interpretable machine learning-assisted
Brillouin DFOS systems. The interpretation of the models will render the hyperparameter
optimization process more efficient and will facilitate the release of industrial machine
learning systems. We hope that this review will contribute towards further investigations
in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN artificial neural network
BOTDA Brillouin time domain analysis
BOTDR Brillouin time domain reflectometry
BOFDA Brillouin frequency domain analysis
BOFDR Brillouin frequency domain reflectometry
BOCDA Brillouin correlation domain analysis
BOCDR Brillouin correlation domain reflectometry
BFS Brillouin frequency shift
BGS Brillouin gain spectrum
BM3D block-matching and 3D filtering
CNN convolutional neural network
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CPU central processing unit
DOFS distributed fiber optic sensors
ELM extreme learning machine
GLM generalized linear model
GPR Gaussian process regression
GPU graphics processing unit
IFFT inverse fast Fourier transformation
IoT internet of things
K-ELM kernel extreme learning machine
KNN k-nearest neighbors
LCF Lorentzian curve fitting
LEAF large effective area fiber
MSE mean square error
NLM non-local means
PCA principal component analysis
RF random forest
RMSE root mean square error
SNR signal-to-noise ratio
SVM support vector machines
WD wavelet denoising
XCM cross-correlation method
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18. Stajanca, P.; Mihai, L.; Sporea, D.; Neguţ, D.; Sturm, H.; Schukar, M.; Krebber, K. Effects of gamma radiation on perfluorinated
polymer optical fibers. Opt. Mater. 2016, 58, 226–233. [CrossRef]

19. Stajanca, P.; Krebber, K. Radiation-Induced Attenuation of Perfluorinated Polymer Optical Fibers for Radiation Monitoring.
Sensors 2017, 17, 1959. [CrossRef]
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