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A B S T R A C T

Regardless of the experimental care practiced in acquiring X-ray computed tomography (XCT) data, artifacts
might still exist, such as noise and blur. This is typical for fast XCT data acquisitions (e.g., in-situ investigations),
or low-dose XCT. Such artifacts can complicate subsequent analysis of the data. Digital filters can moderately
cure extensive artifacts. The selection of filter type, intensity, and order of application is not always straight-
forward. To tackle these problems, a complete sequential multilevel, multi-scale framework: BAM SynthCOND,
employing newly designed deep convolutional neural networks (DCNNs), was formulated. Although data con-
ditioning with neural networks is not uncommon, the main complication is that completely artifact-free XCT
data for training do not exist. Thus, training data were acquired from an in-house developed library (BAM
SynthMAT) capable of generating synthetic XCT material microstructures. Some novel DCNN architectures were
introduced (2D/3D ACEnet_Denoise, 2D/3D ACEnet_Deblur) along with the concept of Assertive Contrast
Enhancement (ACE) training, which boosts the performance of neural networks trained with continuous loss
functions. The proposed methodology accomplished very good generalization from low resemblance synthetic
training data. Indeed, denoising, sharpening (deblurring), and even ring artifact removal performance were
achieved on experimental post-CT scans of challenging multiphase Al-Si Metal Matrix Composite (MMC) mi-
crostructures. The conditioning efficiencies were: 92% for combined denoising/sharpening, 99% for standalone
denoising, and 95% for standalone sharpening. The results proved to be independent of the artifact intensity. We
believe that the novel concepts and methodology developed in this work can be directly applied on the CT
projections prior to reconstruction, or easily be extended to other imaging techniques such as: Microscopy,
Neutron Tomography, Ultrasonics, etc.

1. Introduction

1.1. Background and motivation

Quantitative analysis of X-ray Computed Tomography (XCT) data
can be challenging due to post-reconstruction artifacts, such as noise,
blur, streaking, and ring artifacts [1–4]. Typically, the correction of
such artifacts is a tradeoff between resulting noise, blurring, low con-
trast at interfaces, and spatial resolution [2,5]. The problem is more
apparent when the number of projections is limited, or some projec-
tions are corrupted. It becomes even more challenging if one does not
have the possibility to repeat the experiment/measurement or if the
original projections are missing. All the above cases are highly probable

in the case of in-situ investigations, where XCT projections are acquired
faster than usual, due to sampling requirements, which can lead to
photon starvation [1–3]. Thus, a final reconstruction of low quality is to
be expected [5,6]. Standard digital filters such as the Mean, the Gaus-
sian, and the Median filters are inefficient for highly corrupted data. In
such cases, their application can result in structural losses and edge
suppression [4,6]. This loss of information occurs both when applied on
the sinograms and directly on the reconstructions (e.g., smearing out of
finer details occurs due to excessive smoothing). Various other more
sophisticated adaptive filtering algorithms for noise reduction have
been proposed and used over the years [1–3,5–8], paired with the
conventional Filtered Back-Projection (FBP) method. For the task of
ring artifact and stripe removal, various Fourier filters and wavelets
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have also been employed [4,9–11]. However, all the above filters have
limitations: a precise edge restoration on highly corrupted datasets is a
major challenge. Furthermore, wavelets are not universally applicable
and typically require fine-tuning. More recently, some of the above
barriers have been practically removed with the application of iterative
reconstruction algorithms as an alternative to FBP. An example of this
can be found in the works of Magkos et al. (DIRECTT reconstruction
algorithm) in [12,13]. As it was shown, cone-beam artifacts can sig-
nificantly be suppressed, even when fewer projections are available. A
higher reconstruction quality can be achieved compared to the standard
FBP, at the expense of computational effort and time. Iterative algo-
rithms have the same limitations, as they cannot regenerate lost
structural information in highly corrupted data. On the other hand,
deep neural networks possess regenerative capabilities. Furthermore,
they can generalize well in image conditioning if properly trained. Such
training does not even require fine-tuning based on a certain artifact
intensity (or orientation). The exploitation of artificial neural networks,
and more specifically Deep Convolutional Neural Networks (DCNNs)
(which are superb in image analysis), to tackle XCT data conditioning
problems is not novel. In the past decade, they have extensively been
used for Low-Dose XCT (LDXCT) data conditioning (but mostly in the
medical sector). An excellent review on the subject by Kulathilake et al.
can be found in [14], in which various artificial intelligence-based
techniques are presented for XCT data conditioning (i.e., denoising,
deblurring, etc.) As it was concluded, the major issue in both supervised
and unsupervised approaches is the acquisition of artifact-free data for
training. Typically, these come from Normal Dose XCT Data (NDXCT)
[15], which still contain some artifacts. Furthermore, selecting suitable
training datasets is a tough and highly empirical challenge as datasets
are rarely interchangeable. Lastly, it has been reported that different
architectures and hyperparameters can impact the performance of
DCNNs as well. Typically, supervised approaches are superior (com-
pared to unsupervised and self-supervised approaches) [14–16]. That is
because the optimization of the parameters within the DCNN

mathematical model (architecture), is achieved based on the calculated
error between the DCNN’s current output and the required ground truth
output (i.e., input: corrupted image → DCNN → current output image
-vs- ground truth: the respective equivalent to the input artifact-free
image). However, real XCT training datasets (corrupted) and their re-
spective equivalent artifact-free data are hard to obtain. In un-
supervised learning, input images are dissimilar to the ground truth
images, therefore overall performance is decreased [14,15]. Moreover,
in current studies, each artifact type has been tackled separately (i.e.,
noise, or blur, or ring artifacts).

In this work, we present a multilevel and multiscale deep learning
framework (BAM SynthCOND) employing novel DCNNs, trained in a
supervised manner on low resemblance (if compared to experimental)
synthetic materials XCT data, for treating noise and blur in experi-
mental XCT reconstructions. We also show that by denoising the XCT
data we also reduce ring artifacts. We applied our conditioning methods
directly to the reconstructions and not to individual projections for the
sake of generality. In the first case, the number of samples (i.e., the
numerous projections) is large and, therefore, any remaining artifacts
after conditioning, can easily be smeared out by a sophisticated itera-
tive reconstruction algorithm. To our knowledge, there is virtually no
public literature on materials XCT data conditioning with deep learning
techniques, in which synthetic XCT training data are employed as the
ground truth. Novel DCNNs architectures are introduced. Appropriate
training and forwarding strategies are proposed for a successful training
generalization when synthetic XCT data are employed. It is shown that
this leads to successful conditioning of experimental XCT data. The
term forwarding strategy refers to: the slicing method of the testing data
(to be conditioned) into smaller batches, the subsequent passage of
these batches through the working DCNNs, and their recombination
into the final conditioned XCT data volumes. In the case of a multi-view
approach/slicing, the recombination into a single final volume is per-
formed with an appropriate fitting function that combines the condi-
tioned views. An example of the forwarding strategy pipeline is the

Fig. 1. Research Approach Pipeline and respective sections for each step.
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following: rotate/permute initial volume in various angles/planes
creating multiple new volumes (views), slice these volumes into bat-
ches, condition the batches, combine the conditioned batches according
to their reference volume, rotate/permute each conditioned volume
back to initial position, combine the resulting conditioned volumes into
single volume with a fitting function.

1.2. Research approach outline

The research steps undertaken are outlined below and graphically in
Fig. 1:

As experimental artifact-free XCT training data are very hard to
obtain, synthetic XCT data were instead employed for training.
These were generated to mimic XCT reconstructions, both in terms
of structural resemblance and grayscales. Two synthetic training/
validation/testing dataset groups were produced for the denoising
and deblurring cases, respectively.
2D and 3Dmultiscale, multilevel, in-house designed DCNN architectures
were developed to denoise and deblur XCT reconstructions. These were
trained and validated with the synthetic XCT training/validation data-
sets. Different DCNN architectures were utilized for each task.
The best performing input dimension (2D or 3D) for the built DCNNs
and the most suitable forwarding strategies were identified for each
case individually (denoising, deblurring), based on the conditioning
performance on artificially corrupted synthetic XCT data (i.e., the
synthetic testing datasets). For the multi-view case, the fitting
functions investigated were the mean or median functions.
Based on the above selection, it was assessed whether the selected
denoising/deblurring DCNNs could consistently perform irrespec-
tive of the initial noise and blur levels. This task was performed by
assessing the conditioning performance on progressively increasing
corrupted synthetic XCT data (new synthetic testing dataset, noise
and blur combined).
As a last conditioning step (final pass), it was examined whether a
low-intensity Non-Local Means (NLM) filter [7,8] could further
improve the overall performance, formulating the following se-
quential conditioning framework: {Deep Denoising + Deep De-
blurring + NLM filter}.

Lastly, the established conditioning framework (i.e., best per-
forming input dimension and forwarding strategy for denoising
and deblurring, respectively) was tested against experimental XCT
(testing) datasets to determine whether the performance was
comparable to the conditioning performance based on synthetic
XCT testing datasets.

2. Material description

We used available XCT datasets of AlSi12CuMgNi metal matrix
composites (MMC) reinforced with: {0%vol Al2O3 short fibers, 15%vol
SiC particles} and {7%vol Al2O3 short fibers, 5%vol SiC particles}. Cast
near eutectic Al-Si alloys are the typical materials utilized by the au-
tomotive industry for engine pistons [17–19]. Presently, interest grows
in the aerospace industry concerning their suitability as a potential
substitute to the broadly used unreinforced Al and Ti alloys [19,20],
with possible applications such as: frames, aerials, and joining ele-
ments. The addition of the Si phase brings high fluidity to the melt,
while transition elements such as Cu and Ni, encourage the formation of
dense and steady aluminium intermetallics (IMs). The latter and the
eutectic Si phase establish a 3D interconnected network within the al-
loy's microstructure [19,21]. Some mechanical properties (e.g.,
strength) are enhanced by adding ceramic particles and/or short
ceramic fibers as reinforcements [17–21]. The microstructure of our
MMC consists of five phases: (Al matrix, eutectic Si, IMs, short ceramic
fibers, and ceramic particles), or six phases if voids and cracks are in-
cluded. The material was produced by squeeze casting. The hybrid
preform, where the molten alloy was infiltrated, had a mat of planar-
randomly oriented (xy-plane) reinforcing fibers and the reinforcing
particles randomly distributed. The detailed experimental procedure
and equipment used for the Synchrotron XCT imaging are described in
[19]. Various measurements were made to have datasets with various
artifact intensities. In Fig. 2, a 512× 512-pixel cross-section of a high-
quality XCT reconstruction of the material is displayed. We notice that
some phases possess comparable X-ray attenuation coefficients (parti-
cles, fibers, Al matrix, and some intermetallics).

3. Method development

3.1. Synthetic Al-Si MMC microstructure generation

In order to generate suitable training data for the deep neural net-
works, the in-house synthetic XCT MATLAB library (BAM SynthMAT) by
Tsamos et al. [17] was employed. The microstructures were generated to
mimic XCT data in terms of structural resemblance and simulated
grayscales. The synthesis process is presented in detail in [17]. As we use
the same material, identical statistics were adopted from [17] to syn-
thesize eight 512×512×512 (voxel) Al-Si MMCmicrostructures. Out of
these, seven were randomly selected to generate the training/validation
data, while the last one was reserved for testing (synthetic testing data).

3.2. Augmentations on all training and validation synthetic XCT datasets
(Denoising and Deblurring cases)

In [17], it is suggested that± 10% brightness and contrast aug-
mentations should be used on the synthetic training/validation data.
The reason is that the experimental grayscale distributions cannot be
precisely replicated, irrespective of the care taken to synthesize ar-
tificial XCT data for training. Since synthetic data incorporate only a
few grayscales to represent the various microstructural phases, it was
proven that the augmentations mentioned above could ensure good
generalization with knowledge gained from synthetic data and,
therefore, satisfactory performance of the DCNN on experimental
datasets. In this work, we increased the intensity of these augmen-
tations to± 20% as we found this more suitable for conditioning
problems.

Fig. 2. XCT reconstruction slice of the AlSi12CuMgNi MMC xy-plane view).
The different phases of the microstructure (see text) are indicated.
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Fig. 3. 2D Denoising training/validation sub-images generated from the synthetic XCT data. X: Input images with added Gaussian noise (1: brightness, 2: contrast, 3:
blurring, 4: noise augmentations). Y: Ground Truth images without noise (1: brightness, 2: contrast, 3: blurring augmentations).

Fig. 4. 2D Deblurring (Sharpening) training/validation sub-images generated from the synthetic CT data. X: Input images with added Gaussian blur or average blur
(1: brightness, 2: contrast, 3: blur augmentations). Y: Ground Truth images without blur (1: brightness, 2: contrast augmentations).
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3.3. Training and validation synthetic XCT datasets for rectifying noise

The synthetic data were initially artifact-free, but certain synthetic
artifacts were introduced depending on the target network (denoising
or deblurring DCNN). For the denoising case, the ground truth image
of experimental XCT data is not always sharp. Therefore, in addition
to the above augmentations (described above in 3.2), two random
blurring types and intensities were introduced on both the training
and validation data. Gaussian or average blur was applied with a
randomly varying filter radius (sigma = 0–5). This helped training a
denoising neural network to eliminate noise in both blurry and sharp
images. The resulting images were chosen as the ground truth.
Finally, Gaussian noise with randomly varying standard deviation
(0−20) was applied (8-bit image range: 0–255) to the ground truth
images. The negative values emerging after the application of the
noise window were nulled. The added noise type and the brightness
augmentations effectively simulated Poisson noise, the dominant
noise present in Low Dose XCT (LDXCT). The resulting noisy data
were used as input to the 2D and 3D denoising nets. Examples are
displayed in Fig. 3.

3.4. Training and validation synthetic XCT datasets for rectifying blur

For the deblurring case, no noise was added to the synthetic data, as
it was assumed that blurry input data were thoroughly denoised or
noise-free. Therefore, only brightness and contrast augmentations were
adopted. The input data were generated by applying Gaussian or
average blur with randomly varying intensities, precisely as in the case
of the denoising training data. Examples are illustrated in Fig. 4.

3.5. 2D and 3D training and validation data slicing

2D and 3D training/validation datasets were generated from the
seven synthetic volumes. The input size for the 2D network(s) was set as
512× 512 pixels (sub-image). The slicing was performed along the
plane of the fibers (xy in Fig. 3 and Fig. 4), resulting in 7×512=3584
(512× 512 pixels) 2D images. From these, 3136 (87.5%) were ran-
domly selected as training data and 448 (12.5%) as validation data. The
input size for the 3D network(s) was set as 64×64×64 voxels (sub-
volumes). The slicing was performed with a stride = 56, consistent in
all x, y, z directions, resulting in 7× 93 =5103 (64× 64× 64) 3D
images. From these, 4465 images (87.5%) were randomly selected as
training data, and the remaining 638 images (12.5%) as validation
data. Lastly, the previously discussed augmentations and problem-
specific noise and/or blur were introduced accordingly during the sli-
cing to each sub-volume and sub-image in a random fashion (i.e., sli-
cing 1st, brightness/contrast augmentations 2nd, problem-specific
noise and/or blur augmentations 3rd). This effectively doubled the
number of sub-volumes and sub-images into pairs (X: inputs, Y: ground
truths). The whole process is summarized in Table 1.

3.6. Denoising and deblurring convolutional neural networks

3.6.1. Proposed architectures introduction
Two different in-house architectures were designed, incorporating

the latest advancements in image analysis with Deep Learning. One was

Table 1
Training and Validation Data Summary.

Fig. 5. < 2D/3D ACEnet_Denoise> Multiscale Global Architecture, including the proposed final REEL. Input 2D: (512, 512, 1). Input 3D: (64, 64, 64, 1).
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responsible for rectifying noise and one for sharpening blur. Both ar-
chitectures were implemented into 2D and 3D versions. Thus, in total,
four deep convolutional neural networks were built. All architectures
incorporated multiple scales, each responsible for tackling the problem
independently at different image scales (1/4, 1/2, 1/1). However, the
scales were arranged in a different order in the two architectures.
Moreover, a proposed final same-scale (1/1) Remaining Error
Enhancing Level (REEL) employing the novel Assertive Contrast
Enhancement (ACE) training strategy, was implemented in both ar-
chitectures. This level was responsible for providing a further rectifying
pass to the final output. All scales/levels were trained sequentially with
individual Mean Squared Error Loss (MSE) functions. Where applicable,
the output of a previously trained scale(s) was(were) upscaled (or
downscaled) and concatenated with the input of the next scale/level.
This was inspired by Karras et al. multiscale approach in StyleGAN net
[22]. Finally, all architectures allowed residual/skip connections, sub-
tracting each scale/level input from the output. This effectively forced
the networks to identify and subtract the noise or blur from the cor-
rupted image instead of extracting the ground truth image from the
corrupted one. This approach has previously been proven to produce
better results and faster convergence than non-residual nets [23]. Al-
though the literature offers a vast number of good architectures for data
conditioning, to the best of our knowledge there are no architectures
combining all the features we needed to tackle our problem (i.e.,
multiscale training, residual connections, dilated convolutions,

advanced activation functions). In addition to combining such features,
we propose novel ACE blocks. Thus, we introduce a completely new
type of deep neural nets: i.e., the ACEnets.

3.6.2. The 2D/3D denoising network main architecture (2D/3D
ACEnet_Denoise)

The 2D/3D Denoising network(s) consists of 3 different scales, se-
quentially linked in ascending order, and the proposed REEL linked at
the end: (1/4 → 1/2 → 1/1 → REEL). The transition between the scales
is achieved with Average Pooling and Unpooling (Upsampling) layers.
Skip connections are established between every scale/level input and
output. The design is modular as each scale sub-architecture (Sub-
Architecture A) is identical across all scales. However, the REEL carries
its distinct sub-architecture (Sub-Architecture R). The global multiscale
architecture of the proposed 2D/3D Denoising networks(s) is graphi-
cally illustrated in Fig. 5.

3.6.3. The 2D/3D deblurring network main architecture (2D/3D
ACEnet_Deblur)

Similarly, the 2D/3D Deblurring network(s) consists of 3 different
scales. However, unlike the Denoising network, these are sequentially
linked in descending-ascending order: (1/1 → 1/2 → 1/4 → 1/2 → 1/1
→ REEL), intuitively resembling a UNet architecture [24]. The transi-
tion between the scales is performed again with Average Pooling and
Unpooling layers. In addition, the 1/2 and 1/1 scales in the ascending

Fig. 6. < 2D/3D ACEnet_Deblur> Multiscale Global Architecture, including the proposed final REEL. Input 2D: (512, 512, 1). Input 3D: (64, 64, 64, 1).
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chain receive input via concatenation both from the previous scale (in
the sequential order) and their descending chain equivalents (1/2 and
1/1) scale outputs. Furthermore, the residual feedback in these two
scales is received from their descending chain equivalents (1/2 and 1/
1) scale outputs, and not from their inputs. All other scales have the
regular residual skip connections previously discussed. The sub-archi-
tecture (Sub-Architecture B) of each scale is the same across all scales as
before. The global multiscale architecture of the proposed 2D/3D De-
blurring networks(s) is illustrated graphically in Fig. 6.

3.6.4. The remaining error enhancing level (REEL) - assertive contrast
enhancement (ACE)

In any mathematical optimization problem, further improvement
becomes progressively challenging as the error gets smaller.
Convolutional neural networks average the training error across the
whole image to update their parameters during backpropagation
(training). This average operation is a desirable generalization effect.
From our experience, this can result in an excellent performance in the
bulk, single gray-level regions, of an image, and a slightly inferior

Fig. 7. The Sub-Architecture A (present within the 2D/3D Denoising networks).

Fig. 8. The Sub-Architecture B and Sub-Architecture R (present within the 2D/3D Deblurring networks and present within all networks respectively).
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performance at the interfaces. The reason is that bulk regions are
usually dominant in an image. Therefore, their contribution to the
overall error minimization is significantly amplified compared to the
interface regions. As the name suggests, the proposed REEL tackles this
issue by amplifying the remaining errors by means of Assertive Contrast
Enhancement training (ACE). This takes place on the output of the last
(1/1) scale in all nets and on the ground truth image. More specifically,
the last scale output (I1) and ground truth (Ig1) images contrasts are
increased by a factor of 50, Equations: (1) and (2), respectively, before
being fed as (I2) and (Ig2) into the REEL's sub-architecture and loss
function, respectively.

= × +I I I I( ) 502 1 1 1 (1)

= × +I I I I( ) 50g g2 1 1 1 (2)

= +I I I I( )/504 3 1 1 (3)

We found that this approach (ACE training) further increases the
final image quality without effectively increasing the computational
effort. Finally, during the forward pass, the REEL's output image (I3)
contrast is reduced by a factor of 50 (I4) back to the initial level, (Eq.
(3)). The contrast center (I1 ) required for the calculations is evaluated
from the average pixel/voxel intensity from across the whole image (I1)
for all cases. The REEL's main building blocks are illustrated in Fig. 5
and Fig. 6.

3.6.5. The denoising network sub-architecture A
Sub-Architecture A consists of parallel stacks of normal and dilated

convolutions, with the output of the convolutional stacks being con-
catenated every three blocks. Moreover, two residual skip connections
are established at the end of the parallel stacks (which are

Fig. 9. Back propagation of the error (parameters update) during the (1/1) scale training in the 2D/3D Denoising Nets.

Fig. 10. The 2D_MultiView_(Mean or Median) Forwarding Strategy Workflow. Note that for 2D_SingleView the strategy is similar but contains only the xy plane and
the 0° rotation.
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supplementary to the residual connection in the global architecture).
The padding is adjusted accordingly to maintain the same image size
after every convolution (same border mode). The normal and dilated
convolutions are performed with a kernel shape 2D:(3, 3) and 3D:(3, 3,
3). The dilation (where applicable) and stride factors are set as 2 and 1,
respectively, for all directions. Every convolution block is followed by a
batch normalization block and an activation function (forming com-
posite blocks), apart from the convolutions before the residual blocks.
The batch normalization block decay rate and epsilon parameters are
set as 9e-1 and 1e-4, respectively. The adopted activation function is
Swish [25] for its continuity and superiority compared to the ReLU
function. The Sub-architecture A and the implemented output channels
for each convolution are shown graphically in Fig. 7.

3.6.6. The deblurring network sub-architecture B
The Deblurring networks' Sub-Architecture B consists of only se-

quentially stacked normal composite blocks (normal composite block:
normal convolution, batch normalization, and activation function). The
kernel shapes vary from 2D:(1, 1) and 3D:(1, 1, 1) to 2D:(7, 7) and 3D:
(7, 7, 7). As before, the padding is adjusted accordingly to maintain the
same image size after every convolution. The batch normalization
parameters and employed activation function are the same as Sub-
Architecture A. The exact Sub-Architecture B and the implemented
output channels for each convolution are shown in Fig. 8.

3.6.7. The REEL sub-architecture R
The REEL's Sub-Architecture R is comparable to Sub-Architecture B.

However, the employed convolutional kernel shapes vary from 2D:(1,
1) and 3D:(1, 1, 1) to 2D:(9, 9) and 3D:(9, 9, 9). The exact Sub-
Architecture R and the implemented output channels for each con-
volution are shown in Fig. 8.

3.6.8. Training strategy and parameters
As previously discussed, all network individual scales/levels were

trained sequentially (one at a time) with independent MSE Loss func-
tions. When applicable, they received further input from the previous
(already trained) scale. Moreover, only the scale/level parameters
being trained were updated during backpropagation. This strategy is
illustrated in Fig. 9, where the (1/1) scale of the 2D/3D Denoising

Fig. 11. The 3D_MultiView (Mean or Median) Forwarding Strategy Workflow. Note that for 3D_SingleView the strategy is similar but contains only the 0° rotation
(and no fitting function).

Table 2
Selection of best Denoising/Deblurring Neural Network and Forwarding Strategy combination (Green: Best metric value, Red: Worst metric value).

Table 3
Combined Denoising and Deblurring performance assessment of purposedly
corrupted Synthetic XCT volume with increasing 3D Gaussian Blur and
Gaussian Noise. SSIM metric: Conditioned Output -vs- Artifact-Free Synthetic
XCT Volume.
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Networks is virtually exemplarily trained. All networks were designed
and trained with Sony's Neural Network libraries [26] on a workstation
equipped with a GeForce RTX 3090, a Pentium i7 CPU, and 32 GB of
memory. The ADAM algorithm [27] was chosen as the optimizer
(parameters: Initial Learning Rate/Alpha = 1e-4, Beta1= 0.9, Beta2=
0.999, updated every iteration), and the selected input batch size was 8.
The Learning Rate (LR) was updated exponentially at every epoch with
a Learning Rate Multiplier: LRM=0.92 (i.e., LR = LR_0× (0.92epoch)).
Furthermore, a random shuffling strategy was adopted for the training
datasets on each epoch. Finally, the maximum number of epochs was
set as 100. Both training and validation errors were recorded, but the
final learnable parameters were taken from the epoch that minimized
the validation error.

4. Testing on purposedly corrupted synthetic XCT data: results
and discussion

4.1. Generality on the quality metrics

In this section, the designed networks are firstly tested as stand-
alone applications and subsequently combined in a sequential frame-
work (Denoising + Deblurring). The reserved eighth synthetic XCT
volume is employed for the task. The metrics used for the assessment
are the Structural Similarity Index Measure (SSIM) [28], the Histogram
Entropy (HE) [29,30], and the quantitative (0−1) Blur Metric (BM) by
Crété -Roffet et al. [31]. SSIM is a well-established [34–36] full-re-
ference metric for which the output quality of the conditioned data is

Fig. 12. Conditioning results for the least (SA) and most (SD) corrupted synthetic XCT volumes. Sequential application of 2D denoising and 2D deblurring networks
with the 2D_MultiView_Median forwarding strategy.

Fig. 13. Application of a NLM filter with varying intensity: sigma =1–10, and constant smoothing factor = 1. SSIM and HE values on the conditioned (denoised and
deblurred) Synthetic XCT: SD Dataset.
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based on the similarity with the corresponding artifact-free ground
truth (0–1: 1 indicate 100% similarity). The similarity assessment is
based on luminance, contrast, and structure altogether. Therefore, the
metric is superior to other common metrics such as: Mean Squared
Error (MSE) or Peak Signal to Noise Ratio (PSNR) [32–34], which
evaluate image quality based on absolute errors. Thus, we consider
SSIM as an excellent conditioning performance assessment tool for
purposedly corrupted synthetic XCT data. However, in the case of the
experimental XCT datasets, there are no available ground truth volumes
for comparison; hence, SSIM is not relevant. On the other hand, HE is a
no-reference image entropy/quality metric requiring no ground truth
data [12,13]. HE measures statistical randomness to characterize the
texture of the image [29] calculated by:

=HE p plog ( )
k

k k2
(4)

Where k is the number of gray levels (256 for 8-bit images) and pk is the
probability of gray level k. According to [30], HE is defined as the entropy
of a histogram bucket of an image. This can be interpreted as the entropy
of the probability distribution of the values within that bucket. (The
probability of each value is given by the frequency divided by the total
number of attribute values). HE is highly affected by the number of ex-
isting gray levels in an image. Blur and noise can increase the number of
gray levels present, increasing the HE value [12]. Generally, the lower the
HE, the higher the quality of an image. However, data with many
structural gray levels present can still bear a high HE irrespective of any
existing artifact (this is the case of XCT data of materials with many
microstructural constituents of different densities). Any conditioning can
only marginally improve HE in such cases. Lastly, a possibility exists
where successful sharpening could reveal hidden noise or hidden struc-
tural gray levels that were perhaps smeared out before conditioning be-
cause of blurring. This could cause an increase in HE instead.

4.2. Individual network performance testing

We also test which respective 2D or 3D trained version of the neural
networks performs better. For the 2D/3D Denoising and 2D/3D

Deblurring networks, this is achieved by purposedly corrupting and then
conditioning the eighth synthetic XCT volume with Gaussian noise of
standard deviation =20 (8-bit image: 0 – 255 bits gray level range) or
with 3D Gaussian blur with sigma=1, respectively. Furthermore, various
forwarding strategies are tested to identify the one(s) maximizing con-
ditioning performance. For both 2D networks, a simple forwarding
strategy is to slice the corrupted volume into 512 images (size: 512×
512) moving perpendicularly to the xy (top) plane, perform the forward
pass through the neural networks, and finally recombine the images into
the conditioned volume (2D_SingleView). A more sophisticated method is
to slice the corrupted volume along all three xy, yz, and xz planes and
further rotate each image four times with an angular increment of 90°
(i.e., at 0°, 90°, 180°, 270°). Thus, twelve similar conditioned volumes are
produced after the forward pass and recombination. The final conditioned
volume can be determined by evaluating the Mean or Median volume of
the latter (2D_MultiView_Mean and 2D_MultiView_Median, respectively).
The workflow of this forwarding strategy is illustrated in Fig. 10. For both
3D networks, the volume is initially zero-padded with padding size =16.
Then, the volume is sliced into 64×64×64 sub-volumes (the input size
of the 3D nets), moving across all directions with a stride =32. Finally,
after the forward pass, only the 32×32×32 central region of each
conditioned sub-volume is conserved for the recombination (3D_Single-
View). This method ensures 3D recombination continuity, avoiding the
otherwise resulting grid-shaped artifacts at the sub-volume connection
regions (grid artifacts arise from boundary uncertainties). Moreover, a
multiple-view approach is also tested for the 3D case by applying four
rotations (0°, 90°, 180°, 270°) to the whole volume (rotation axis: z) prior
to slicing. Therefore, after the forward pass, four similar conditioned
volumes are recombined. The final conditioned volume is determined
again by evaluating the Mean or Median volume of the latter (3D_Mul-
tiView_Mean and 3D_MultiView_Median, respectively). The workflow of
this forwarding strategy is illustrated in Fig. 11. The metric results for the
Denoising and Deblurring networks of the above analysis are given in
Table 2. An omnidirectional eight voxel trim is necessary on the condi-
tioned volume to ensure comparability. This trim eliminates any image
irregularities at the external boundaries (512× 512× 512 volumes
trimmed to 496× 496× 496 volumes). The best neural networks/

Fig. 14. Slices of experimental XCT reconstruction groups before conditioning. (See text for details).
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forwarding strategies combination is the 2D Denoising and 2D Deblurring
networks; both coupled with the 2D_Multiview_Median forwarding
strategy. More specifically, according to the SSIM metric results, 99% and
95% structural similarity is achieved for the denoised and deblurred
(purposedly corrupted with noise and blur individually) synthetic XCT
volumes, respectively. HE results further support these findings. Thus, the
applications and results that are presented in the following sections are
solely based on these combinations.

4.3. Performance consistency results

We assess the combined Denoising and Deblurring networks se-
quential application for conditioning performance consistency. We
again employ the eighth synthetic XCT volume and corrupt it with in-
creasing intensities of 3D Gaussian blur and Gaussian noise combined
(blur and noise are introduced one after the other). In total, we prepare
four artificially corrupted synthetic XCT volumes with the following
specifications:

Synthetic XCT testing datasets:
SA: Gaussian blur sigma =0.7, Gaussian noise stand.dev. = 06.
SB: Gaussian blur sigma =0.8, Gaussian noise stand.dev. = 09.
SC: Gaussian blur sigma =0.9, Gaussian noise stand.dev. = 12.
SD: Gaussian blur sigma =1.0, Gaussian noise stand.dev. = 15.
We sequentially denoise and deblur each volume, then compare the

output against their artifact-free ground truth equivalent with the SSIM
metric. The results of this analysis reveal that the performance is ef-
fectively consistent. An approximately constant 92% structural simi-
larity is achieved irrespective of the initial noise and blur levels present,
as it is shown in Table 3. In Fig. 12, cross-sections from the sequential
conditioning progress of the least and most corrupted synthetic datasets
are illustrated (SA and SD, respectively).

As the cross-sections in Fig. 12 reveal, the overall performance is
very good, especially for bulk regions. The final conditioned images of
the least and most corrupted synthetic CT data are almost identical.
Only some structural irregularities can be seen at the edges of the
smallest or thinnest objects, reasonably more evident in the most

Fig. 15. Resulting HE and BM of both synthetic and experimental XCT Volumes from each step of the conditioning process.
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corrupted dataset SD. However, this little amount of structural loss is
generally inconsequential.

4.4. Final Pass with a low intensity NLM Filter

In the text above and in the literature, it was argued that high-in-
tensity digital conditioning filters could result in structural image
losses. Here we examine whether an NLM filter can be beneficial in
further improving the conditioning result if employed after the se-
quential application of the denoising and deblurring networks. This is
tested on the conditioned synthetic XCT dataset SD (SD Deblurred in
Fig. 12) by varying the digital filter intensity: sigma =0–10 with a
constant smoothing factor = 1. As shown in Fig. 13, an NLM filter with
sigma =3 maximizes SSIM to 92% (initially: 91.7%) and minimizes HE
to 4.154 (initially: 4.570). With a higher sigma we notice a drop in the
SSIM value, indicative of structural losses. Thus, we propose that the
process of reconstructed data conditioning can be structured as a se-
quential 3-level framework: {2D_Denoising with 2D_MultiView_Median
strategy, 2D_Deblurring with 2D_MultiView_Median strategy, and NLM
Filtering with (sigma = 3, sf = 1)} for best performance. The NLM
filtering step is applied in all previously conditioned synthetic XCT
datasets (SA-SD).

5. Testing/application on experimental XCT data: results and
discussion

At this point we have established that the proposed Conditioning
framework: {2D_Denoising with 2D_MultiView_Median strategy,
2D_Deblurring with 2D_MultiView_Median strategy, and NLM Filtering
with (sigma = 3, sf = 1)}, performs well with purposedly corrupted
synthetic XCT data irrespective of the initial noise and blur levels
present. In this section we examine the performance of the proposed
conditioning framework on experimental XCT volumes. For the task, we
employ six 512×512×512 voxel experimental XCT reconstructions
arranged in groups of two, with varying levels of noise and blur for each
group (group 1: {RA, RB}, group 2: {RC, RD}, group 3: {RE, RF}, see
Fig. 14). The experimental datasets in each group are cut from a larger
dataset, hence are statistically equivalent. We apply the 3-level con-
ditioning framework and compare the results with the synthetic XCT
datasets (group 0: {SA, SB, SC, SD}) using the HE and the BM.

In Fig. 15, the resulting HE and BM values from all conditioning
steps and all datasets (synthetic and experimental) are given, whereas
in Fig. 16, the resulting cross-sections are illustrated for each step of the
conditioning process (experimental datasets: RA, RC, and RE only). As
it can be observed, HE values have a dramatic drop after each step of
the conditioning process of the synthetic datasets (group: 0). These

Fig. 16. Conditioning results on slices of experimental XCT volumes. Sequential application of 2D Denoising / 2D Deblurring networks with the
2D_MultiView_Median forwarding Strategy, and the final NLM filtering step.
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large drops can be attributed to the limited structural ground-truth grey
levels present within the synthetic XCT volumes. On the other hand, in
the experimental datasets the structural gray levels are more complex;
hence the drop in HE is significantly weakened (especially in group 1,
which visually contains the least initial noise). Furthermore, there is a
slight increase in the HE values after the deblurring step in all experi-
mental XCT groups: 1–3. This is not unexpected for the reasons pre-
viously discussed: deblurring reveals hidden gray levels. However, BM
confirms the blur reduction, with the final BM for all datasets being
very low between 0.16 and 0.32. The HE and BM drop prove that the
suggested framework can also successfully perform on experimental
datasets. This can be visually appreciated by observing Fig. 16. Clearly,
there is a significant improvement in image quality in terms of noise
and blur. Furthermore, we observe the complete elimination of ring
artifacts (mainly present in datasets: RA and RE). The performance
consistency across datasets belonging to the same group is confirmed by
the similar metric patterns. We observe that the metric patterns are,
however, not similar across the different data groups. The SSIM metric
cannot be employed here to assess the conditioning performance con-
sistency across the different groups, as we do not have ground truth
experimental XCT data. Thus, we artificially re-corrupt the conditioned
experimental datasets: RA, RC, and RE with simulated blur and noise
(1st: mean 3D blurring with sigma = 2, 2nd: Gaussian noise with
standard deviation = 9), and then we re-condition them. Cross-sections
from the resulting conditioned volumes are illustrated in Fig. 17, re-
vealing that the previously conditioned and re-conditioned images are

practically identical. The re-conditioned images appear to have a
slightly diminished number of structural gray levels: minor over-con-
ditioning. Some structural deterioration is justifiable due to re-corrup-
tion and re-conditioning.

Moreover, as it can be observed in Fig. 18, the HE patterns are
essentially identical for the initially conditioned and re-conditioned
experimental XCT volumes. The re-conditioned HE values are mar-
ginally lower than their previously conditioned equivalents because
of the minor over-conditioning. The initial (not yet conditioned XCT
datasets) and re-corrupted HE values can significantly differ as we are
unaware of the initial noise and blur levels present. However, the
similar HE values after the NLM and re-NLM steps essentially prove
that the conditioning performance on experimental datasets is con-
sistent irrespective of the initial noise and blur levels. Thus, by in-
ductive reasoning, the overall 92% SSIM conditioning efficiency ob-
served in the case of the synthetic XCT datasets, can also be translated
in the case of the experimental XCT datasets. Similarly, the 99% and
95% SSIM conditioning efficiency achieved in the synthetic XCT da-
tasets standalone denoising and standalone deblurring, is translatable
to the experimental XCT datasets as well.

Finally, we remark that Tsamos et al. [17] reported that the seg-
mentation performance of a convolutional neural network trained on
synthetic materials XCT data is strongly correlated with the quality of
the XCT data that are being segmented. Thus, the better the quality of
the experimental images is (less noise, less blur, sharp gray-scales
transitions between phases without fluctuations, etc.), the more

Fig. 17. Previously Conditioned and Re-Conditioned experimental XCT Datasets (RA, RC, and RE).
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reliable would be the quantitative information that can be extracted
from such images.

6. Conclusions and outlook

A complete multiscale and multilevel conditioning framework was
developed: BAM SynthCOND. It consisted of in-house synthetic mate-
rials XCT data generation libraries (BAM SynthMAT) [17], in-house
designed deep convolutional neural networks (2D/3D ACEnet_Denoise,
2D/3D ACEnet_Deblur) as well as in-house implemented data aug-
mentations, training and forwarding strategies. The proposed multi-
scale/multilevel conditioning framework for removal of noise and blur
in experimental XCT data of complex six-phase Al-Si MMCs performed
very well, achieving a consistent overall 92% SSIM efficiency (com-
bined denoising and deblurring), and standalone denoising and de-
blurring SSIM efficiency: 99% and 95% in post-CT reconstructions,
respectively. Moreover, the conditioning allowed also suppressing ring
artifacts.

One of the novelties of this work was that the deep convolutional
neural networks were trained solely on synthetic XCT data. To our
knowledge, there is virtually no public literature on materials XCT data
conditioning with deep learning techniques, in which synthetic XCT
training data are employed. This strategy allowed circumventing the
lack of artifact-free experimental XCT data for supervised training.
Another novelty was the introduction of the ACE training strategy
which boosts the performance of neural networks trained with con-
tinuous loss functions. We also showed that the 2D versions of the
proposed networks perform better than their 3D equivalents. In contrast
to noise, blur is a geometrically dependent artifact, therefore we believe
that a 3D deblurring network can achieve even higher conditioning
efficiency if provided with more training data and different training
strategies since 2D networks cannot “perceive” the out-of-plane blur.
This is left for future work and will be reported in a forthcoming paper.

Another aspect remaining partially open is the quantification of the
remaining noise in the final conditioned XCT volumes by means of a
metric that is not affected by the number of structural gray levels. In
another future publication, we will apply our methods directly on the
projections coupled with a standard FBP reconstruction. This should
bring a very robust AI-based conditioning tool for CT data as it will rely
on the advantages of the superior supervised training. However, con-
ditioning post-CT (reconstructed) datasets with our proposed method
can be advantageous for fully automatic segmentation (i.e., no manual

annotation of the training data) if the same synthetic data are employed
for training the segmentation DCNN.

We believe that the current work is highly interdisciplinary, and thus the
methods developed herein can be effortlessly extended to other imaging
techniques such as microscopy, thermography, diffraction, and ultrasonics.
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