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Abstract

In this work, we report on our progress for investigating a new experimental approach for thermographic detection of internal
defects by performing 2D photothermal super resolution reconstruction. We use modern high-power laser projector technology
to repeatedly excite the sample surface photothermally with varying spatially structured 2D pixel patterns. In the subsequent
(blind) numerical reconstruction, multiple measurements are combined by exploiting the joint-sparse nature of the defects
within the specimen using nonlinear convex optimization methods. As a result, a 2D-sparse defect/inhomogeneity map can
be obtained. Using such spatially structured heating combined with compressed sensing and computational imaging methods
allows to significantly reduce the experimental complexity and to study larger test surfaces as compared to the one-dimensional
approach reported earlier.

1. Introduction

For a long time, the rule of thumb for active thermography as a non-destructive testing method has been that the resolvability
of internal defects/inhomogeneities is limited to a ratio of defect depth/defect size less or equal to one. This limit mainly
originates from the diffusive nature of thermal conduction in solids. The application of the photothermal super resolution
reconstruction approach has recently allowed to overcome this limit. This approach significantly improved the width-to-depth
range for which internal defects can be resolved.
In previous works, it has already been shown that the mentioned classical limit can be overcome for one-dimensional and
two-dimensional defect geometries by scanning the object under test (OuT) using single laser spots/lines with subsequent
numerical photothermal super resolution reconstruction [1, 2, 3]. These established methods use a combination of large
number of sequential spatially structured illuminations, which come at the expense of additional experimental complexity,
long measurement times, large data sets, and therefore tedious numerical analysis. In this work, we report on our progress
characterizing a new experimental approach to significantly reduce the experimental effort by using full-field two-dimensionally
structured laser-based illumination instead of subsequent local excitations.

2. Motivation on Photothermal Super Resolution Reconstruction

The surface temperature response of an OuT, which is simplistically modeled as a thermally-thin plate, can be represented as
the sum of an initial temperature distribution T0(x, y) and the spatial convolution (∗x,y) of the thermal point spread function
(PSF) ΦPSF(x, y, t) and the heat source distribution a(x, y) in a Green’s function like model as follows:

Tmeas(x, y, z = 0, t)− T0(x, y) = ΦPSF(x, y, t) ∗x,y a(x, y) (1)

The thermal PSF can be calculated analytically if the thermal properties of the OuT’s material (specific heat capacity cp,
thermal conductivity λ, density ρ, diffusivity α) are known along with its thickness d, the coordinate centroid (x̄, ȳ), the thermal
wave reflection coefficient R (typical R ≈ 1) and the external heat flux Q as shown in Eq. (2) [4]. Further, it is assumed that
the external heat flux Q can be split into a spatial distribution aext(x, y) of similar independent heat fluxes with amplitude Q̂
and a spatial structure Ix,y(x, y) as well as a temporal structure It(t) according to Eq. (3).

ΦPSF(x, y, t) =
2 · Q̂

cpρ(4παt)3/2
· e

(x−x̄)2+(y−ȳ)2

4αt ·
∞∑

n=−∞
R2n+1e−

(2nd)2

4αt ∗t It(t) (2)

Q(x, y, t) = Q̂ · Ix,y(x, y) ∗x,y aext(x, y) ∗t It(t) (3)

The overall heat source distribution a(x, y) can then be represented as the sum of the deliberately applied external heat sources
(i.e., the photothermal heating by the external illumination) and an internal «apparent»heat source distribution aint(x, y). This
latter apparent heat source distribution originates from the fact that in active thermographic testing, internal defects with
lower effusivity appear in the measured surface temperature response as heat sources. This is because they impede the local
heat flow in a way that the temperature rise at their respective locations appears as if there is an internal active heat source
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present. This apparent internal heat source distribution therefore resembles the internal defect structure which is ultimately to
be reconstructed.

a(x, y) = Ix,y(x, y) ∗x,y (aext(x, y) + aint(x, y)) (4)

By performing multiple different independent measurements m ∈ [1, . . . , nm] and by introducing regularizers which make
use of priors related to the equation’s physical nature (`2) plus the fact that the internal defect structure is constant for all
measurements and defects are sparsely distributed (`2,1), the solution space can be constrained such that the severely ill-posed
Eq. (1) can be inverted to extract the heat source distribution a(x, y) [5]. This numerical reconstruction can be performed
using the alternating direction method of multipliers (ADMM) algorithm [6] leading to a reconstruction arec(x, y) of a(x, y) and
therefore the internal defect pattern as encoded in aint(x, y):

minimize f(p) + g(q) = ‖ΦPSF(x, y) ∗x,y pm(x, y)− Tmmeas(x, y)− T0(x, y)‖22 + λ21 ‖qm(x, y)‖2,1 + λ2 ‖qm(x, y)‖22
subject to pm(x, y)− qm(x, y) = 0

(5)

The reconstruction result of the internal defect pattern arec(x, y) can then be determined by the sum over the solution for each
measurement:

arec(x, y) =
∑
m

pm(x, y) (6)

The relative strength of the regularizing terms can be adjusted by carefully choosing the λ21, λ2 ∈ R parameters. Currently those
parameters need to be inputted by the user specifically tailored to the specific reconstruction problem at hand. Determining a
suitable set of set of regularizing parameters automatically prior to reconstruction is currently subject of current research.

3. Two-dimensional Random Pixel Pattern Excitation

The recent developments in the field of digital micromirror device (DMD)-based high-power laser projectors now allow for their
application within active thermographic testing. With such projectors, it is possible to project whole pixel patterns at once,
which reduces the amount of measurements required to achieve homogeneous illumination of the test object on average and
thus shortens the measurement time [7]. Although the available projectors feature high independent pixel counts (≈ 106), their
still rather low optical output irradiances of < 20Wcm−2 make it necessary to group the available pixels into larger pixel
clusters in order to achieve a sufficient SNR. The influence of this clustering of pixels into larger pixel clusters with side length
dspix on the achievable reconstruction result has been already investigated in a previous work [8].

A representative photothermal super resolution reconstruction measurement using multiple 2D random pixel patterns as
illumination source can be seen in figure 1 [7].
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Fig. 1. Simplified flow chart for two-dimensional random pattern excitation photothermal super resolution reconstruction: The
left image shows the illumination pattern amext for a 2D random pixel-pattern illumination with a 5× 8 grid of pixel clusters with
a fill factor of β = 0.5, the corresponding Tmmeas measured surface temperature signal is shown in the middle. On the right, the
reconstructed defect pattern arec from the measured data is shown. The white boxes indicate the true defect positions.
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4. Forward Solution

One of the advantages of using a simplified model as given in Eq. (1) for representing the complex interaction of an OuT with
internal defects and structured illumination lies in the fact that it is possible to find the forward solution to the stated inverse
problem and solve it rather easily. This forward solution can be used to generate synthetic measurement data which in turn
can be applied to investigate the influence of the experimental parameters on quality of the reconstruction result. Exemplary
experimental parameters to vary could be the number of patterns projected, the size of the used pixel clusters or the fill factor
of the projected patterns and more. The following candidate for a forward solution has proven to give a suitable approximation
of real measured data:

Tmmeas, sim(x, y) =

ΦPSF(x, y) ∗x,y

ampattern(x, y)︸ ︷︷ ︸
Ix,y ∗x,y aext

+ ζ ·D(x, y)�
(
ΦPSF(x, y) ∗x,y ampattern(x, y)

)︸ ︷︷ ︸
aint

+Nnoise(x, y) ,
(7)

where ampattern(x, y) is the excitation pattern used in the measurement m ∈ 1, . . . , npatterns, ζ a factor encoding the relative
strength of the defect signal (encoding the depth/contrast of the defect in the bulk material), D(x, y) being a binary defect
map, � is the element-wise (Hadamard) product operator and Nnoise(x, y) a Gaussian noise term added to model the NETD of
the infrared camera.

5. Parameter Study: Number of Patterns

With the help of Eq. (7) it is possible to conduct numerical parameter studies on synthetic measurement data. In order to
compare different reconstruction results quantitatively, a comparison metric is needed. For this specific purpose, the following
metric has been developed condensing the reconstruction result arec to a single numerical value C (arec) ∈ R+, where a smaller
number indicates a better reconstruction result:

C (arec) = NMSE (D, arec) +
∥∥(1− η′(x, y)

)
� arec

∥∥
2

(8)

This metric is computed as the sum of the normalized mean square error (NMSE) of the reconstruction result and a location
dependent penalty term which penalizes reconstructed false-positive defect signals far away from the actual defects more than
closer ones. This term consists of the `2-norm of the element wise product of the reconstruction result with the inverted
normalized penalization term η(x, y) which is defined as the true defect signal convolved with the PSF:

η(x, y) = D(x, y) ∗x,y ΦPSF(x, y) . (9)

The use of the PSF causes this factor to take full effect for all false-positive defect signals which are further away from the true
position than the spatial width of the PSF itself. On the other hand, the NMSE is defined as follows:

NMSE (xtrue, xrec) =
‖xtrue − xrec‖22
‖xtrue − xtrue‖22

. (10)

With this metric it is possible to find the set of regularizing parameters {λ21, λ2} which result in the best reconstruction result
of the true defect map D(x, y) by solving the following minimization problem:

minimize
λ21, λ2

C (arec) , (11)

where arec is determined by solving the minimization problem stated in Eq. (5) with λ21 and λ2 as inputs. In order to solve the
minimization problem stated in Eq. (11), the Differential Evolution search algorithm can be used [9]. This algorithm allows to
search in vast and non-linear solution spaces for a global minimum and it is very robust regarding the shape of the solution
space itself. As a downside, this algorithm does not guarantee to find the global minimum within a finite amount of iterations.
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6. Results

In order to learn about the influence of the number of different projected patterns npatterns on the reconstruction quality
C(a

npatterns
rec ), several reconstructions of simulated and measured data have been performed. For this, an OuT made of 316L

stainless steel (α = 3.76× 10−6 m2 s−1, ρ = 7950 kgm−3, cp = 502 J kg−1 K−1) has been chosen/modeled which contains
several square internal defects with a side length of ddef = 2mm at a depth of 0.5mm below the surface (resulting to a best fit
ζ = 0.5). These defects are distributed within the region of interest (ROI) with separation distances of adef ∈ {0.5, 1, 2, 4}mm
and are oriented at 45◦ with respect to the orientation of the camera pixels in order to showcase the true two-dimensional
reconstruction properties of the algorithm.

For the simulation data, the ROI has been restricted to a single defect pair simulated at separation distances of adef,sim ∈
{1.5, 0.5, 0.2}mm. All simulations as well as the measurements have been conducted with a spatial resolution of ∆x,∆y =
0.1mm. This leaves a separation of only 2 pixel for the closest simulated defect pair or 5 pixel for the measured data respectively.
A depiction of the resulting true defect distribution within the ROI and an overview over an exemplary set of results is shown in
figure 2.
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Fig. 2. Overview over the achieved reconstruction results on measured and simulated data: For the ROI shown in the leftmost
plot, several reconstruction results are shown on the right. The ROI contains several square shape defects with a side length
of 2mm and separation distances of adef ∈ {0.5, 1, 2, 4}mm between each other. The top left reconstruction plot shows
the reconstruction for measured data (npatterns = 50 and dspix = 0.4mm), while the three plots in the bottom row show a
reconstruction for simulated data (npatterns = 50, dspix = 0.4mm and std(Nnoise) = 0.1 ·max(Tmeas, sim)) for different distances
between the defects of adef,sim ∈ {1.5, 0.5, 0.2}mm. The underlying input data for each reconstruction has been sampled at
∆x,∆y = 0.1mm. For reference, in the top right plot the temperature rise Tdiff of the ROI after experiencing a homogeneous
illumination for a pulse length of tpulse = 0.5 s, comprising Q̂ = 87W of radiant power, sampled at teval = 0.5 s and measured
within the same experimental setup is shown.

In order to examine the dependency of the reconstruction quality on the amount of patterns projected, several reconstructions
on simulated measurement data for npatterns ∈ {2, 4, 6, 8, 10, 16, 20, 32, 40, 50, 80, 100}, a cluster size of dspix = 0.4mm a
pattern fill factor of β = 0.5 and three different defect separation distances have been performed. For evaluating this 36
data points and finding the corresponding best set of regularizing parameters the minimization problem stated in figure 5
has been solved ≈ 25 000 times (at a rate of 8 − 30 s/reconstruction on modern high performance computer hardware). A
resulting graph summarizing the dependence of the number of projected patterns on the reconstruction quality is shown in figure 3.

In the semilogarithmic depiction of the data in figure 3 can be seen that the result can be approximated by an exponential
decay. As can be expected for such a dependency, increasing the amount of projected patterns leads to a high initial gain
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in reconstruction quality and converges to a best possible reconstruction quality for high numbers of projected patterns. In
figure 3, the following exponential function has been fitted to the data:

C(a
npatterns
rec )fit = e−α·(x−b) + c α, b, c ∈ R (12)

The increase in reconstruction quality then follows the following equation, mapping quality increase to an interval of [0, 1[,
where 1 indicates that the optimal reconstruction quality has been achieved:

1− C(a
npatterns
rec )fit

C(a1rec)fit
= 1− e−α(x−1), for x ≥ 1 (13)
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Fig. 3. Dependence of the change in reconstruction quality and the number of projected patterns npatterns as a linear (left) and
semilogarithmic plot (right): The presented data has been generated by reconstructing simulated measurement data with a
pixel cluster size of dspix,sim = 0.4mm for a defect pair for different separation distances adef ∈ {0.2, 0.5, 1.5}mm. Each data
point shows the mean achieved reconstruction quality C(a

npatterns
rec ) and ±1σ standard deviation. All data is referenced to the

best achievable mean reconstruction quality C(a∞rec)sim for npatterns →∞ determined by the the exponential fit shown. For the
plot, C(a∞rec)sim is set to zero.

For a best-fit factor of α = 0.035 determined from the simulated data, this means that for projecting npatterns = 50 already 82 %
of the best possible reconstruction quality is achieved. Furthermore, from the data it can be observed, that the reconstruction
quality is more consistent for different defect patterns at higher number of patterns (npatterns & 50) projected which can be seen
in the lower standard deviation of the results. The overall quite high variability in the reconstruction result can be explained
by the nature of the highly non-linear inverse problem which is solved here. For a higher number of patterns projected the
additional information gained aids in narrowing the solution space to a point, where a more consistent result can be achieved.
Nevertheless, even for a low amount of patterns projected the reconstruction quality already can be quite high but suffers from
a large uncertainty whether an optimal solution has been obtained.

In order to verify these findings against real measurement data, several measurements with a pixel cluster sizes of dspix ∈ {0.4, 0.8}mm
and a pattern fill factor of β = 0.5 have been performed. The achieved reconstruction quality results from those measurements
together with the fit established in figure 3 can be found in figure 4. Here it can be seen, that the distribution of the achievable
reconstruction quality closely matches the results on simulated data and the distribution obtained from the measured data fits
the exponential fit function equally well as the reconstruction results for simulated data.
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Fig. 4. Fit model quality for measured data: In this plot the exponential reconstruction quality improvement model from
figure 3 is shown next to actually achieved reconstruction quality data points from reconstruction the whole ROI as shown in
figure 2. The measured data points have been rescaled to converge to the same best reconstruction quality C(a∞rec)sim as for
the simulated data.

7. Summary and Outlook

In this work we have given an introduction into the experimental extension of photothermal super resolution reconstruction for
the thermographic detection of internal defects. This extension allows a drastic decrease in necessary measurement duration by
the projection of fully two-dimensionally structured pixel patterns using a high-power DMD-based laser projector. With the use
of a specifically designed forward solution to the underlying inverse problem, we have been able to examine the achievable
reconstruction quality in dependence of the number of patterns projected by performing a reconstruction on several sets of
generated synthetic measurement data. Ideally this number is kept as small as possible in order to achieve the shortest possible
measurement times and the highest testing throughput.

Using simulated data, we have found that the projection of ≈ 50 different pixel patterns resembles a good trade-off between
achievable reconstruction quality and measurement effort for the investigated ROI. This value and the overall dependence of the
achievable reconstruction quality on the number of patterns projected has subsequently been verified using real measurement
data from the same ROI. While projecting around 50 different pixel patterns is necessary to achieve close to the optimal
reconstruction quality with reasonable efforts, a much smaller number of measurements already offers a reasonable reconstruction
of the internal defect structure.

While the detection and separation of the defects already works quite well, the reconstruction of the defect shape on measured
data is still lacking. The fact that the shape reconstruction works significantly better on the simulated data shows that the
current underlying model of the photothermal super resolution reconstruction method - which is only a simplifying approximation
of the underlying physics - needs to be refined in order to improve the ability of accurately reconstructing the defect shape.
This is in conjunction with a further speed-up of the method by employing machine learning based inversion techniques a topic
of current research.

References

[1] Peter Burgholzer, Thomas Berer, Jürgen Gruber, and Günther Mayr. Super-resolution thermographic imaging using blind
structured illumination. Applied Physics Letters, 111(3):031908, July 2017.

[2] Samim Ahmadi, Julien Lecompagnon, Philipp Daniel Hirsch, Peter Burgholzer, Peter Jung, Giuseppe Caire, and Mathias
Ziegler. Laser excited super resolution thermal imaging for nondestructive inspection of internal defects. Scientific Reports,
10(22357), 2020.

[3] Julien Lecompagnon, Samim Ahmadi, Philipp Hirsch, Christian Rupprecht, and Mathias Ziegler. Thermographic detection
of internal defects using 2D photothermal super resolution reconstruction with sequential laser heating. Journal of Applied
Physics, 131(18), May 2022.

[4] Kevin Cole, James Beck, A. Haji-Sheikh, and Bahman Litkouhi. Heat Conduction Using Greens Functions. CRC Press, July
2010.



16th Quantitative InfraRed Thermography Conference, 4 – 8 July 2022, Paris, France

[5] Markus Haltmeier, Michael Sandbichler, Thomas Berer, Johannes Bauer-Marschallinger, Peter Burgholzer, and Linh Nguyen.
A sparsification and reconstruction strategy for compressed sensing photoacoustic tomography. Acoustical Society of
America, 143(6):3838–3848, June 2018.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122,
2011.

[7] Julien Lecompagnon, Samim Ahmadi, Philipp Hirsch, Christian Rupprecht, and Mathias Ziegler. Investigations on
photothermal super resolution reconstruction using 2D-structured illumination patterns. In Masafumi Kimata, Joseph A.
Shaw, and Christopher R. Valenta, editors, SPIE Future Sensing Technologies 2021, volume 11914, pages 124–131.
International Society for Optics and Photonics, SPIE, 11 2021.

[8] Julien Lecompagnon, Philipp Hirsch, Christian Rupprecht, and Mathias Ziegler. Thermographic testing using 2D pseudo-
random illumination and photothermal super resolution reconstruction. In Arantza Mendioroz and Nicolas P. Avdelidis,
editors, Thermosense: Thermal Infrared Applications XLIV, volume 12109. International Society for Optics and Photonics,
SPIE, May 2022.

[9] Rainer Storn and Kenneth Price. Differential Evolution - A Simple and Efficient Heuristic for global Optimization over
Continuous Spaces. Journal of Global Optimization, 11(4):341–359, 1997.


	Introduction
	Motivation on Photothermal Super Resolution Reconstruction
	Two-dimensional Random Pixel Pattern Excitation
	Forward Solution
	Parameter Study: Number of Patterns
	Results
	Summary and Outlook

