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Abstract
Motivation: Inferring taxonomy in mass spectrometry-based shotgun proteomics is a complex task. In multi-species or viral samples of un-
known taxonomic origin, the presence of proteins and corresponding taxa must be inferred from a list of identified peptides, which is often com-
plicated by protein homology: many proteins do not only share peptides within a taxon but also between taxa. However, the correct taxonomic
inference is crucial when identifying different viral strains with high-sequence homology—considering, e.g., the different epidemiological charac-
teristics of the various strains of severe acute respiratory syndrome-related coronavirus-2. Additionally, many viruses mutate frequently, further
complicating the correct identification of viral proteomic samples.

Results: We present PepGM, a probabilistic graphical model for the taxonomic assignment of virus proteomic samples with strain-level resolu-
tion and associated confidence scores. PepGM combines the results of a standard proteomic database search algorithm with belief propagation
to calculate the marginal distributions, and thus confidence scores, for potential taxonomic assignments. We demonstrate the performance of
PepGM using several publicly available virus proteomic datasets, showing its strain-level resolution performance. In two out of eight cases, the
taxonomic assignments were only correct on the species level, which PepGM clearly indicates by lower confidence scores.

Availability and implementation: PepGM is written in Python and embedded into a Snakemake workflow. It is available at https://github.com/
BAMeScience/PepGM.

1 Introduction

Viruses, and especially viral pathogens, represent a tremen-
dous threat to public health. While the threat of emerging vi-
ral diseases has been known to the scientific community for
the past several decades (Morse 1997, Lipkin and Firth 2013,
Peckham 2020), the severe acute respiratory syndrome-
related coronavirus (SARS-CoV)-2 pandemic has propelled
the importance of viral surveillance and investigation to the
forefront of public attention (Riley et al. 2021, Hirabara et al.
2022). In this context, an essential element is the fast and ac-
curate taxonomic inference of viral samples. As different
strains of the same viral species can differ strongly regarding
the patient outcome and epidemiological characteristics
(Gussow et al. 2020, Haddad et al. 2021, Hirabara et al.
2022, Hu et al. 2022), correct strain-level attribution is cru-
cial. While the gold standard method for taxonomic inference
of viral samples is based on genomic analysis by NGS (Jones
et al. 2017, Brown et al. 2018), bottom-up proteomics-based
analysis is a promising orthogonal approach (Grossegesse
et al. 2020). The public need for alternative bioanalytical
tools is stressed by reagent shortages during global pandemic
situations due to only a few available analysis methods (Smith
et al. 2020, Chu et al. 2020).

The correct strain-level taxonomic inference of proteomic
samples, however, remains a challenging task. An experimen-
tal approach that has been pursued in the past is the use of
MALDI-TOF for the so-called biotyping or proteotyping
(Sandrin et al. 2013, Singhal et al. 2015, Boyer et al. 2017).
These approaches rely on signature peptides that are detected
by mass spectrometry and uniquely associated with a species.
Yet these approaches are limited to a single MS level and tend
to be inappropriate for strain-level analysis, as tailored spec-
tral databases with the strain-level resolution are required
(Singhal et al. 2015). Thus, approaches based on tandem
mass spectrometry (MS/MS), that offer a more precise view of
the actual peptide sequence, have become a promising alterna-
tive (Gekenidis et al. 2014). For instance, an MS/MS-based
approach for the identification of SARS-CoV-2 from patient
samples was recently developed (Van Puyvelde et al. 2021)
based on a targeted proteomics workflow.

For untargeted identification of viral samples based on
MS2 spectra, only a few bioinformatic workflows exist
(Penzlin et al. 2014, Alves et al. 2016, Mesuere et al. 2018,
Kuhring et al. 2020) and these focus on the analysis of sam-
ples with known organism source (Aslam et al. 2017). For the
identification of virus strains of unknown taxonomic origin,
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specific challenges emerge. Many of these overlap with chal-
lenges in metaproteomics, a field that aims to identify and
quantify the phenotype of microbial communities with un-
known taxonomic composition (Wilmes et al. 2015).

First, the analysis of samples with unknown composition
potentially requires large search spaces. This is because stan-
dard proteomics workflows rely on search algorithms that
aim to match experimental MS/MS spectra against a reference
database (Verheggen et al. 2020). Thus, all candidate sequen-
ces have to be included in the reference database, which is
computationally expensive and increases the risk of false posi-
tives (Muth et al. 2015). Second, unique protein inference is
not guaranteed. A single peptide can map to several proteins,
impeding accurate protein inference and leading to the so-
called protein inference problem (Nesvizhskii and Aebersold
2005, Huang et al. 2012). Recently, graphical models have
been applied to address this (Pfeuffer et al. 2020). Third, taxo-
nomic inference has an analogous issue to protein inference:
peptides are shared not only between proteins but also be-
tween taxa, impeding accurate taxonomic inference.

Specific bioinformatic workflows that were developed to
address some of the described issues employ different strate-
gies with varying success rates. Originally developed for meta-
proteomics, Pipasic relies on abundance similarity correction
to taxonomically resolve samples with multiple closely related
strains (Penzlin et al. 2014). Similarly, MiCId uses peptidome
similarity correction (Alves et al. 2016) to achieve species-
level resolution and provide a statistical estimate of its taxo-
nomic assignments; however, it lacks strain-level resolution
and has difficulties processing very large databases (Kuhring
et al. 2020). Other tools originally developed for metaproteo-
mics, such as Unipept (Mesuere et al. 2018), map peptides to
their lowest common ancestor—meaning the lowest taxo-
nomic level they are specific to. This results in taxonomic in-
ference without confidence estimates and is inappropriate
when strain-level resolution is required, as can be the case in
clinical settings, where disease severity and therapeutic deci-
sions strongly depend on strain information. A different ap-
proach, TaxIt (Kuhring et al. 2020), reduces the search space
while still taking into account as many reference proteomes as
possible through an iterative approach that uses multiple
identification steps (Kuhring et al. 2020). Among all men-
tioned workflows, it is most apt at achieving strain-level reso-
lution but lacks confidence estimates for its taxonomic
assignments.

We here present PepGM, a graphical model-based bioinfor-
matic pipeline for taxonomic inference of viral proteome sam-
ples. Our approach results in the accurate detection of viral
pathogens in proteome samples with strain-level resolution.
In particular, PepGM scores and ranks taxonomic assign-
ments, thereby providing statistical confidence scores. This
becomes particularly relevant in situations of ambiguous or
erroneous identifications, e.g., when the correct viral strain is
not present in the database or when the available strain refer-
ence proteomes overlap heavily. PepGM starts with high-
confidence peptide identifications of a standard database
search against a generic viral reference database. Based on the
resulting matches, all candidate taxa on strain level are in-
ferred using weighted peptide-spectrum matches (PSMs). For
these taxa, each available strain-level proteome is retrieved.
These candidate peptide sequences and the taxa themselves
are represented as nodes in a probabilistic graphical model
(Koller and Friedman 2009). An edge between a taxon and a

peptide is drawn if the respective candidate peptide is vali-
dated by the database search results. Using the loopy belief
propagation algorithm, i.e., an algorithm for approximate
Bayesian inference, which has been successfully applied for
protein inference (Pfeuffer et al. 2020), PepGM computes the
marginal distribution of taxa, which corresponds to the prob-
ability of their presence in the analyzed sample. We demon-
strate that PepGM consistently identifies the correct viral
strains on an exemplary set of viral proteomic samples from
publicly available data, investigating various use cases. We
show that the taxon posterior probabilities represent suitable
confidence estimates of our newly developed method. The
combination of strain-level resolution with confidence esti-
mates makes PepGM particularly useful for applications in a
clinical context, where therapeutic decisions require both very
detailed and very confident identifications of pathogens.

2 Materials and methods

In the following section, we describe PepGM in detail. We
start with an overview of the PepGM workflow, then define
the individual steps, input and outputs, and provide a brief
description of the graphical model and inference algorithm
used.

2.1 Workflow overview

PepGM takes as input MS/MS spectrum files (mgf format), a
reference database containing one or multiple proteomes,
and, optionally, a cRAP (common Repository of Adventitious
Proteins containing common contaminants) and a host prote-
ome database. PepGM broadly consists of the following seven
steps (Fig. 1):

(0) optional host filtering, (1) standard proteomic database
search, (2) identification of candidate taxa, (3) construction
of the bipartite peptide-taxon graph, (4) construction of the
graphical model, (5) inference algorithm embedded into a
grid search, and (6) parameter evaluation and finally, results
output and visualization.

Figure 1. Schematic PepGM workflow for taxonomic inference of viral

samples. The PepGM workflow comprises seven steps (0–6). The input is

a raw MS/MS spectrum file in mgf format, additional input or information

used at individual workflow steps are specified to the right of the

workflow diagram.
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We use Snakemake (Mölder et al. 2021) as a workflow
management system, while all individual scripts are written in
Python 10, developed and tested for Linux OS. Additional
packages can be found in Supplementary Materials Section
S1. We will now describe the individual workflow steps.

0: Prefiltering (optional)

If a host and/or contaminant (e.g., cRAP) database is pro-
vided by the user, the MS/MS spectra are searched against
these using SearchGUI (Barsnes and Vaudel 2018) for
database-driven peptide identification and PeptideShaker
(Vaudel et al. 2015) as a post-processing tool. The resulting
matches are known to be of non-viral origin and can therefore
be excluded from the input.

1: Database search against a general viral reference database

Experimental spectra are searched against a complete virus-
specific reference proteome database. This can be any data-
base provided by the user in fasta format. However, due to
the TaxID mapping in the following workflow step, proteins
need to be provided with National Center for Biotechnology
Information (NCBI) accession numbers. A TaxID is a unique
identification number assigned to each taxon by NCBI, and a
protein accession is a unique identifier for a protein. In this
work, we use the RefSeq Viral database as a reference
(O’Leary et al. 2016). As for the optional prefiltering, PepGM
uses SearchGUI (Barsnes and Vaudel 2018) for database-
driven peptide identification and PeptideShaker (Vaudel et al.
2015) as a post-processing tool. Due to its flexible Snakemake
implementation, any combination of database search and
rescoring algorithm is feasible. This step yields a list of scored
peptides with corresponding PSMs. The identification confi-
dence reported by PeptideShaker is the input to the taxon in-
ference algorithm.

2: Inferring candidate taxa

Based on these PSMs, we infer all candidate taxa and filter for
high-scoring taxa as assessed by the following scoring scheme.
The key idea is to score taxa based on their weighted PSMs
per protein and, finally, per taxon. By filtering candidate
taxa, we reduce the level of noise that the graphical model
will be built on. PSM weights are first aggregated by summing
up their individual scores at the protein level. The weight of a
PSM is scaled by dividing it by the number of occurrences in
other proteins, i.e., its degeneracy. Eventually, the aggregated
weights are propagated in the same fashion to the candidate
taxa. Taxa with a score above the global median score are
considered high scoring.

3: Construction of the bipartite peptide–taxon graph

Next, we assemble a bipartite graph of peptide and taxon
nodes, where an edge is drawn between a taxon node and a
peptide node if the peptide is part of an in silico trypsin-
digested taxon proteome. The high-scoring candidate taxa
(step 2) are taxonomic nodes at the species level, as this is the
resolution provided by the NCBI taxon–protein mapping
accessions. To gain access to strain-level information, all cor-
responding strain-level taxa are inferred from the species-level
candidate taxa and kept as candidate strains. Each candidate
strain proteome is automatically downloaded through the
NCBI Entrez API and is in silico digested using tryptic cleav-
age settings. For now, trypsin is the only supported enzyme.
The digested strain-level candidate peptides are matched

(using exact string matching) against the set of peptides that
were identified in the database search (step 1). Each match is
included in the bipartite graph. Finally, the PSM scores are
maximum aggregated at the peptide level.

4: Construction of the factor graph

The subsequent Bayesian network representation that we
choose for the joint distribution of peptides and taxa corre-
sponds to a representation that has been successfully used for
protein inference in previous work (Pfeuffer et al. 2020). The
bipartite peptide–taxon graph represents the conditional de-
pendencies between peptides and their parent taxa. Thus, the
high-dimensional joint distribution of peptides and taxa is
factorized into less complex distributions, which are the prior
distributions of the taxa and conditional probability distribu-
tions (CPDs) for the peptides given the presence of a parent
taxon. Both peptides and taxa are binary variables. As the ac-
tual CPD of the peptides depending on the presence of the
taxa is not known, it is modeled using the noisy OR model
(D�ıez and Druzdzel 2000). As for the protein inference model,
this means that we assume that the presence of any of the par-
ent taxa is sufficient to produce a peptide belonging to a
taxon proteome. Three parameters, which we assume to be
the same for all peptides and taxa, result from this model:

• a: probability for a peptide to be observed given the pres-
ence of its parent taxon;

• b: probability for a peptide to be randomly observed; and
• c: prior probability for a taxon to be present.

The following equation describes the probability for a pep-
tide to be present (P ¼ 1) or absent (P ¼ 0), given a number
N ¼ n of parent taxa:

pðP ¼ 0jN ¼ nÞ ¼ ð1� aÞnð1� bÞ
pðP ¼ 1jN ¼ nÞ ¼ 1� pðP ¼ 0jN ¼ nÞ (1)

Albeit this strong simplification, it has already proven use-
ful to assume that a, b, and c are equal for all peptides for pro-
tein inference (Pfeuffer et al. 2020). Following Equation (1), a
CPD is computed for each peptide. Additional convolution
tree (Serang 2014) nodes speed up the propagation of proba-
bilities between peptide and taxon levels during the ensuing
inference algorithm.

5: Inference algorithm and grid search

Using the loopy belief propagation algorithm, posterior prob-
abilities are calculated for all taxa in the graph. Loopy belief
propagation iteratively updates the nodes (representing the
variables—peptides and taxa) in the graph by passing mes-
sages between variable nodes. A message from one variable
node to another represents the current estimate of the proba-
bility distribution over a variable based on the previous mes-
sages that it has received. Passing messages between variables
is repeated until converged (Pearl 1988). The loopy belief
propagation is embedded in a grid search through the param-
eter space of a, b, and c. Each parameter a;b; c 2 ½0;1�. The
grid search covers a set of 126 parameter combinations with
individual parameters being logarithmically spaced. Each pa-
rameter set provides a list of potential taxonomic inference
results. By using Snakemake, the grid search can be
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parallelized easily, running on the number of cores specified
by the user.

6: Parameter evaluation and results output

With an empirically determined metric that exploits the distri-
bution of taxon scores, we identify the parameter set that fits
best for the sample at hand. The metric to be maximized is the
following:

M ¼ 1

S1�10
� s1�3

s4�8
� 1

d2
1;2 þ d2;3 þ d3;4

� W1

Wmax
(2)

In Equation (2), the subscripts have the following meaning:
Si�j is the entropy of the distribution of the i-st to j-th poste-
rior taxon probabilities. Including the entropy, which for a
probability distribution X is defined as SðXÞ ¼
�
P

x2X pðxÞ log pðxÞ ensures that the distribution of the
results selected contains as much information as possible. si�j

is the sum of the i-th to j-th posterior taxon probabilities, fa-
voring distributions where the higher-scoring taxa clearly de-
limit themselves from the lower-scoring ones. di;j is the
taxonomic distance (calculated as the number of taxonomic
nodes between two taxa) between the i-th and j-th taxa, the
corresponding term favors distributions where the top-
scoring taxa are taxonomically close. Finally, Wi is the weight
attributed to taxon i (or the parent species of taxon i) during
the acquisition of candidate taxa, while Wmax is the maximum
weight any taxon was attributed during the analysis. This
ensures that the top-scoring taxon identified by PepGM is
also the one that was attributed to many PSMs. The inferred
taxa plus their confidence scores are summarized as a simple
bar plot, as a table, and as a visual projection onto a phyloge-
netic tree.

2.2 Selection of samples for evaluation and further

parameter settings

To evaluate PepGM’s accuracy, we analyze several patho-
genic viral samples that are publicly available in the PRIDE
repository (Perez-Riverol et al. 2022). We have chosen the fol-
lowing samples: two Cowpox virus (strain Brighton Red)
(PXD014913 and PXD003013), one Human adenovirus 2
(PXD004095), two SARS-CoV-2 (PXD024130 and
PXD018594), one Human herpesvirus 1 (strain 17)
(PXD005104), one Hendra virus (strain Horse/Australia/
Hendra/1994) (PXD001165), and one avian bronchitis
(Beaudette CK) (PXD002936). Throughout the article, we
will refer to them as Cowpox virus PXD014923 or
PXD003013, adenovirus, SARS-CoV-2 PXD024130 or
PXD018594, herpesvirus, Hendra virus, and avian bronchi-
tis, respectively. Details on the sample acquisition and
sample-specific search parameter settings can be found in the
Supplementary Materials. Except for SARS-CoV-2, all sample
taxa were available on strain-level resolution in the NCBI tax-
onomy database. The host proteomes were downloaded using
Uniprot.

In this study, we performed a database search using
SearchGUI (X! Tandem search engine) and employed the
RefSeq Viral reference database as our data source. This com-
prehensive database is maintained by the NCBI and can be
accessed through their FTP server. The FDR (false discovery
rate) was set to 5%, which is high compared to standard pro-
teomic protocols. To assess the impact of incorporating a
larger number of low-confidence PSMs, we conducted

additional sample analyses using both 1% and 20% FDRs.
Our findings revealed that the influence of varying FDRs on
the results was minimal. To ensure an accurate assessment of
PepGM’s performance, we examined the presence of specific
strains used for evaluation in the NCBI RefSeq Viral data-
base, as their presence might lead to an overestimation of our
method’s effectiveness. We found that, with the exception of
the human adenovirus 2 sample, these strains were not pre-
sent in the database. Except for SARS-CoV-2, all of the se-
lected samples previously served as benchmarking samples for
the TaxIt (Kuhring et al. 2020) pipeline, where the taxonomic
inference was benchmarked using MiCiD (Alves et al. 2016),
Unipept (Mesuere et al. 2018), and Pipasic (Penzlin et al.
2014). It was shown that TaxIt performed best among all
software, being the only one to consistently provide strain-
level taxonomic inference, therefore, we compare PepGM di-
rectly to TaxIt. Run time and memory usage are evaluated us-
ing a Fujitsu laptop with Ubuntu 20.04.4 LTS, with a 4-core
Intel i5-7200 CPU@2.50 GHz and 16 GB of memory.

3 Results
3.1 Strain-level prediction accuracy

To demonstrate that PepGM consistently predicts the correct
strain in viral samples, we run the complete PepGM workflow
without removing host proteins on all described samples (see
Section 2.2). For the adenovirus sample, the posterior scores
of the 15 highest-scoring taxa are presented in Fig. 2. A com-
prehensive presentation of the PepGM results for all addi-
tional samples is available in Supplementary Material S2.
Figure 2 demonstrates that adenovirus strain 2 was accurately
inferred from the sample, as it exhibited the highest posterior
probability. Two other human mastadenovirus C strains, ade-
novirus 5 and adenovirus 6, also received high posterior prob-
abilities. As depicted in the inset phylogenetic tree
representation (see Fig. 2 inset), these strains lie in close taxo-
nomic proximity to the actual strain. This might be due to
their high-sequence similarity. To investigate this further, we
computed the peptidome similarity of the 15 top-scoring viral
strains that were co-predicted for the same sample. We used a
symmetric similarity measure (Alves et al. 2018). Here, the
peptidome similarity was restricted to peptides that were actu-
ally identified by the search engine, thus those peptides that
are present in the graphical model, in order to more accu-
rately represent the similarity of the detected peptidomes. We
call this measure the detected peptidome similarity.

The detected peptidome similarity is calculated as follows:
For a peptide set X and a second peptide set Y,
SimX;Y ¼ X\Y

maxðjXj;jYjÞ. As expected, the three top-scoring strains,
i.e., human adenovirus 2, 5, and 6, had a high detected pepti-
dome similarity between 0.88 and 0.96 (see Fig. 3). The two
other slightly higher scoring taxa (simian adenovirus 34 and
human adenovirus 57 with respective posterior probabilities
of 0.21 and 0.14) also had a slightly higher detected pepti-
dome similarity (0.21 and 0.11, respectively) than other
lower-scoring taxa. All other taxa included in Fig. 2 are not
part of the mastadenovirus genus and do not share peptides
with this genus. Their presence in the results likely stems from
either wrongly identified peptides or the presence of host pro-
teins and other impurities. The low posterior probabilities (all
below 0.13) reflect this observation. A summary of the predic-
tion results for all samples that provide details on the true vi-
ral strain, the predicted viral strain, and the computed
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posterior score for all analyzed samples is presented in
Table 1.

PepGM predicted the correct species for all, and the correct
strain for six out of eight samples, exhibiting high posterior
probabilities (between 0.99 and 0.88) to true taxa. For the
herpesvirus and the avian bronchitis sample, we interpret the
inference as ambiguous because PepGM was neither able to
resolve between closely related strains nor predict a neighbor-
ing strain (from the correct species) as present. We next inves-
tigated the potential reasons for such ambiguous
identifications. Figure 4 shows the top-scoring taxa for the
avian bronchitis virus (one of the ambiguously predicted
strains, see Table 1 for details). Figure 4 shows that PepGM
was not able to differentiate between the three avian bronchi-
tis Beaudette subtypes: CK, US, and regular (no extension).
The US and the CK strain are variants of the regular
Beaudette strain that have adapted for optimal growth in dif-
ferent cell lines (Casais et al. 2001). Therefore, US and regular

strains are taxonomically (and peptide sequence-wise) closely
related. The posterior probability of each false Beaudette sub-
type strain (0.78–0.79) was lower than the probability that

Figure 2. Posterior scores for the first 15 candidate taxa of the adenovirus sample (PXD004095). Human adenovirus types 2, 6, and 5 are predicted to be

the most probable sources of the sample, with respective scores of 0.88, 0.87, and 0.82. An inset visualizes these findings within a taxonomic tree,

effectively illustrating the relationships among the detected taxa. The circle size corresponds to the posterior level of the prediction, with larger circles

representing a higher confidence.

Figure 3. Peptidome similarity of the top-scoring viral strains for the adenovirus and the avian bronchitis sample. Peptides included for the peptidome

similarity computation are restricted to the peptides that were identified by SearchGUI/PeptideShaker and included in the graphical model.

Table 1. Summary of the taxonomic inference results for eight selected

samples, utilizing the PepGM method.a

Sample Strain Posterior

PXD003013 Cowpox virus (Brighton Red) � 0.96
PXD014913 Cowpox virus (Brighton Red) � 0.88
PXD018594 SARS-CoV-2 � 0.99
PXD025130 SARS-CoV-2 � 0.99
PXD005104 Human herpesvirus 1 (strain F) 6 0.81
PXD002936 Avian bronchitis (Beaudette CK) 6 0.78
PXD001165 Hendra virus 1994 � 0.99
PXD00409 Human adenovirus (strain 2) � 0.88

a For all samples, PepGM predicted the correct species.
� indicates a correct identification, 6 indicates ambiguous results that
include the correct strain. Posterior stands for posterior probability.
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was predicted for the correct identifications in other samples
(which were all above 0.88), demonstrating the accuracy of
the confidence estimate based on the posterior probabilities.
None of the other taxonomic inference software tools, includ-
ing TaxIt, was able to identify the correct Beaudette strain;
therefore, PepGM had the added benefit of reporting the
lower confidence of its identification. To further explore our
results, we computed the detected peptidome similarity for
the avian bronchitis sample. The results depicted in Fig. 3
(right panel) show that the three avian bronchitis Beaudette
strains have a detected peptidome similarity of 1, which
means that all identified peptides map to all three strains. This
shows that, based on the available information, no algorithm
would be able to differentiate between them.

For the herpesvirus sample, PepGM predicted human her-
pesvirus strain 17 (refer to Supplementary Material Fig. S7
for detailed results), while the correct strain was actually
strain F. The second and third highest-scoring taxa were the
neighboring herpesvirus strains RH2 and KOS. However, the
true herpesvirus strain F was ranked 4th with a relatively low
score of 0.15. TaxIt likewise fell short in predicting the correct
strain, leading the authors to contemplate the potential for a
mistaken sample annotation. However, given the clear de-
scription of the acquisition and annotation processes in the re-
lated publication (Snijder et al. 2017), this scenario appears
unlikely to us. The predicted human herpesvirus strain 17,
which is the most widely used reference strain for human her-
pesviruses, was significantly overrepresented in the general
NCBI reference database with 2553 entries, as compared to
strain F, which had only 282 entries in NCBI Protein. Again,
the score PepGM attributed to its identification, about 0.81,
was lower than the lowest score of the correct identifications
in other samples, highlighting once more the usefulness of the
attributed scores. To demonstrate the extent to which misi-
dentification may be associated with an enlarged reference
database size, we simulated the growth in size by progres-
sively adding peptides to the correct herpesvirus strain (strain
F) node within the graph. Initially, the herpesvirus strain 17
taxon node neighbors 514 peptide nodes, whereas the accu-
rate strain, strain F, features 82 peptide nodes. We sequen-
tially added 1, 10, 100, and up to 600 peptide nodes to the
strain F node, with a prior probability of either p ¼ 0:8 or
p ¼ 0:9. The impact of additional peptides on the posterior
probability of strain 17 and strain F is presented in Fig. 5. For
peptides with p ¼ 0:8, Fig. 5 reveals that with an increasing
number of added peptides, the posterior probability for strain
F (the correct strain) increased too (burgundy line), whereas

the posterior probability for strain 17 remained unchanged
(gray line). Thus, increasing the reference database size leads
to an increase in the posterior taxon probability for the cor-
rect taxon. This effect was even more evident when adding
higher confidence peptides with p ¼ 0:9 (red and blue lines).
Here, the posterior probability of strain F increased from 0.15
to 0.99 if more than 400 peptides are added (red line), while
the posterior probability of the previously highest-scoring
strain 17 decreased slightly from initially around 0.8 to 0.7
(blue line). Therefore, not only peptide number (related to
database size and detected peptides) but also the associated
priors influenced posterior probabilities, as intended by the
design of PepGM.

To assess the impact of missing species information on
PepGM, we examined the cowpox virus (sample
PXD014913), the adenovirus, and the Hendra virus strain in-
ference results using a modified viral reference database,
where entries corresponding to the correct species and strain
(if available) have been removed (see Supplementary Material
Fig. 15 for plots). For the cowpox virus, a range of orthopox-
viruses was predicted with confidence scores around 0.6.
Comparable results can be observed for human adenovirus 2,
which displayed a series of low-confidence assignments of
strains from the species human mastadenovirus D, while the
correct species was human mastadenovirus C. When the cor-
rect species (human mastadenovirus C) was removed from the
database, a series of low-confidence identifications from the
same genus suggests the presence of a microorganism from
that genus but the correct species is either unknown or absent
in the database. In the case of the Hendra virus, however, the
species Nipah henipavirus from the correct genus henipavirus
was inferred with a confidence score of 0.86 (the correct
strain, Hendra henipavirus, was scored a posterior of 0.99).
In this scenario, the PepGM score did not provide a definitive
signal that the prediction might be incorrect.

Lastly, we aim to offer an intuitive understanding of inter-
preting PepGM posterior probabilities for inferred taxa when
multiple taxa exhibit high posterior probabilities. Take, for
instance, the adenovirus sample for which three taxa had rela-
tively high posterior probabilities. This should not be inter-
preted as a diminished confidence in the highest-scoring
taxon. Rather, since all three high-scoring taxa possessed a
high sequence similarity, they must, statistically speaking,
have a high likelihood of being the true taxon, and thus re-
ceive high scores. Nevertheless, one can have equal confidence

Figure 4. Posterior scores for the first 15 candidate taxa of the avian

bronchitis sample (PXD002936). Strain beaudette subtypes US, regular

(no extension) and CK are predicted to be the most probable sources of

the sample, with respective scores of 0.789, 0.788, and 0.785.

Figure 5. Effect of sequentially adding peptides (to the herpesvirus strain

F) on the posterior probabilities of the previously highest-scoring

herpesvirus strain (strain 17, gray/blue lines) and the herpesvirus strain

present in the sample (strain F, red/burgundy). For the blue lines, peptides

with a prior probability of p ¼ 0.9 were added, while for the gray and black

lines, peptides with a prior probability of p ¼ 0.8 were added.
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in identifications with only one high-scoring taxon as in iden-
tifications with multiple high-scoring candidates, as equal
posterior probabilities indicate an equivalent likelihood of
presence.

3.2 Effect of unique or shared peptides and their

score

To explore the impact of unique or shared peptides on the
prediction, we run PepGM using the graphical model derived
from the avian bronchitis sample with various manually
added peptides. The avian bronchitis graph structure is ideally
suited for this analysis because all three potential strains have
identical detected peptidomes (see Fig. 3, right panel), render-
ing them indistinguishable within the graph structure. These
peptide constellations are:

1) A single high-confidence peptide node (score 0.9) was
added to the Beaudette US strain.

2) A single medium-confidence peptide node (score 0.7)
was added to the Beaudette US strain.

3) A single lower-confidence peptide node (score 0.5) was
added to the Beaudette US strain.

4) A shared medium-confidence peptide node (score of 0.7)
was added to the Beaudette CK and US strains.

Table 2 shows how the additional peptides affect the poste-
rior probabilities. By adding a single high-confidence peptide
to the avian bronchitis Beaudette US strain, its score increased
to 0.92, while the scores for the two neighboring strains de-
creased to 0.62. This demonstrates that a single high-
confidence peptide is sufficient for PepGM to identify the cor-
rect strain without entirely dismissing the other two potential
strains. Adding a medium-confidence peptide did not raise the
score of 0.78 for the Beaudette US strain but it reduced the
scores attributed to the other strains to 0.58. This indicates
that PepGM remains capable of identifying the correct strain
even with the addition of a medium-confidence peptide.
Adding a peptide with an equal likelihood of being correct or
incorrect did not improve the prediction. Additionally, the in-
troduction of a medium-confidence peptide shared by two
neighboring strains increased their respective score to 0.8,
while decreasing the score assigned to the third neighboring
strain. These findings highlight that PepGM meticulously
evaluates peptide scores and that, based on their confidence, a
single unique peptide can effectively differentiate strains with
identical detected peptidomes.

We also investigated, for the herpesvirus, the avian bron-
chitis, and the Hendra virus, the effect of setting different
FDR thresholds: 1%, 5%, and 20%. These effects were very
limited, as shown in the Supplementary Fig. S16. As described
for the manually added peptides, the taxonomic inference and
scores computed by PepGM were dominated by high-
confidence peptides, which explains the insensitivity to
changes in the FDR threshold.

3.3 Effect of optional host filtering

PepGM provides the option to filter for host proteins before
the database search. In some cases, such as for both SARS-
CoV-2 samples (see Supplementary Materials S2, Figs. S9–
S12), the optional filtering step does not or only slightly alter
the prediction. For the filtered human adenovirus sample,
PepGM was not able to differentiate between the human ade-
novirus strains 2, 6, and 5 anymore (see Supplementary
Material S2 Fig. S1). It is plausible that filtering for potential
host and contaminant peptides eliminated some peptides that
were also associated with one of the strains in question. A
similar effect can be seen in the prediction results of the avian
bronchitis sample (see Supplementary Material Fig. S2). For
purified viral samples, as seen in all the samples analyzed in
our benchmark, we recommend opting against the host filter-
ing step.

3.4 Grid search of graphical model parameter

We also investigated the parameters a;b, and c that are found
to maximize the empirical metric (see Section 2). For each
sample, the set of best-fitting parameters is shown in Table 3.
For the parameter c, representing the prior probability for a
taxon to be present, the grid search was conducted in the
range c 2 f0:1; 0:3;0:5g. Here, setting c ¼ 0:5, which corre-
sponds to a uniform distribution, encodes the knowledge that
no prior information is available on any taxon. Table 3, how-
ever, shows that for most samples c ¼ 0:1 is the selected pa-
rameter. This observation stems from the fact that we are
dealing with single-organism samples in which, indeed, the
true prior for most taxa would be close to 0, as they are not
present. For avian bronchitis, the grid search identified a max-
imizing prior of c ¼ 0:3. In this case, the value is influenced
by the simultaneous “presence” of the three Beaudette avian
bronchitis strains, among which all peptides are shared.

The best-fitting parameter differs for each sample and is
most likely determined by multiple factors across the experi-
mental workflows, e.g., the variability in detection accuracy
and the inherent differences in the peptide-taxon mappings
between different species or genera. The parameter tends to
be more similar for different samples from the same strain
(for which different experimental workflows were used), such
as the two cowpox viruses or the two Sars-CoV-2 samples.
Therefore, for strains from a given species or strain, the user
is suggested to use the same parameter set to ensure the com-
parability of taxonomic scores. For the parameters a (corre-
sponding to the ‘emission probability’ of a peptide given its
parent taxons presence) and b (the false detection probability
of a peptide), the observed ranges, namely a 2 ½0:01; 0:4�,
b 2 ½0:01;0:7�, and a � b, are less intuitive and harder to ex-
plain. If interpreted according to their meaning in the noisy

Table 2. Change in posterior probabilities for the three best scoring

strains for the avian bronchitis sample when manually adding peptides

with differing scores.

Peptide constellation 1 2 3 4

Beaudette US 0.92 0.78 0.78 0.8
Beaudette CK 0.62 0.58 0.78 0.8
Beaudette 0.62 0.58 0.78 0.61

Table 3. Grid search results for the noisy OR conditional probability

tables.

Sample Strain a b c

PXD025131 SARS-CoV-2 0.4 0.7 0.1
PXD005104 Human herpesvirus 1

strain F
0.01 0.4 0.1

PXD002936 Avian bronchitis
(Beaudette CK)

0.05 0.1 0.3

PXD001165 Hendra virus 1994 0.05 0.05 0.1
PXD004095 Human adenovirus

strain 2
0.01 0.1 0.1
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OR model, the parameters suggest that the probability of ob-
serving a peptide, given the presence of its parent taxon, is
very low and that many peptides are detected erroneously.
However, we modeled a complex physical process with a sim-
ple noisy OR approach and made the assumption that a and b
are the same for all peptides, both of which are strong simpli-
fications. It is, therefore, more likely that our simplified noisy
OR model is not an accurate representation of the underlying
peptide detection, which impairs the direct interpretation of
the a and b values. Nevertheless, given the effectiveness of
PepGMs taxonomic inference, the use of this simplified model
remains justified.

3.5 Comparison to the identification results of TaxIt

We have already mentioned other pipelines that are able to in-
fer taxa on strain level. One of these, TaxIt, is the only tool
that is able to provide strain-level resolution for a broad range
of samples (Kuhring et al. 2020). We, therefore, compared the
prediction performance, run time, and memory use of PepGM
and TaxIt. Table 4 shows that PepGM predicted the viral
strain equally accurately as TaxIt for six out of eight viral
samples. In the two cases where the predictions of PepGM
were ambiguous (the avian bronchitis sample) or correct re-
garding the species but incorrect regarding the strain (the her-
pesvirus sample), the predictions of TaxIt were incorrect or
ambiguous, too. The challenges faced by TaxIt in accurately
inferring the taxonomy of these two samples likely stem from
the same factors affecting PepGM: in the case of avian bron-
chitis, the detected peptidomes were too similar, while for the
herpesvirus, the incorrect strain was overrepresented in the
reference databases.

Notably, PepGM is able to achieve a similar taxonomic res-
olution using only the peptide search results from a single
database search, while TaxIt relies on a second, refined
search. PepGM has the added benefit of providing confidence

scores, indicating when its inference might be less confident.
For the two coronavirus samples, TaxIt did not output
results—this is due to its use of the NCBI Entrez API and the
currently not updated NCBI taxonomy structure for certain
taxa in the NCBI nodes dump files. Future updates from
NCBI could potentially resolve this issue. TaxIt predicts the
SARS-CoV species and subsequently attempts to download
all corresponding strain-level proteins via the API. However,
the 260 associated strains were too large to be queried
through the API. In contrast, PepGM, which utilizes only the
NCBI protaccession2TaxID file to infer species candidates, di-
rectly recognizes SARS-CoV-2 as a candidate species. As a re-
sult, PepGM queries significantly less information through
the API, enabling it to complete the analysis faster. The total
run time and memory usage of PepGM and TaxIt are shown
in Table 4. The memory usage of PepGM and TaxIt is compa-
rable. As for run time, a single conclusion cannot be drawn
for all samples. In our benchmark, TaxIt’s run time was often
dominated by the time required to download individual pro-
tein entries through the NCBI API. In contrast, PepGM
queries whole proteomes per organism at once, making its
run time more dependent on the number of strains and pepti-
des included in the graph. Building the factor graph needs
querying pairwise peptide–taxon proteome comparisons, and
the more complex statistical computations, where messages
are updated iteratively for each graph edge, result in slower
performance as the graph size increases. PepGM’s grid search
can, in theory, be executed completely in parallel and could
thus be accelerated markedly by using more CPUs. If reducing
the number of points searched through in the grid search is
not feasible, one could choose to limit the search points, po-
tentially affecting result accuracy but leading to a significant
speed up. For two samples, cowpox virus PXD003013 and
the cowpox virus sample, the run time was a lot longer. For
both, it was dominated by few belief propagation runs on

Table 4. Inference accuracy of PepGM and TaxIt for all benchmark samples comparing run time and memory.

Sample Strain PepGM TaxIt

PXD003013 Cowpox virus (Brighton
Red)

Taxonomy � �
Run time 26:35:25 0:19:51
Memory 3.6 GB 4 GB

PXD014913 Cowpox virus (Brighton
Red)

Taxonomy � �
Run time 04:40:39 0:39:07
Memory 4.2 GB 2.4 GB

PXD018594 SARS-CoV-2 Taxonomy � X
Run time 0:49:09 –
Memory 3.9 GB –

PXD025130 SARS-CoV-2 Taxonomy � X
Run time 0:38:17 –
Memory 2.9 GB –

PXD005104 Human herpesvirus 1
(strain F)

Taxonomy 6 6

Run time 08:32:32 0:37:11
Memory 3.4 GB 3.8 GB

PXD002936 Avian bronchitis
(Beaudette CK)

Taxonomy 6 6

Run time 0:34:05 01:30:23
Memory 3.7 GB 2.7 GB

PXD001165 Hendra virus 1994 Taxonomy � �

Run time 01:48:08 01:35:12
Memory 3.9 GB 2.8 GB

PXD004095 Human Taxonomy � �
adenovirus (strain 2) Run time 02:20:04 03:06:57

Memory 5 GB 7.7 GB

� means correct identification, 6 means correct species but incorrect strain or ambiguous strain inference, and X means that the inference failed.

8 Holstein et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad289/7147900 by BAM
 (G

erm
any) user on 22 June 2023



certain parameter sets that took a very long time to converge.
In fact, some initial variable sets can cause oscillations in the
messages passed through belief propagation, slowing down
and possibly impeding convergence (Knoll et al. 2015).
Adding some kind of optional damping (Pretti 2005) could, in
the future, speed up the belief propagation algorithm for the
parameter sets in question.

4 Comparison to peptide similarity scoring
scheme

To further evaluate the usability of PepGM, we compared the
results of a very simple peptide similarity scoring to PepGM’s
results. We used the identified peptidome of a strain (as de-
scribed previously) and compared it against the expected pep-
tidome of the correct strain. The peptidome similarity of a
detected peptide set X and theoretical peptide set Y is then
given SimX;Y ¼ X\Y

maxðjXj;jYjÞ. Table 5 compares the peptidome
similarity for the two highest-scoring strains to the correct
strain.

Overall, the similarities were very low because the detected
peptides only cover a small fraction of the peptides that are
derivable from the available reference proteomes. This is
expected because only a fraction of all peptides are detected in
the mass spectrometer, whereas the reference strain proteomes
can be large and include uncurated proteomes (as the aim of
PepGM is to make use of all strain-level information avail-
able). For most samples, the correct strain had a slightly
higher peptidome similarity (between 0.1% and 3%); how-
ever, this is not true for the adenovirus sample that PepGM
correctly inferred. In cases where neither PepGM nor the simi-
larity score were able to tell both strains apart, such as for the
avian bronchitis samples, PepGM predicted a lower posterior
probability for the detected strains. This also applies to the
human herpesvirus sample, where relying solely on peptidome
similarity could lead to misleading conclusions. Moreover,
the PepGM score is designed to be directly interpretable as a
probability for the detected peptidome originating from a spe-
cific viral strain, and this probability score is comparable
across samples, with lower values for ambiguous predictions,
such as those for the avian bronchitis sample. This is not the
case for the similarity score, where the ambiguous avian bron-
chitis strain exhibited a lower similarity.

5 Discussion and outlook

We have shown that PepGM consistently and reliably deter-
mines the taxonomy of viral samples with strain-level accu-
racy. Using a graphical model approach, PepGM makes use
of peptide scores returned by database search engines or post-
processing tools to calculate meaningful confidence scores for
taxonomic inferences. This is especially useful in clinical set-
tings when knowing the reliability of strain prediction impacts
therapeutic decision-making.

For two of the benchmark samples, the taxonomic infer-
ences were either ambiguous or only the correct species, but
only a closely related viral strain was predicted. For avian
bronchitis, PepGM could not differentiate between the three
Beaudette subtypes. We showed that this was due to their
detected peptidomes being identical. Since PepGM indicates
lower confidence by low posterior probabilities, this remains
a defensible result, especially as TaxIt was not able to resolve
the ambiguity either. For the herpesvirus, PepGM identified
strain 17 instead of strain F as present in the sample. No other
algorithm could provide a correct taxonomic assignment for
this sample (Kuhring et al. 2020). As previously discussed, the
false prediction can be explained by the over-representation
of strain 17 in the available proteome references. Possible sol-
utions to explore might include the normalization of peptide
or taxon priors depending on proteome size, the number of
proteins in the database, or the introduction of weighted
edges in the graphical model.

In general, PepGM does not eliminate the reliance on public
reference databases. By integrating the results of a search
against the curated viral reference with the query of all avail-
able strain proteomes, PepGM aims to make the best use of
the available information. Uncurated references, which are in-
cluded by querying all available strain-level reference pro-
teomes, are prone to errors (Tao et al. 2020). Our graphical
model approach, which accounts for the probability of false
peptide identifications (and taxa inference), can partially miti-
gate this issue. A possible extension for PepGM is the inclu-
sion of protein-level information: the confidence in the
presence of a parent taxon might be higher if its identified
peptides spread across multiple proteins than if they come
from one single protein. One could also imagine providing an
entire protein-centric version of PepGM. However, an issue
stemming from the uncurated (but more strain-resolved) viral

Table 5. Comparison of the PepGM score and the peptidome similarity score for the correct viral strain and the detected peptides mapping to the two

highest-scoring strains in PepGM.

Sample Correct viral strain Detected viral strain PepGM Similarity

PXD003013 Cowpox virus (Brighton Red) Cowpox virus (Brighton Red) 0.96 0.0058
Orhtopoxvirus Abatino 0.21 0.0043

PXD014913 Cowpox virus Cowpox virus (Brighton Red) 0.88 0.0065
(Brighton Red) ACT virus 1 0.53 0

PXD018594 SARS-CoV-2 SARS-CoV-2 0.99 0.046
SARS Coronavirus Tor 2 0.96 0.0093

PXD025130 SARS-CoV-2 SARS-CoV-2 0.99 0.046
SARS Coronavirus Tor 2 0.96 0.0093

PXD005104 Human herpesvirus 1 (strain F) Human herpesvirus 1 (strain 17) 0.81 0.038
Human herpesvirus 1 (strain RH2) 0.79 0.049

PXD002936 Avian bronchitis (Beaudette CK) Avian bronchitis (Beaudette CK) 0.78 0.029
Avian bronchitis (Beaudette) 0.78 0.029

PXD001165 Hendra virus 1994 Hendra virus 1994 1 0.017
Nipah Henipavirus 0.97 0.0095

PXD004095 Human adenovirus (strain 2) Human adenovirus 2 0.88 0.0083
Human Adenovirus 6 0.86 0.011
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proteome databases arises: the proteome references available
are highly redundant. For example, Sars-CoV-2 currently has
over 29 million uncurated protein sequences (each with its
own accession number) when the virus itself consists of 29
proteins only. Smart prefiltering is necessary to avoid adding
noise instead of additional information to the graphical
model. As long as public proteome databases keep on focus-
ing on model organisms, a peptide-centric approach is not
feasible. When the correct species was removed from the ref-
erence database, PepGM predicted various species from the
correct genus with low-confidence scores, except for the
Hendra virus, where the Nipah henipavirus was incorrectly
inferred—still with a slightly lower probability. This demon-
strates that the score provided by PepGM accurately reflects
the accuracy of a taxonomic assignment. However, it also
indicates that setting a threshold score above which PepGM is
certain of its assignment would be ineffective. In general, mul-
tiple taxonomic assignments with similar low scores may sug-
gest that the correct strain or species is not present in the
database used. On the other hand, a few high but closely
scored taxonomic assignments could indicate an inability to
resolve between neighboring strains, as observed in the avian
bronchitis sample.

Upon closer inspection of the graphical model parameters
obtained from the grid search, it becomes evident that the val-
ues of parameters a and b do not hold any meaning in the
noisy OR model. Future development could focus on utilizing
peptide-specific a and b parameters, potentially based on fac-
tors such as the prediction of peptide probability after tryptic
cleavage (Fannes et al. 2013) for a, or posterior error proba-
bilities derived from PSMs but aggregated at the peptide level
for b.

Compared to other available tools that can be used for
strain-level inference of viral proteome samples, PepGM
reaches at least the taxonomic resolution of TaxIt, the previ-
ously best-performing approach, with the additional benefit
of providing confidence scores. Memory-wise, PepGM and
TaxIt are comparable, but for the run time, there are sample-
specific differences. The run time of PepGM, except for two
samples, did not exceed 4 hours. This can still be a hindrance
in clinical settings, where fast decisions need to be made. A
speed-up can be achieved by improving the belief propagation
algorithm. As mentioned previously, certain initial variable
sets cause oscillations to slow down while impeding conver-
gence. Damping these messages might be a future solution, as
was done for the protein inference algorithm based on belief
propagation (Pfeuffer et al. 2020).

Currently, PepGM is restricted to the taxonomic inference
of viral samples; however, the graphical model approach can
be extended to encompass all types of organisms. In the clini-
cal context, strain-level inference of pathogenic bacterial sam-
ples is particularly relevant. To facilitate this, PepGM could
be expanded by incorporating a general bacterial reference
database, such as RefSeq for bacteria, and including peptide–
taxon mapping for bacteria as well. Due to the necessity of
downloading strain-level peptides through the NCBI API and
the fact that PepGM downloads strain-level information for
all target species included in the graph, it would likely be es-
sential to establish local database options to optimize speed
and bypass the NCBI API. Another alternative to enhance
PepGM is to integrate it with pre-digested peptide databases
like Unipept, where tryptic peptides are already taxonomi-
cally annotated. Additionally, metaproteomics presents

another potential area of application, where complex micro-
bial mixtures require taxonomic and functional identification.
In this context, peptide–taxon and peptide–function relation-
ships can be represented in bipartite graphs, allowing for the
application of a similar graphical model. However, the metric
for determining the best graphical model parameters would
need to be adapted for the simultaneous presence of multiple
organisms.

Lastly, the application of PepGM for strain-level identifica-
tion of viral proteomes encounters a practical challenge due
to the small size of viruses and the consequently low abun-
dance of viral proteins.

6 Conclusion

In this work, we have presented PepGM, a new graphical
model-based workflow for the strain-level taxonomic assign-
ment of viral proteome samples. We have shown that PepGM
is able to consistently provide accurate taxonomic inference
with associated, meaningful confidence scores, a feature that
could be especially helpful in the clinical context when medi-
cal decisions have to be made based on the confidence of the
identification results. More generally, we have demonstrated
the usability of graphical models for the taxonomic inference
of proteomes samples using the restricted example of viral
samples.
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