Supporting Information

Investigation of matrix effects in nitrogen microwave inductively coupled atmospheric-pressure plasma mass spectrometry (MICAP-MS) for trace elemental analysis in steels

Alexander Winckelmann^{1,2}, Janina Roik¹, Sebastian Recknagel¹, Carlos Abad^{*1}, Zengchao You^{*1}

¹Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany

²Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany

*Corresponding authors: Carlos.Abad@bam.de and Zengchao.You@bam.de

List of Tables

S1: Calibration range and corresponding IS used for aqueous and matrix-matched calibration.

S2: Optimized voltages applied on the ion-optics used in MICAP-MS.

S3: LODs and LOQs for aqueous and matrix-matched calibration.

List of Figures

S1: plasma gas flow – IS signal recovery in blank and matrix, and matrix tolerance.

S2: auxiliary gas flow – IS signal recovery in blank and matrix, and matrix tolerance.

S3: sheath gas flow – IS signal recovery in blank and matrix, and matrix tolerance.

S4: sample depth – IS signal recovery in blank and matrix, and matrix tolerance.

S5: skimmer boost voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S6: first extraction lens voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S7: second extraction lens voltage - IS signal recovery in blank and matrix, and matrix tolerance.

S8: third extraction lens voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S9: corner lens voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S10: left mirror voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S11: right mirror voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S12: bottom mirror voltage - IS signal recovery in blank and matrix, and matrix tolerance.

S13: entrance plate voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S14: entrance lens voltage – IS signal recovery in blank and matrix, and matrix tolerance.

S15: mass shift – IS signal recovery with varying skimmer boost, extraction lenses and corner lens voltages.

S16: mass shift – IS signal recovery with varying mirrors, entrance plate and lens voltages.

S17: acid matrix effect – IS signal recovery with increasing acid concentration compared to 2 % for nitric and hydrochloric acid.

Element	m/z	Internal	Calibration levels	
		standard	μg L ⁻¹	
Al	27	⁴⁵ Sc	1 - 50	
Са	40, 44	⁴⁵ Sc	0.1 - 5	
V	50, 51	⁴⁵ Sc	10 - 500	
Cr	52, 53	⁴⁵ Sc	10 - 500	
Mn	55	⁴⁵ Sc	10 - 250	
Со	59	⁴⁵ Sc	10 - 250	
Ni	60, 61, 62	⁴⁵ Sc	10 - 500	
Cu	63, 65	⁴⁵ Sc	10 - 500	
Zn	66, 67, 68	⁸⁹ Y	0.1 - 5	
Ga	69, 71	⁸⁹ Y	0.1 - 5	
Nb	93	⁸⁹ Y	1 - 50	
Mo	95, 97, 98	⁸⁹ Y	1 - 50	
Sn	117, 118, 119	¹¹⁵ In	1 - 50	
Sb	121, 123	¹¹⁵ In	1 - 50	
W	182, 183	¹⁵⁹ Tb	10 - 250	
Pb	206, 207, 208	²⁰⁹ Bi	0.1 - 5	

Table S1: Calibration range and corresponding IS used for aqueous and matrix-matched calibration.

Table S2: Optimized voltages applied on the ion-optics used in MICAP-MS.

Ion Optics (V)					
First Extraction Lens Voltage	-110				
Second Extraction Lens Voltage	-230				
Third Extraction Lens Voltage	-520				
Corner Lens Voltage	-500				
Mirror Lens Left Voltage	54				
Mirror Lens Right Voltage	48				
Mirror Lens Bottom Voltage	60				
Entrance Lens Voltage	9				
Entrance Plate Voltage	-60				
Fringe Bias	-4.5				
Pole bias	0				

Element	m/z	Aquaous calibration		Matrix-matched calibration	
		LOD (µg L ⁻¹)	LOQ (µg L ⁻¹)	LOD (µg L ⁻¹)	LOQ (µg L ⁻¹)
Al*	27	1.1	3.2	0.7	2.1
Ca	40	2.0	6.0	3.3	9.8
Ca	44	5.2	15.7	-	-
V	50	0.48	1.5	1.63	4.9
V*	51	0.014	0.041	0.068	0.20
Cr*	52	0.22	0.67	1.3	4.0
Cr	53	0.30	0.89	1.4	4.1
Cr	all	0.23	0.69	1.3	4.0
Mn*	55	0.17	0.52	0.14	0.43
Co*	59	0.11	0.32	0.11	0.34
Ni	60	1.2	3.6	2.4	7.1
Ni	61	1.6	4.7	2.8	8.5
Ni	62	1.4	4.1	2.2	6.6
Ni	all	1.2	3.6	2.4	7.1
Cu	63	0.42	1.3	0.42	1.3
Cu	65	0.39	1.2	0.40	1.2
Cu*	all	0.40	1.2	0.41	1.2
Zn	66	0.29	0.86	0.21	0.62
Zn	67	0.81	2.4	0.58	1.7
Zn	68	0.32	0.96	0.65	2.0
Zn	all	0.31	0.93	0.24	0.72
Ga	69	0.0080	0.024	0.032	0.097
Ga	71	0.0024	0.0071	0.05	0.16
Ga*	all	0.0043	0.013	0.016	0.048
Nb*	93	4.9	14.8	0.93	2.8
Mo	95	0.18	0.53	0.27	0.81
Мо	97	0.24	0.72	0.19	0.57
Мо	98	0.28	0.83	0.45	1.3
Mo*	all	0.20	0.61	0.29	0.88
Sn	117	0.017	0.052	0.015	0.044
Sn	118	0.0095	0.028	0.011	0.034
Sn	119	0.019	0.057	0.018	0.053
Sn*	all	0.0055	0.016	0.012	0.035
Sb	121	0.0036	0.011	0.0065	0.019
Sb	123	0.0046	0.014	0.0052	0.016
Sb*	all	0.0028	0.0084	0.0035	0.010
W	182	0.015	0.045	0.026	0.079
W	183	0.019	0.057	0.024	0.073
W	all	0.016	0.047	0.010	0.031
Pb	206	0.030	0.089	0.018	0.054
Pb	207	0.035	0.11	0.011	0.033
Pb	208	0.031	0.093	0.012	0.036
Pb*	all	0.031	0.094	0.013	0.039

Table S3: LODs and LOQs for aqueous and matrix-matched calibration. (* used for quantification)

Figure S1: plasma gas flow – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S2: auxiliary gas flow – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S3: sheath gas flow – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S4: sample depth – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S5: skimmer boost voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S6: first extraction lens voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S7: second extraction lens voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S8: third extraction lens voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S9: corner lens voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S10: left mirror voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S11: right mirror voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S12: bottom mirror voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S13: entrance plate voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S14: entrance lens voltage – internal standard signal recovery (relative to highest signal in blank) in blank and matrix, and matrix tolerance.

Figure S15: mass shift – internal standard signal recovery in blank (relative to highest in blank) with varying skimmer boost, extraction lenses and corner lens voltages.

Figure S16: mass shift – internal standard signal recovery in blank (relative to highest in blank) with varying mirrors, entrance plate and lens voltages.

Figure S17: acid matrix effect – internal standard signal recovery with increasing acid concentration compared to 2 % for nitric and hydrochloric acid.