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A band width determination using the first derivative of the band profile

systematically underestimates the true Bragg angle. Corrections are proposed to

compensate for the resulting offset �a/a of the mean lattice parameters derived

from as many Kikuchi band widths as possible. For dynamically simulated

Kikuchi patterns, �a/a can reach up to 8% for phases with a high mean atomic

number Z, whereas for much more common low-Zmaterials the offset decreases

linearly. A predicted offset �a/a = f(Z) is therefore proposed, which also

includes the unit-cell volume and thus takes into account the packing density of

the scatterers in the material. Since Z is not always available for unknown

phases, its substitution by Zmax, i.e. the atomic number of the heaviest element in

the compound, is still acceptable for an approximate correction. For simulated

Kikuchi patterns the offset-corrected lattice parameter deviation is �a/a <

1.5%. The lattice parameter ratios, and the angles �, � and � between the basis

vectors, are not affected at all.

1. Introduction

Our systematic investigation of physics-based simulated

backscattered Kikuchi diffraction (BKD) patterns in Part I of

this series (Nolze et al., 2023) showed that the Bragg angle in

the edge profile of a Kikuchi band is fairly indeterminate. As

an alternative, the band width Whkl = (�min � �max) as the

distance between the (global) extreme positions of the first

derivative is proposed as a rough estimate of the double Bragg

angle 2�hkl . Although the first derivative works automatically

and gives reproducible results, it yields slightly different lattice

parameters ahkl from Kikuchi band widths indicating the

(inverse) distance to the reciprocal-lattice point hkl. The

resulting distribution of ahkl as calculated using the software

CALM (Nolze et al., 2021) is described by a mean aCALM and a

standard deviation �hkl .
Since for simulated patterns the true lattice parameters are

known, the offset �a/a = (aCALM � a0)/a0 can easily be

displayed as a function of the mean atomic number Z of the

respective phase. For simulated patterns, the offset is always

positive (0 < �a/a < 8%). To a first approximation it scales

with Z or the backscatter coefficient � that can be derived

from it, just as in the study of numerous experimental Kikuchi

patterns by Nolze et al. (2021). The lattice parameter offset

determined on experimental BKD patterns appears to be

shifted by only �4%, such that �4 < �a/a < 4%.

The true reasons for this offset shift are currently unknown.

They could be the result of imperfect input values during

simulation of the Kikuchi patterns, or arise from systematic
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errors made in experimental patterns and an incorrectly

determined projection centre (PC) or from excess deficiency

effects. It is also conceivable that the differences are due to a

deviating electron energy, e.g. if the effective landing energy is

lower than the accelerating voltage. The resulting higher

electron wavelength �e would suggest a shorter translation

periodicity of the lattice. Since a, b, c / 1/�hkl / 1/�e /
ffiffiffiffi
E

p
0,

for E0 = 20 kV the effective electron energy would have to be

about 1.5 keV lower to account for the offset shift of �a/

a ’ 4%.

On the other hand, it is known that not E0 but rather an

energy distribution is likely to be relevant for experimental

BKD patterns, whose governing maximum is slightly below E0

(Wells, 1974; Reimer, 1998; Goldstein et al., 2018). Winkel-

mann et al. (2019) showed that for Si the mean energy is

estimated to be 1–1.5 keV below the discussed E0 = 15 keV.

This agrees surprisingly well with the shift observed here,

though this effect is predicted to be progressively smaller for

higher-Z materials. Winkelmann et al. (2019) dealt mainly with

the change in the effective electron energy as a function of the

scattering angle, which is not considered at all in BKD pattern

simulations.

2. Offset corrections

If we assume that the offset curve of the simulated BKD

patterns also explains that of the experimental patterns to a

first approximation, the goal is to predict the offset based on

the chemical composition of the phase, for example, and thus

be able to correct aCALM .

2.1. Elements

For simplicity, the elements are analysed first and then

compounds, since for the former Z ¼ Z holds.

In Fig. 1(a) the relative offset �a/a is shown as hollow

symbols for as many elements as possible of different structure

types; for some elements more than a single modification was

analysed, e.g. for Fe all three are shown. The light-grey error

bars refer to �hkl which also increases with Z. The distribution

of hollow symbols can be roughly described by a linear

approach,

�a

a
ð%Þ ¼ 0:076Z þ 0:442; ð1Þ

plotted in Fig. 1(a) as a dark-grey line. However, clearly visible

hump-shaped deviations from this line occur for elements with

Z = 25–30, Z = 40–50 and Z = 70–80.

The positions of these humps are reminiscent of the mass

density 	, shown for comparison in Fig. 1(b) as blue filled

circles. The undulating curve is due to the varying binding

forces and the resulting similarly varying packing density of

the atoms, which can be described in a similar way to the mass

density. Therefore, for a better description of the offset curve,

the mass density is taken into account, which is as much of an

unknown for an unknown phase as the lattice parameters to be

determined. However, aCALM and the unit-cell volume Vuc

derived from it are completely sufficient for a suitable esti-

mate.

The mass density 	 is the quotient of the mass muc and

volume Vuc of the unit cell. muc is equivalent to the number of

formula units (n) per unit cell multiplied by the atomic mass

M. Since for elementsM’ 2Z we can formulate a relationship

between density 	 and atomic number Z,

	 / nM

Vuc

’ 3:321
n

Vuc

Z: ð2Þ

(n/Vuc)Z represents the proton density, which is assumed to be

crucial for backscattering since the interaction happens

between the primary electrons and the core of the atom. If

there is an anomaly in the proton density, a deviation from the

linear lattice parameter offset follows.

Fig. 1(b) proves that, apart from a proportionality factor of

1.25, the density 	 (light-blue circles) for elements is almost

congruent with 3.321nZ/Vuc (red filled circles). [The factor

3.321 results from 2 ( ’ M/Z) divided by Avogadro’s number

6.02214076 � 1023 and multiplied by cm3/Å3 = 1024.]

Accepting the similarity of the hump positions as a suffi-

cient argument for correlation, the offset shown in Fig. 1(a)
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Figure 1
(a) The relative offset of the mean lattice parameter (aCALM� a0)/a0 from
simulated Kikuchi patterns of various single-element structures. The
different colours of the hollow circles indicate the structure type: A1 =
face-centred cubic (f.c.c.), A2 = body-centred cubic (b.c.c.), A3 =
hexagonal close-packed (h.c.p.), A4 = diamond and Ax = other element
structure types. The error bars refer to �hkl . The predicted offsets
considering both Z and the unit-cell volume Vuc are overlaid as black
dots. (b) A plot to explain the significant deviations from the linear
approach [dark-grey straight line in panel (a)], suggesting a correlation
with the mass density 	 (left-hand axis) satisfyingly approximated by the
right-hand axis (2 � 1024/NA)(nZ/Vuc) (NA is Avogadro’s number).
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can be satisfactorily predicted by a quadratic equation with

nZ/Vuc as an additional correction term in (1),

�a

a
¼ f ðZ; n;VucÞ ’ p

n

Vuc

Z

� �2

þqZ þ r: ð3Þ

For elements, the factors p, q and r in equation (3) are refined

by a least-squares approach to give p = 0.098, q = 0.064 and r =

0.525, which leads to the distribution of black dots shown in

Fig. 1(a). By inserting Z and Vuc into (3) the offset can be

corrected.

2.2. Compounds

If the same correlation between lattice parameter offset and

nZ=Vuc is assumed for compounds, the main challenge is the

estimation of the mean atomic number Z.

Z has been described in the past only in purely empirical

terms. A few approaches (I–III) are discussed, for example, by

Joy (1995), Reimer (1998) and Howell et al. (1998) and use

either the mass fraction ci or the atomic fraction ai :

Approach I
Pn
i¼1

ciZi;

Approach II
Pn
i¼1

ciZ
2
i

.Pn
i¼1

ciZi;

Approach III
Pn
i¼1

aiZ
2
i

.Pn
i¼1

aiZi:

ð4Þ

They not only change the wanted (vertical) offset for the

phase but also shift the respective point horizontally according

to the estimates proposed in (4).

To start with the simplest possible phases, the master

patterns of 96 binary phases of type AB were simulated and

analysed. Among these, there were 43 with structure type B1

(NaCl), 12 with B2 (CsCl), 16 with B3 (zincblende) and eight

with B4 (wurtzite). Compounds of light, heavy, or both light

and heavy elements were selected since we expected the

largest deviation in the fit for such phases.

In addition, BKD patterns were analysed for a further 136

common phases that consist of up to five elements and are of

greater technical or mineralogical interest, such as borides,

carbides, oxides, sulfides, arsenides, selenides, carbonates,

sulfates, silicates and various intermetallic phases.

Direct comparisons of the Z models in (4) show that the

smallest discrepancies between the lattice parameter offset

from CALM and a fit using the quadratic correction in (3)

accumulate from approach I: Z ¼ P
ciZi . The best match

between the offset result using CALM and that predicted

using Z and Vuc is obtained when the following constants are

used in (3): p = 0.133, q = 0.064 and r = 0.686. In Fig. 2, the

predicted offsets are again represented by black dots over-

laying the �a/a derived using CALM (hollow circles). The

different colours of the circles distinguish between the

different structure types. For a better comparison with Fig. 1

the linear fit of (1) is drawn again as a dark-grey straight line.

Fig. 2 suggests that the quadratic term in equation (3) is not

as important for compounds as for elements. The offset of the

compounds scatters apparently randomly around the grey line

and results in �a/a = �1%. The distribution of the filled

circles confirms that for many phases the difference between

linear and quadratic fits is small. Nevertheless, especially for

Z > 60, considerable offsets appear which are well predicted.

On the other hand, the majority of binary phases with Z =

70 � 3 show a lower offset than predicted by the linear or

quadratic fits. In addition, the number of compounds is higher

than that of elemental structures. The symbols of many phases

in Fig. 2 inevitably overlap or obscure each other, i.e. one

really only sees the outliers. Comparing the frequency distri-

butions of the relative deviations of the predicted offset (fit)

and the offset from CALM for elements and compounds, it

turns out that they are quite similar (Fig. 3). They all look

similar to a normal distribution. The minimal shift of the

maxima of �0.1% indicates a slight overestimation of the

offset by the applied fit. However, compared with the FWHM

of the distribution of �0.6% this is negligible.

The difference between the offset determined by CALM

and the offset predicted for correction should also be related

to the uncertainty �hkl in the band width determination, and it
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Figure 2
CALM-derived (hollow circles) and fitted (black dots) lattice parameter
offsets for 249 different compounds. Both trace positions and the PC are
known, and the error bars describe �hkl resulting from the band width
distribution in each pattern. Z is derived by the mean of the products
between the mass fraction ci and atomic number Zi.

Figure 3
The relative frequency distribution of the deviations between the fitted
lattice parameter calculated with equation (3) and the lattice parameter
derived using CALM. Considered are 99 elements and 249 compounds.
The application of Zmax instead of Z generates slightly higher predicted
offsets, cf. the grey bar at 0.6%.
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characterizes the quality of aCALM. The frequency distribu-

tions of |afit � aCALM|/aCALM and of �hkl/aCALM in Fig. 4 show

that the standard deviation �hkl on aCALM is considerably

higher than imperfect corrections from the fit. This can also be

seen in Fig. 2 when looking at the error bars, which are

significantly longer than the deviation of the fitted black points

from the corresponding hollow circles.

Considering the larger uncertainty of �hkl in Fig. 4, the

linear approach of equation (1) shown in Fig. 1 could also be

used as-is for a simple correction on aCALM . This simplifies the

fitting considerably because one does not need to know n, the

number of formula units in the unit cell. Vuc , on the other

hand, is no problem because, although uncorrected, it is

determined sufficiently accurately by CALM. However, a

remaining problem is that even then the chemical composition

of the unknown phase must be known as accurately as possible

in order to obtain a reliable Z.

2.2.1. Estimation of n. The quadratic correction term in (3)

contains n, the number of formula units distributed in the unit

cell, in addition to the unit-cell volume Vuc . For the 249 phases

analysed, n was of course known. However, this is not the case

for an unknown phase.

From equation (3) it follows that �a/a increases with n. In

Fig. 5 five phases with different n have been chosen as

examples. n is given as a number in parentheses after each

phase in the legend, and is shown in Fig. 5 for four of the five

phases as black filled symbols; the exception is Cu3Au, where

n = 16 is far outside the displayed range.

Since according to (3) the difference between offsets for

different n is given by

�a

a

� �
x

� �a

a

� �
1

¼ p
Z

Vuc

� �2

n2x � n21
� �

; ð5Þ

the absolute level at n = 1 and the curvatures in Fig. 5 depend

on the phase-specific ratio Z=Vuc . The curvature increases the

higher Z and the lower Vuc . A small Vuc can only be associated

with a small n. On the other hand, and as Fig. 5 shows, for

compounds with higher n the curvature decreases successively

for wrong n and has less and less influence on �a/a. Thus, it

seems reasonable to assume n = 1 for an unknown phase as a

first approximation. The resulting deviations between the true

n and n = 1 for all investigated compounds are shown

graphically in Fig. 6 for all analysed phases. Of the 249

compounds considered, 36 have n = 1 and mainly represent

the first bar in the inset histogram in Fig. 6. Nearly half the

compounds have an offset deviation <0.075%, independent of

their true n. We conclude that, for unknown phases, the use of

n = 1 nevertheless leads to acceptable offset corrections.

Larger deviations are apparently only to be expected for

phases with Z > 60 (Fig. 6).

The least-squares optimized parameters for offset predic-

tion with n = 1 and Z ¼ Z in equation (3) are p = 0.113, q =

0.069 and r = 0.621.

2.2.2. The use of Zmax. The determination of the chemical

composition of unknown crystalline phases in a matrix

becomes increasingly uncertain, especially in the case of very

small inclusions or precipitates, when it cannot be ruled out

that a considerable part of the chemical signal used for the

determination comes in fact from the surrounding matrix.

However, there is possibly another relationship inherent in

Z. In approach I in (4) the mass fraction
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Figure 4
A comparison between the deviation of the relative lattice parameters
derived using CALM and corrected with equation (3), and the band
width-related standard deviation �hkl.

Figure 5
The variation in the offset�a/a as a function of n, the assumed number of
formula units in the unit cell. The correct n is given in parentheses for
each discussed phase. For Cu3As the use of n = 1 instead of 16 delivers no
offset, for GaN the offset is �0.1%, and for NbC and W2C it is �0.3%.

Figure 6
The difference between �a/a for n = 1 and the true n, displayed as semi-
transparent discs. Additionally the histogram proves that, for most
phases, this difference is lower than 0.1%. Higher deviations occur only
for phases with higher Z.
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ci ¼
miP
mi

’ ZiP
Zi

ð6Þ

is multiplied by Zi so that

Z ¼ P
ciZi ’

X ZiP
Zi

Zi ¼
P

Z2
iP

Zi

: ð7Þ

The weighting of heavy elements in the estimation of Z in

compounds is clearly higher than that of light elements.

The analysis of all studied compounds showed that the

element with the highest atomic number Zmax can substitute Z

to a good approximation (Fig. 7): the comparison of Z and

Zmax shows an almost proportional relationship (dotted line).

Replacing Z by Zmax and assuming n = 1, the following

parameter set can be fitted: p = 0.117, q = 0.055 and r = 0.526.

The diagram in Fig. 8(a) displays the predicted offset (black

dots) but this time plotted as function of Zmax. Since Zmax >Z,

relative to their position in Fig. 2 all hollow circles repre-

senting the lattice parameter offset derived in CALM are

shifted to the right, which results in a lower linear slope of the

distribution (light-grey dotted line). The remaining offset

difference �fit�CALM between the offset predicted with Z =

Zmax and n = 1 and the one resulting from CALM is shown in

Fig. 8(b). Although the deviation is about one-third larger

than in Fig. 2 for the true Z and n, it is still often less than 1%,

which in our view represents a real alternative for phases

whose chemical composition is not well known except for the

heaviest element of the compound.

Thus, the resulting correction of the absolute lattice para-

meters by the predicted offset via Zmax will not be as good as

for a phase with known composition, but we expect that the

supposed error increases only for phases with heavy elements

and amounts to a maximum of 2% [Fig. 8(b)].

3. Conclusions

For simulated Kikuchi patterns aCALM is systematically too

high. The offset approximately correlates with Z ¼ P
ciZi of

the phase. However, the use of Zmax and n = 1 is, to a first

approximation, also an acceptable approach to estimate the

offset �a/a,

�a

a
’ 0:117

Zmax

Vuc

� �2

þ 0:055Zmax þ 0:526: ð8Þ

This enables the derivation of a corrected lattice parameter,

acorr ¼ 1� 1

100

�a

a

� �� �
aCALM: ð9Þ

The deviation on the lattice parameter a0 used during signal

simulation of the master pattern is presented in Fig. 9.

Higher Zmax tend to generate higher deviations. For the 249

compounds studied, the relative deviation is given by

�1:3% � acorr � a0
a0

� 1:7% ð10Þ

and is therefore clearly smaller than the 10% estimated by

Dingley & Wright (2009). However, these uncertainty limits

are only valid for simulated patterns. For experimental

patterns additional errors like trace position, projection centre
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Figure 7
The deviation between Z and Zmax for 249 compounds, displayed as semi-
transparent dots. The solid light-grey line indicates the perfect match for
elements (Zmax ¼ Z). For compounds and alloys Zmax >Z. The dotted
line indicates a linear trend.

Figure 8
(a) The offset distribution as a function of Zmax for 249 compounds,
displayed as hollow circles. For comparison, the light-grey dotted line
indicates the offset level displayed in Fig. 2. The black dots represent the
offset according to equation (3) with Z = Zmax. (b) A plot highlighting the
differences between the hollow circles and the respective black dots.

Figure 9
The relative deviation between the corrected lattice parameters derived
using CALM and the first derivative, and the lattice parameter a0 used
during Kikuchi pattern simulation.
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and wavelength distribution will affect the result in such a way

that the error will increase.

Since all other lattice parameters, i.e. a/b, c/b, �, � and �,
remain unchanged, the missing basis vector lengths can be

determined:

bcorr ¼ acorr
1

a=b
and ccorr ¼ acorr

c=b

a=b
: ð11Þ
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