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ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen of considerable medical
importance, owing to its pronounced antibiotic tolerance and association with cystic
fibrosis and other life-threatening diseases. The aim of this study was to highlight the
genes responsible for P. aeruginosa biofilm tolerance to antibiotics and thereby identify
potential new targets for the development of drugs against biofilm-related infections. By
developing a novel screening approach and utilizing a public P. aeruginosa transposon inser-
tion library, several biofilm-relevant genes were identified. The Pf phage gene (PA0720) and
flagellin gene (fliC) conferred biofilm-specific tolerance to gentamicin. Compared with the
reference biofilms, the biofilms formed by PA0720 and fliC mutants were completely elimi-
nated with a 4-fold-lower gentamicin concentration. Furthermore, the mreC, pprB, coxC, and
PA3785 genes were demonstrated to play major roles in enhancing biofilm tolerance to
gentamicin. The analysis of biofilm-relevant genes performed in this study provides impor-
tant novel insights into the understanding of P. aeruginosa antibiotic tolerance, which
will facilitate the detection of antibiotic resistance and the development of antibiofilm
strategies against P. aeruginosa.

IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen of high medical
importance and is one of the main pathogens responsible for the mortality of patients
with cystic fibrosis. In addition to inherited antibiotic resistance, P. aeruginosa can form
biofilms, defined as communities of microorganisms embedded in a self-produced matrix
of extracellular polymeric substances adhering to each other and/or to a surface. Biofilms
protect bacteria from antibiotic treatments and represent a major reason for antibiotic fail-
ure in the treatment of chronic infections caused by cystic fibrosis. Therefore, it is crucial
to develop new therapeutic strategies aimed at specifically eradicating biofilms. The aim
of this study was to generalize a novel screening method for biofilm research and to identify
the possible genes involved in P. aeruginosa biofilm tolerance to antibiotics, both of which
could improve the understanding of biofilm-related infections and allow for the identifica-
tion of relevant therapeutic targets for drug development.
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Since the 1950s, antimicrobial drugs have been mainly developed in screens using plank-
tonic bacteria (1). However, more than 80% of human chronic infections are associated

with biofilms (2). Biofilms are communities of microorganisms embedded in a self-produced
matrix of extracellular polymeric substances adhering to each other and/or to a surface (2).

Editor Cheryl P. Andam, University at Albany

Copyright © 2023 Valentin et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Jules D. P. Valentin,
jules.valentin68@gmail.com, or Qun Ren,
qun.ren@empa.ch.

*Present address: Jules D. P. Valentin,
Department of Chemistry, University of
Fribourg, Fribourg, Switzerland.

The authors declare no conflict of interest.

Received 8 August 2022
Accepted 15 January 2023

Month YYYY Volume XX Issue XX 10.1128/spectrum.03099-22 1

OBSERVATION

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

20
 F

eb
ru

ar
y 

20
23

 b
y 

14
1.

63
.1

9.
16

9.

https://orcid.org/0000-0003-0760-8900
https://orcid.org/0000-0003-0627-761X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.03099-22
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.03099-22&domain=pdf&date_stamp=2023-00-00
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.03099-22&domain=pdf&date_stamp=2023-2-13


Sessile bacteria in biofilms are protected from immune system defenses and can tolerate
up to 1,000 times higher antibiotic concentrations than planktonic cells, requiring doses
that cannot be administered in humans (3). New therapeutic options are urgently needed
to combat biofilm-related infections, especially those caused by the multidrug-resistant
pathogen Pseudomonas aeruginosa (4, 5). We hypothesized that studying biofilm-relevant
genes would advance the mechanistic understanding of P. aeruginosa biofilm tolerance to
antibiotics and highlight new targets for antibiofilm drug development. This approach dif-
fered from other global screenings by rationally reducing the number of analyzed genes,
allowing a more extensive characterization of their roles in biofilms.

Biofilm-relevant genes were selected from a transcriptomic study by Whiteley et al.,
in which 73 genes were upregulated or downregulated by more than 2-fold in P. aeruginosa
biofilms compared with planktonic cells (6). Of the 73 genes, 42 were functionally charac-
terized using a P. aeruginosa MPAO1 transposon mutant library (7) and our in vitro assay
system (8, 9) (see Table S1 in the supplemental material for additional information on the
selected transposon mutants). The antibiotic tolerance of P. aeruginosa biofilms was tested
using gentamicin, an aminoglycoside commonly used to treat P. aeruginosa infections (10)
(Fig. 1 and Table 1), and the last-resort antibiotic colistin (Fig. S1; see also Fig. S2 to S4 for
detailed results). To account for the potential influence of the transposon Tn5 back-
ground (9), MPAO1 mutants missing the fiuA and arnB genes, which encode a receptor for

FIG 1 Influence of biofilm-associated genes on biofilm formation (A) and biofilm tolerance to gentamicin (B) in P. aeruginosa MPAO1. (A)
Biofilm biomass was quantified using crystal violet (CV) staining after 24 h of growth in M9 medium under static conditions at 37°C. (B) Biofilm
tolerance to gentamicin was quantified by measuring the turbidity of the biofilm suspension after 24 h of gentamicin treatment at 100 mg/mL and
24 h recovery in fresh M9 medium. Biofilm recovery was expressed relative to untreated biofilms (defined as 100%). The results represent the
means 6 standard deviations (SD) of two independent biological repeats (three for the fiuA, arnB, and PA0720 mutants), with eight (A) and four (B)
technical repeats each. Student t tests were performed using the biomass and recovery of the fiuA mutant as references. **, P , 0.01;
***, P , 0.001. The arrows in front of each gene indicate whether the gene is upregulated (green) or downregulated (red) in P. aeruginosa biofilm
cells compared with planktonic cells (6). (C) The phenotypic distribution of all tested P. aeruginosa mutants (obtained by combining the results from
panels A and B). The green symbols represent the mutants used as references. The red symbols indicate mutants with significantly different biofilm
tolerance to gentamicin, compared with the reference fiuA mutant (P , 0.001).
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heterologous siderophores (11) and colistin resistance (12), respectively, were selected as con-
trol reference strains. As previously shown (9, 13), the inactivation of fiuA or arnB in P. aerugi-
nosa MPAO1 did not impact biofilm formation and tolerance toward gentamicin and led
to phenotypes representative of most analyzed mutants (Fig. 1).

Mutants with increased biofilm formation and tolerance to gentamicin. The
screening identified several genes that promoted biofilm formation and tolerance to genta-
micin once inactivated. Mutations in the genes encoding the rod shape-determining protein
MreC (14), the response regulator PprB (15), and the cytochrome c oxidase subunit CoxC
(16) increased the P. aeruginosa biofilm biomass by approximately 4-fold compared with
that of the reference mutant (Fig. 1A). These three mutants also showed high biofilm recovery
after treatment with 100mg/mL gentamicin (Fig. 1B). Further characterizations revealed similar
minimal bactericidal concentrations of biofilms (MBC-B) of gentamicin for fiuA and pprB
mutants (Table 1) but a significantly higher recovery of pprB mutants after exposure to a
sub-MBC-B of gentamicin (Fig. S2 and S3). The latter observation concurred with previous
studies which showed that pprB overexpression increased membrane permeability and
aminoglycoside susceptibility (15). The coxC mutant exhibited a lower MBC-B of gentamicin
than the fiuAmutant (Table 1), a similar MBC of planktonic cells (MBC-P), and higher biofilm
recovery after exposure to a sub-MBC-B of gentamicin. Inactivating the genes encoding the
aa3-type cytochrome c oxidase (i.e., coxB and coxA) did not influence biofilm formation or
tolerance to gentamicin (Fig. 1). Extensive research is needed to decipher the precise roles
ofmreC, pprB, and coxC in antibiotic resistance and biofilm formation. However, our results
suggest that the decreased pprB and coxC expression levels in P. aeruginosa biofilms (6) repre-
sent an active mechanism of tolerance against gentamicin.

Mutants with altered tolerance to gentamicin but unchanged biofilm formation.
Our screening results revealed that the inactivation of the genes encoding the hypotheti-
cal protein PA3785, the bacteriophage protein PA0720, and the flagellin FliC significantly
altered biofilm tolerance to gentamicin independently to biofilm biomass and growth rate
(Fig. 1, Fig. S4, and Table 1).

The conserved hypothetical protein encoded by the PA3785 gene appeared to be
important for biofilm tolerance to gentamicin (Fig. 1B). Despite the unchanged MBC-B value,
PA3785mutant biofilms exhibited the highest recovery among all tested mutants after expo-
sure to a sub-MBC-B of gentamicin (Fig. 1B and Fig. S2). The PA3785 gene was downregulated
in P. aeruginosa biofilms compared with planktonic cells and upregulated 5-fold higher
in tobramycin-treated biofilms than in untreated biofilms (6). Its exact function remains
unknown, and its role in P. aeruginosa remains to be elucidated through further research.

Filamentous Pf1-like bacteriophages (Pf phages) play major roles in biofilm physiology
and antibiotic tolerance (17, 18) and correlate with increased antibiotic resistance in P. aerugi-
nosa isolates from patients with cystic fibrosis (CF) (19). Encoding a single-stranded DNA bind-
ing protein, PA0720 is part of the Pf phage operon integrated in the P. aeruginosa genome
(20). Our study suggested that PA0720 confers biofilm-mediated tolerance of P. aeruginosa
MPAO1 to gentamicin. Inactivating PA0720 did not impact the planktonic resistance to-
ward gentamicin but led to a 4-fold decrease in the MBC-B (Table 1). Gentamicin tolerance

TABLE 1 Gentamicin susceptibility of the biofilm and planktonic cells of P. aeruginosa
MPAO1 transposonmutants missing a functional fiuA, PA0720, fliC, coxC, pprB, or PA3785 genea

Gene inactivated in
P. aeruginosaMPAO1

MBC-P of gentamicin
(mg/mL)

MBC-B of gentamicin
(mg/mL)

fiuA 4 1,600
PA0720 4–8 400
fliC 4–8 400
coxC 4 800
pprB 8 1,600
PA3785 ND 1,600
aThe MBC of gentamicin for planktonic cells (MBC-P) was determined by spotting the cell suspension on brain
heart infusion (BHI) agar after gentamicin treatment. The MBC of gentamicin for biofilm cells (MBC-B) was
determined by spotting the cell suspension on BHI agar after gentamicin treatment and recovery. Results
presented are means from two independent experiments with two technical repeats each. ND, not determined.
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was only reduced by inactivating PA0720 but not PA0728, which is essential to produce Pf
phages (21), or any other Pf phage genes (Fig. 1B). Therefore, these results highlighted the
potential role of PA0720 in P. aeruginosa physiology, besides its role in Pf phage produc-
tion. It is especially interesting that several transcriptomic and proteomic studies have
found PA0720 to be one of the few genes systematically upregulated in P. aeruginosa bio-
films (6, 22–24). In summary, PA0720 represents a promising target for drug development
and has potential value as a clinically relevant marker for prediction of P. aeruginosa bio-
film tolerance to gentamicin.

Our screening further revealed that the inactivation of fliC, which encodes flagellin
type B, decreased the P. aeruginosa biofilm tolerance to gentamicin (Fig. 1B and Fig. S3). The
MBC-B of gentamicin was 4-fold lower for the fliCmutant (400mg/mL) than for the fiuAmu-
tant (1,600mg/mL), while the MBC-Ps were similar (Table 1). The biofilm tolerance to colistin
was not affected by the inactivation of fliC (Fig. S1), which suggested a tolerance mechanism
specific to gentamicin. In contrast to other motility gene mutants, fliC inactivation did not
reduce the biofilm biomass of P. aeruginosa (Fig. 1A), in agreement with the findings of a
previous study which showed that the nonmotile fliC mutant produced higher biofilm bio-
mass, owing to an increased ability to adhere on abiotic surfaces compared to the wild type
(25). fliC is downregulated in biofilms (6) and chronic CF infections (26), which has been
attributed to an adaptive response to avoid phagocytic recognition and clearance (26). We
hypothesize that fliC repression contributes to the biofilm-specific tolerance to antibiotics.
However, further work is required to understand the precise role of FliC in biofilm physiol-
ogy and assess its potential value for developing antibiofilm strategies.

Mutants with altered biofilm formation but unchanged antibiotic tolerance. The
potential link between the antimicrobial resistance (AMR) phenotype and biofilm production
is controversial (27, 28). Our results revealed that no clear correlation exists. Some mutants
showed antibiotic tolerance relating to higher biofilm production, whereas others did not
follow this trend (Fig. 1C). Concurring with a previous study (25), our screening showed that,
compared with the reference mutant, the mutations in the motility genes (fliD, cupA1, cupA2,
and pilA) led to significantly less biofilm biomass (Fig. 1A) but did not alter biofilm tolerance to
gentamicin (Fig. 1B). Moreover, mutation of the gene encoding the sigma factor RpoS (29)
increased the biofilm biomass by 250% (Fig. 1A) but did not increase tolerance to gentamicin
(Fig. 1B) and displayed high sensitivity to colistin compared with the reference mutant (Fig.
S1). These results suggested that biofilm biomass alone is not a good indicator for the
AMR phenotype.

Conclusion. This study developed a novel screening method for biofilm research and
identified candidate genes involved in biofilm antibiotic tolerance, thereby improving the
understanding of biofilm-related infections and identifying relevant therapeutic targets. The
screening results suggested that the level of biofilm biomass or planktonic cell resistance of
a given strain is not a strong indicator of antibiotic failure. The inactivation of the Pf phage
PA0720 and flagellin fliC significantly reduced the gentamicin tolerance of P. aeruginosa
biofilms, without impacting the biofilm biomass or MBC-P. This study discovered that
novel factors such as pprB, coxC, and PA3785 are involved in the gentamicin tolerance of
P. aeruginosa biofilms. Thus, we have highlighted promising targets to develop antibiofilm
treatments and relevant markers to predict gentamicin failure in the treatment of biofilm
infections. The transposon mutant phenotypes remain to be confirmed with knockout strains.
The present study highlights potential leads for future research in biofilm physiology and anti-
biofilm treatment.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1 MB.
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