Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information for Journal of Analytical Atomic Spectrometry

Feasibility of high-resolution continuum source molecular absorption spectrometry for vanadium determination

Zofia Kowalewska,*a Carlos Abad,^b Michael Okruss^c and Sebastian Recknagel^b

^aFaculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland. E-mail: zofia.kowalewskah@ gmail.com, <u>zofia.kowalewska@pw.edu.pl</u>; Tel: +48 604569041 ^bBundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin, 12489, Germany ^cAnalytik Jena AG, Konrad-Zuse-Str. 1, Jena, 07745, Germany

Wavelength, nm		Number of pixels taken for	Pixels taken for analyte signal evaluation	Characteristic concentration,	For solution, mg L ⁻¹		For catalyst, % (1:83 m:v	
		_ analyte signal		mg L⁻¹			dilutio	on ratio)
of central pixel	range	evaluation			DL*	DTL*	DL	DTL
546.9331	546.6221-547.2421	14	99-105,123-129	550	44	150	0.4	1.2
573.7642	573.4612-574.0642	15	73-81,98-103	660	20	66	0.2	0.6
		23	73-81,98-103, 119-121,131-132,143-144,156	520	22	73	0.3	0.7
		39	73-81,98-103, 109-111,119-121,130-132,	400	26	87	0.2	0.6
			142-145,155-157,187-190					
550.6230	550.3440-550.8992	15	44-49,99-103,156-159	560	22	72	0.2	0.6
		28	23-25,31-33,44-49,77-79,86-87,99-103,142-	380	15	50	0.1	0.4
			143,156-159					
550.5593	550.2803-550.8355	15	15-18,68-70,101,123-125,180-183	440	23	76	0.2	0.6
		23	14-18,68-71,100-102,123-126,179-183	340	18	62	0.2	0.5
		34	14-18,46-48,54-56,67-71,100-102,109,122-	270	17	56	0.1	0.5
			126,165-166,179-183					
		50	13-19,45-49,53-57,66-72,99-103,1-8-	230	19	64	0.2	0.5
			110,121-126,164-167,177-184					

Table 1S Optimization of sensitivity and detectability. HR-CS FMAS technique.

Figure	Initial analyte form	Sample form	Measured analyte	Pyrolysis 3 / molecule formation	Air (O ₂) step	Ar purging step after air step	Heating rate up to molecule formation	Pd modifier	Absorbance (3 pixels)
		s-solid	form	temperature, °C	+: ves	+: ves	temperature, °C s ⁻¹	mounier	(o pixelo)
				, ,	, -: no	-: no	, , ,		
8a	V ₂ O ₅	S	VO	500/2200	+	+	1500	no	0.050
8b	V ₂ O ₅	S	VO	500/2500	+	+	1500	no	0.10
8c	V ₂ O ₅	S	VO	700/2500	+	-	1500	no	0.20
8d	Empty platform	no sample	VO	500/2500	+	+	500	no	0.015
8e	V ₂ O ₅	S	VO	500/2500	+	+	500	no	0.090
8f	V ₂ O ₅	S	VO	500/2500	-	+	500	no	0.030
9b	V ₂ O ₅	S	VO	500/2500	+	+	1500	Pd	0.130
9a	V ₂ O ₅	S	VO	500/2500	-	+	1500	Pd	0.070
9c	Empty platform	no sample	V	1200/2550	-	+	1500	no	>10

Table 2S Particular data concerning experiments carried out using HR- CS GF MAS option and illustrated in Figs. 5-6.

Fig. 1S View of a spectrum acquired using contrAA 700 spectrometer (FMAS technique), centred at 550.5593 nm with various sets of pixels used for VO molecule signal evaluation: 15 (a), 23 (b), 34 (c) and 50 (d). The pixels are marked as vertical bars.

Fig. 2S Comparison of: characteristic concentration (a) and detection limit (b) for various spectral conditions. Spectrum centred at: 546.9331 nm (light grey bar), 573.7642 (dark grey bars), 550.6230 (white bars) and 550,5593 nm (black bars). The numbers under bars indicate the numbers of pixels in sets used for the VO molecule signal evaluation.

Fig. 3S A calibration curve for the determination of V using the HR-CS FMAS technique.

Fig. 4S Stability of measurements of a solution containing 280 mg L⁻¹ of V, 5000 mg L⁻¹ of Al and HCl 1:5 v:v in 120 minutes time.