
Citation: Auersch, L. Vehicle

Dynamics and Train‑Induced

Ground Vibration—Theoretical

Analyses and Simultaneous Vehicle,

Track, and Soil Measurements.

Vehicles 2023, 5, 223–247. https://

doi.org/10.3390/vehicles5010013

Academic Editor: Mohammed

Chadli

Received: 30 December 2022

Revised: 30 January 2023

Accepted: 1 February 2023

Published: 8 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Vehicle Dynamics and Train‑Induced Ground
Vibration—Theoretical Analyses and Simultaneous Vehicle,
Track, and Soil Measurements
Lutz Auersch

Federal Institute of Material Research and Testing, 12200 Berlin, Germany; lutz.auersch‑saworski@bam.de

Abstract: Ground vibrations near railway lines are generated by the forces that are acting between
wheel and rail. It seems to be a straight forward assumption that the vehicle dynamics are impor‑
tant for the level and the frequencies of the excitation forces. Different vehicle dynamics phenomena
are analysed for their role in the excitation of ground vibrations: rigid body modes of the bogies,
elastic (bending) modes of the car body, and elastic modes of the wheelset. The theoretical analyses
use rigid body models, simplified elastic models, and detailed elastic models. Some of these prob‑
lems are vehicle–track interaction problemswhere 3D finite‑element boundary‑elementmodels have
been used for the track and soil. It is shown that the rigid or flexible vehicle modes are well in the
frequency range of ground vibrations (4 to 100 Hz). They have an influence on the excitation force
but the additional forces are rather small and can be neglected in ground vibration prediction. The
theoretical results are checked by experimental results of a simultaneous measurement of vehicle,
track, and ground vibrations.
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1. Introduction
This contribution is motivated by two research projects. The first project deals with

the vehicle–track interaction in experiment and theory [1], the second project dealswith the
prediction of railway‑induced vibration [2]. In the latter, a user‑friendly prediction code
has been developed which uses the simplest models with a minimum of parameters that
sufficiently yield accurate predictions. In this article, more complex vehicle models are
compared with the simplest model of a rigid wheelset to check if special vehicle dynamic
effects yield considerable excitation forces for ground vibrations andmust be added to the
prediction code.

In the project of vehicle–track interaction, a complex measuring campaign was per‑
formed at the German high‑speed line near Würzburg [1]. Vehicle, track, and soil vibra‑
tions have beenmeasured simultaneously at a surface, bridge, and tunnel line during train
runs with specified speeds and impact hammer excitation. The measurement results for
the surface line are used here to confirm the theoretical analyses.

Most experimental studies on railway‑induced ground vibrations concentrate on the
measurements of the ground vibration, for example [3–7]. It is now almost a standard to de‑
termine the soil properties bywavemeasurements and analysis, see examples in [8–12]. Im‑
portant additional information is obtained frommeasured track irregularities as in [13–15].
Even better are measurements of the vehicle vibration [16–19], namely axle‑box measure‑
ments, but they are rarely combined with ground vibration measurements [20].

Vehicle dynamics are usually analysed as multi‑body systems [21–23]. The simplest
models would be multi‑degree‑of‑freedom rigid bodymodels. Muchmore complex multi‑
body formalisms (including the complex wheel–rail contact mechanism) such as Gensys,
SIMPACK, VAMPIRE, and NUCARS are in use to solve problems of running stability and
wear [24]. Flexible vehicle components, namely car bodies [25] and wheelsets [26,27], are
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modelled for ride comfort, noise reduction, and wear control. These methods are usually
too complex for the ground vibration problem. The interaction of the vehicle with the track
and the underlying soil, however, is rarely found in vehicle dynamics.

The methods for the dynamics of the track and the train‑induced ground vibrations
are typically finite element methods with special boundaries [17,28], boundary element
methods [11,29], wavenumber domain methods [13,30,31], and combined finite element
and wavenumber methods (the so‑called 2.5D method [14,15,32]). These methods allow
us to calculate the propagation of waves travelling away from the track. The generation
of the waves is often simplified. The interaction of the unsprung vehicle mass and the ir‑
regularities of the vehicle and track is widely accepted as excitation. More detailed vehicle
models have been analysed for train‑induced ground vibrations [33]. In [33,34], the addi‑
tional influence of the bogiemass has been discussed, but later it has been found that it is of
minimal effect [35]. To conclude, vehicle dynamics have rarely looked at the vehicle forces
that generate train‑induced ground vibrations [36], whereas ground vibration specialists
have rarely examined the possible vehicle effects on the excitation of waves in the soil.

The aim of the present article is to cover the whole vehicle–track–soil interaction and
the induced ground vibration. Vibration measurements of a railway vehicle are evaluated
for the forces on the track (and the soil), which excite the ground vibration in the environ‑
ment. The article is structured as follows: Themeasurement campaign about vehicle, track
and ground vibrations at a surface, bridge, and tunnel line are presented in Section 2. The
results of the vehicle, track, and ground measurements at the surface line are presented
for different train speeds in Section 3. The theoretical analyses of the vehicle vibrations
at frequencies below 40 Hz (rigid body modes of the vehicle and elastic modes of the car
body) are done in Section 4. The high‑frequency vehicle–track interaction (wheelset–track
interaction) is analysed in Section 5. The application of the results to the prediction of train‑
induced ground vibrations is shown in Section 6. The novelty of the present article is the
comparison of the measurement results with the results of simple vehicle models, which
can be included in a fast prediction scheme and which can be used with a minimum of
input parameters.

2. Simultaneous Measurement Campaign
Simultaneous measurements of the vehicle, track, and ground vibrations have been

performed in 1994 on a 3 km long test section of the high‑speed line near Würzburg [1].
The test train consisted of a locomotive E113, two carriages, a measuring car, two carriages,
and a locomotive E111. The axle load of the measuring car is 100 kN, its wheelset mass is
1500 kg. Measurements have been performed simultaneously at three different track situa‑
tions: at a surface line and a bridge with a ballasted track and at a tunnel with a slab track.
The ballast track at the surface and the bridge consists of UIC60 rails on B60W sleepers
with ZW687a rail pads. The high‑speed track was in a good condition (low irregularities).

The vibration of the vehicle (the third carriage of the train) has beenmeasuredwith ac‑
celerometers at 12 vertical and 3 horizontal measuring points (Figure 1a). Four accelerome‑
ters (A1 to A4) have beenmounted on the axle boxes of twowheelsets, and four accelerom‑
eters (B1 to B4) have been mounted at the corresponding points of the bogie frame. Four
accelerometers (C1 to C4) have been mounted at the car body above both bogies. At the
bogie and car body points B2, B4, and C2 also have horizontal accelerations that have been
measured. All measuring points are chosen symmetrically for the left and right side of the
passenger car [37]. The vibrations of the three different tracks have been measured with
geophones (velocity transducers) at 3 × 8 measuring points (2 rail and 6 sleeper points).
The vibration of the ground has been measured with 14 geophones in a measuring line up
to 100 m distance from the track, as per the layout of the measurements in Figure 2.
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The test train has run on the test section with the following train speeds

vT = 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h.

A subset of these measurements, the train passages at the surface line, are used in the
present manuscript to be compared with theoretical analyses. These measurements have
been recorded using a 72‑channel measuring systemwith programmable filters (here used
for anti‑aliasing), sample and hold amplifiers, and a 16‑bit AD converter running at 2 kHz
sampling rate. The measurements have been evaluated uniquely for a 2‑s time record
around the passage of themeasuring car over the instrumented track section. The one‑third
octave band spectra in Section 3 are calculated from the corresponding Fourier spectra.

In addition to the train passages, each system has been characterized by impulse mea‑
surements (hammer impacts), the rigid and flexible modes of the railway vehicle, the flex‑
ible modes of the wheelset, the natural modes of the bridge, the receptances of the three
tracks, and the transfer mobilities of the soil. The modes of the car body have been mea‑
sured for 92 degrees of freedom and the results are shown in Section 4.2 together with
the theoretical analysis. To assure that natural modes have been identified, an identifier
function (phase resonance function) has been evaluated, as per the details in [38]. The
measurements of the wheelset modes will be shown in Section 5 in comparison with the
theoretical results.
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3. Vehicle, Track, and Soil Vibrations Measured during Train Passages
At first, the measured vehicle, track, and soil vibrations are presented and compared

for the train passage with 160 km/h. The accelerations of the vehicle have been measured
for the different vehicle components (Figure 1a) and the corresponding accelerations are
shown as one‑third octave band spectra in Figure 1b. The bogie accelerations are almost
constant over the whole frequency range of 4 to 256 Hz with amplitudes of 0.5 to 1.0 m/s2.
The carriage hasmuch lower amplitudes between 0.01 and 0.1m/s2where the higher values
are for frequencies below 20 Hz and the lower amplitudes are for higher frequencies. The
highest accelerations have been measured for the wheelsets, which are up to 5 m/s2 for
frequencies between 50 and 160Hz. At frequencies below 30Hz, thewheelset accelerations
are lower at about 1 m/s2, all wheelset spectra are the same and the wheelset and bogie
spectra are quite similar. Some raised amplitudes occur between 6 and 10 Hz where the
bogie has twice the amplitude compared to the wheelset. The horizontal accelerations
of the bogie are smaller with 20–30% of the vertical amplitudes. All these trends will be
explained with the models and calculations in Section 5.

Figure 1c shows themeasurement results for the track, the one‑third octave band spec‑
tra of the particle velocities of different track elements. These velocity spectra are almost
constant over the whole frequency range and have values around 1 mm/s for the sleep‑
ers. The rail amplitudes are higher by a factor of 1.5 to 2 because of the elastic rail pads
between sleeper and rail. The horizontal sleeper amplitudes are 10– 20% of the vertical
sleeper amplitudes. These amplitudes are for a smooth curve of 5000 m radius and would
be even smaller for a straight track. As a conclusion of the small horizontal amplitudes
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for the track, as well as for the vehicle (Figure 1b), the horizontal vibrations are neglected
in the present analysis and in the prediction scheme. Finally, the subsoil amplitudes are
very small, by a factor of 30 smaller than the sleeper amplitudes. All these track vibra‑
tions have the same characteristics of the spectra. There is a strong minimum at 8 Hz and
a weak minimum at 25 Hz; a maximum is found at 5–6 Hz and for 12–20 Hz. The three
raised thirds of the octaves are not the same as those of the vehicle between 6 and 10 Hz.
The characteristics of the track spectra are caused by the sequence of the passing axles [38],
which cannot be observed from the vehicle. Moreover, the track spectra up to 30 Hz are
dominated by the passing static loads, and the response to the dynamic vehicle loads can
only be observed at higher frequencies. It should be noted that at high frequencies, the left
and right rails and sleeper ends have different spectra whereas they are the same for the
low‑ and mid‑frequency range. This trend can also be observed for the right and left axle‑
box accelerations in Figure 1b, and it will be explained by the different vibration modes of
the wheelset at high frequencies.

The ground vibrations measured for the train speed of 160 km/h are presented as
the one‑third octave band spectra of the particle velocities at distances from 2.5 to 50 m
(Figure 3a,b). The main amplitudes can be found between 10 and 80 Hz, whereas frequen‑
cies below 10 Hz and above 80 Hz are strongly reduced. Moreover, a strong attenuation
with distance is observed in these frequency ranges. At low frequencies, there is an abrupt
reduction from 2.5m to 5mdistance. At high frequencies, there is amore regular reduction
of two decades up to a distance of 50 m. The weakest attenuation of half a decade for 50 m
can be found in the mid‑frequency range at 10–16 Hz. These filter and attenuation effects
lead to a dominant frequency of 12 or 16 Hz in the far field. This frequency peak (and a
second weaker peak at 50–64 Hz) are even stronger for the passage of the locomotive in
Figure 3a. The same shape of the spectra can also be found for lower train speeds of 63 and
25 km/h with lower amplitudes (Figure 3c,d).

The Influence of the train speed is further analysed with Figures 4 and 5. The car
body (Figure 4a) has low amplitudes, which increase with the train speed while the shape
of the spectra with a typical decrease at 20 Hz remains constant. The bogie (Figure 4b)
shows a similar increase of amplitudes with train speedmainly at low frequencies. For the
wheelsets in Figure 4c–f, the accelerations increase clearly with the train speed as a~vT2,
which means that the displacements of the wheels are speed independent in this low‑ and
mid‑frequency range and directly represent the track and vehicle irregularities. The some‑
what greater high‑frequency amplitudes increase less strongly with the train speed. The
low‑ and mid‑frequency wheelset and bogie spectra are shifted to higher frequencies with
increasing train speed. This can be seen for the component between 6 and 10 Hz and for
the maxima at 16 and 32 Hz for 160 km/h, which are the first and second out‑of‑roundness
of the wheels [39]. At high frequencies, a specific maximum is shifted from 32 to 40, 50,
64, and 80 Hz (most clearly in Figure 4c), which is the frequency due to the distance of
the sleepers [40]. The wheel A2 (Figure 4d) shows a fixed dominant frequency of 64 Hz,
which hides the sleeper–distance maxima. Another fixed frequency, though weak, can
be found at around 100 Hz, which could also be attributed to a vehicle or vehicle–track
eigenfrequency. The specific speed‑dependent or speed‑independent frequencies are also
analysed with narrow‑band spectra in Appendix A, confirming the observations in the
one‑third octave band spectra with greater details.
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160, # 125, △ 100, + 80, × 63 km/h, (a) car body C1, (b) bogie B3, (c) wheel A1, (d) wheel A2,
(e) wheel A3, (f) wheel A4.

The influence of the train speed on the track and ground vibrations at different dis‑
tances is presented in Figure 5. There is a general increase of velocity amplitudes with
train speed, most clearly for the track (Figure 5a). The maximum rail amplitudes increase
quite regularly as vmax~vT, which means that the rail displacements are almost the same
for all train speeds. This maximum, comprising three thirds of octaves (10 to 16 Hz for
160 km/h), is also regularly shifted with train speed. Such a regular behaviour cannot be
found for the soil measuring points. A frequency shift can be seen in Figure 5b for the
lowest frequency of 4 and 5 Hz at 125 and 160 km/h, which belongs to the quasi‑static re‑
sponse [38]. Another frequency shift can be followed at 5 m distance (Figure 5c) for the
sleeper–distance frequency of 32 to 80 Hz. The more dominant maxima, however, are at
12 and 64 Hz. The high‑frequency maximum at around 64 Hz loses its importance for
the farer measuring points, and only the mid‑frequency maximum of 12 Hz is left over at
100 m (Figure 5f). For this maximum, the clearest increase of amplitude can be observed
for 125 and 160 km/h, where the amplitudes are up to 10 times higher than those of the
lower speeds. The two speed‑independent peak frequencies seem to be related to vehicle
or soil resonances. Moreover, the specific shape of the spectra of different distances are
strongly determined by the transfer function of the soil, which is so dominant that other
vehicle and track characteristics are mostly hidden.
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160,# 125,
△ 100, + 80, × 63 km/h, at distances (a) 0 m (rail) (b) 2.5 m, (c) 5 m, (d) 17.5 m, (e) 30 m, (f) 100 m.

The following similarities can be observed between the vehicle, track, and soil vi‑
brations. The low‑frequency high‑speed component can be found in the track and the
near‑field soil spectra, and it has been identified as the quasi‑static response in [39]. The
high‑frequency maximum around 64 Hz can be found in the wheelset and in the mid‑field
ground vibrations. The most important maximum is around 12 Hz, which is dominant
at the far field and has especially high amplitudes for the highest speeds and can also
be found at the track at high speeds, but it is shifted to lower frequencies for lower train
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speeds. The layering of the soil at the measuring site yields an eigenfrequency at 12 Hz,
but the resonance amplification is usually not so high. Finally, vehicle eigenfrequencies
also occur in this mid‑frequency range; for example, the bogie amplitudes are amplified at
a slightly lower frequency range. The purpose of the following sections are to analyse pos‑
sible vehicle resonances in the mid‑frequency range around 12 Hz (below 40 Hz, Section 4)
as well as in the high‑frequency range around 64 Hz (above 40 Hz, Section 5) and their
effects on the excitation forces of the ground vibrations.

4. Analyses of the Vehicle Dynamics at Frequencies below 40 Hz
The following sections analyse the influence of rigid bogie modes, flexible carriage

modes, and flexible wheelset modes. The influence of the track has been analysed in detail
by three‑dimensional finite‑element boundary‑element models in [29]. The track stiffness
has no influence on the vehicle–track interaction at low and mid frequencies, such as at
the rigid bogie and the flexible carriage modes, which therefore are discussed for a rigid
track. At higher frequencies, the compliance of the track is important, and it is included
as a soil‑dependent spring stiffness in the analysis of the flexible wheelset in Section 5.
All analyses have been done by simple two‑ and three‑degree‑of‑freedom systems, which
could be introduced in the prediction software if necessary.

4.1. Rigid Body Modes of the Railway Vehicle at Frequencies below 40 Hz
The rigid vehicle model of Figure 6a is considered, which consists of two wheelset

masses of 1700 kg (1550 kg), a bogie frame of mass 2800 kg (2500 kg), and the mass of half
a car body of 16,500 kg (14,500 kg). The complete set of parameters of the ICExperimental
mid car including the primary and secondary suspension can be found in [40], together
with the measured ground vibration. The values in brackets are for the passenger car of
the measuring campaign [1], for which similar results have been found. The parameters
can be used to get the vertical and the pitching eigenfrequencies of the bogie

f1 =
1

2π

√
k1 + 2k2

mB
=

1
2π

√
(6 + 48)105 N/m

2800 kg
= 7 Hz (7 Hz)

f2 =
1

2π

√
k2l2/2

θB
=

1
2π

√
2.41061.42/2 Nm

1200 kgm2 = 14 Hz (11 Hz)

The eigenfrequency of the car body can clearly be found at about 1 Hz as a resonance
of the car body response, shown at the top of Figure 6b. The bogie resonances show little
resonance amplification, the excited bogie part 1 shows the vertical eigenfrequency, the
second not‑excited bogie part has its maximum near the pitching eigenfrequency.

The displacements which are shown at the top of Figure 6b are calculated for a har‑
monic excitation s of one wheelset. At the very low frequencies below 1 Hz, the excited bo‑
gie part B1 exactly follows the excitation while bogie part B2 is almost at rest. The car body
follows with half of the one‑sided excitation. With increasing frequencies, the different
components of the vehicle decouple from the excited wheelset. At first, the car body is de‑
coupled above its eigenfrequency of 1 Hz, then the bogie above its vertical eigenfrequency
of 7 Hz or above its pitching eigenfrequency of 14 Hz. In case of a flexible track, there
is also a wheelset–track eigenfrequency between 50 to 100 Hz, above which the wheelset
decouples from the excitation, as seen in Section 5. All of these trends can also be found in
good agreement with the measurements in Figures 1b and 4.
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A2 related to the inertial force of a
wheelset; excitation by track irregularities at wheelset A1 (top) or at both wheelsets travelling with
100 km/h (bottom).

The one‑sided excitation includes the symmetric and antimetric excitation of the bogie
uniquely for all frequencies. Under real conditions, shown at the bottom of Figure 6b, both
wheelsets of a bogie are excited by the same track irregularities, which have a certain time
delay or a phase delay that increases linearly with frequency and is inverse to the train
speed vT

ϕ = 2 π f lA/vT.

For the wheelset distance lA = 2.8 m and the train speed vT = 100 km/h, the phase delay
is π at f = 5 Hz (anti‑phase excitation), 2π at 10 Hz (in‑phase excitation). More antimetric
excitations follow at 15, 25, 35, . . . Hz. At low frequencies, the phase is close to zero. For
this in‑phase excitation, all masses follow the excitation (u/s = 1). Between 1 and 5 Hz, the
second bogie part has higher amplitudes than the first bogie part. The antimetric excitation
at 5 Hz yields identical amplitudes of both bogie parts and zero displacements of the car
body due to the pure rotation of the bogie frame. For higher frequencies, there are regular
variations of the bogie displacements due to the regular sequence of the symmetric and
antimetric excitation. As the vertical mode has a lower eigenfrequency, it is more strongly
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reduced than the rotational mode at higher frequencies. Therefore, maxima are found for
antimetric excitation and minima for symmetric excitation.

Corresponding results for the wheel–rail forces are shown in Figure 6c. For the one‑
sided excitation (Figure 6c top) the wheel–rail force of the excited first wheelset is higher
than for the unexcited secondwheelset. The difference is the inertial force of a wheelset. At
frequencies below 1Hz, the force is the inertial force of thewhole (quarter) vehicle. At high
frequencies, the force at the excited wheelset is the inertial force of this wheelset, while the
force of the unexcited wheel tends to zero.

The bottom of Figure 6c shows the wheel–track forces for the realistic two‑wheelset
excitation with phase delay. For this realistic case, both wheelset forces tend to the inertial
force of the wheelset for frequencies higher than 20 Hz. At very low frequencies below
1 Hz, the forces are the inertial forces of the whole vehicle, which are approximately seven
times higher than the wheelset forces. The decrease of the forces follows immediately after
the car body resonance, and the forces are close to the wheelset forces in the intermediate
range of 5 to 20 Hz. For these frequencies, there are some differences between the first and
the second wheelset and variations with frequency, which decrease rapidly with increas‑
ing frequency. It is observed that the force of the first wheelset is smaller than that of the
second wheelset in the intermediate frequency range of 1 to 5 Hz. The possible amplifica‑
tion is not stronger than two, which would correspond to the mass of the wheelsets and
the bogie frame. The restricted influence of the bogie resonances is due to the small inertia
of the bogie frame and the strong damping of the primary suspension for the passenger
cars considered here, and this conclusion was checked for other passenger cars and other
train speeds.

The special bogie effects can also be found in the vehicle measurements (Figures 1b
and 4b) where a certain track irregularity is amplified by a factor of 1.5–2 for the bogie
at 5–8 Hz (v = 125 km/h) and at 6–10 Hz (v = 160 km/h). These frequencies are not the
frequencies of strong ground vibration, thus from the experimental view, accelerations of
the bogie frame are not expected as a significant excitation of ground vibration.

4.2. Elastic Modes of the Car Body
A modal analysis of the measuring car, a typical passenger car of the German Rail‑

way, has been performed in a workshop in Würzburg [1,41]. The passenger car has been
excited by hammer impacts so that the mode shapes could be established for 92 degrees of
freedoms, 44 of the car body, 2× 20 of the bogies, and 4× 2 of the wheelsets. Besides rigid
body modes in the range of 1.2 to 4 Hz, clearly separated elastic modes of the car body
have been identified in Figure 7. The first bending mode is at 9 Hz, the lateral bending
mode is at 11 Hz; the first torsional mode is at 14 Hz, and the second bending mode is at
18 Hz. Note that the two vertical eigenfrequencies have also been found during the test
runs, as seen in Figure A1a in Appendix A. All of these elastic modes of the car body are
in the frequency range of strong ground motion. The effect of these elastic modes on the
excitation of ground vibration is analysed by a simple beammodel on the support springs
and dampers of the secondary suspension.
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The elastic support yields the rigid mode of the car body, which is at 1–5 Hz depend‑
ing on the support stiffness (Figure 8a). A second maximum is found at 9 Hz for the dis‑
placement of the middle of the car, which is due to the first bending mode. The forces at
the support (Figure 8b) show the rigid resonance below 5 Hz, but a minimum at the elas‑
tic eigenfrequency at 9 Hz. A maximum follows immediately, which has no considerable
amplification for realistic support spring stiffnesses.

These results can be generalised as follows: The elastic modes of the car body are
almost the modes of the free and unsupported car body and occur at almost the free eigen‑
frequency. For the freemodes, all inertial forces are balanced and no support forces appear.
As the frequencies of the supported and unsupported modes are close together, the sup‑
port forces are small at these eigenfrequencies. Under normal soft and medium support
stiffnesses (secondary suspensions), the support forces have no important amplification in
the “resonance region”.

Therefore, it can be concluded that the elastic modes of the car body, as well as the
rigid bogie modes of Section 4.1, are not a reason for the pronounced ground vibration.
Consequently, the forces below 40 Hz can be approximated by the rigid wheelset mass.
Moreover, in this low‑ andmid‑frequency range, the irregularities s of the wheel and track
can be calculated directly from the axle‑box accelerations a as s~a/ω2without any influence
of the vehicle model.
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5. Wheelset–Track Analysis at Frequencies above 40 Hz
A typicalwheelset of the passenger car, which has also beenmeasuredduring the cam‑

paign, has been calculated as a finite‑element model for different support conditions [42].
The most important eigenfrequencies of the wheelset are shown in Figure 9. The wheelset
on a medium stiff support k = 5 × 108 N/m has an in‑phase eigenfrequency at f 1 = 62.7 Hz
and an anti‑phase eigenfrequency at f 2 = 90.3 Hz, where the wheels and themid‑axle are in
anti‑phase. In addition to these coupledmodes, there is the rollingmode at 84.7 Hz and the
horizontal bendingmode at 70.9 Hz, which is also the vertical free bending eigenfrequency
of the wheelset.

The vertical modes vary with the support stiffness k. If the support is very stiff
(k = 50 × 108 N/m, Figure 10a), the eigenfrequency f = 66.8 Hz approaches the eigenfre‑
quency of the rigidly supported wheelset. If the support is very soft (k = 0.5 × 108 N/m,
Figure 10d), the eigenfrequency f = 71.8Hz tends to the eigenfrequency of the freewheelset.
For realistic stiffness parameters, the eigenfrequencies are not so far from these two limit
cases. For a medium stiff k = 10 × 108 N/m, the eigenfrequency f = 65.4 Hz is some‑
what above the rigidly supported eigenfrequency (Figure 10b), and for a soft support with
k = 2.5 × 108 N/m, the eigenfrequency f = 77.3 Hz is somewhat above the free eigenfre‑
quency (Figure 10c). These somewhat contradictory results with a frequency jump be‑
tween k = 2.5 and 10 × 108 N/m will be further explained at the end of this section.
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Figure 10. Calculated elastic mode of a wheelset on different track stiffnesses (a) k = 50 × 108 N/m
at 66.8 Hz, (b) k = 10 × 108 N/m at 65.4 Hz, (c) k = 2.5 × 108 N/m at 77.3 Hz, (d) k = 0.5 × 108 N/m at
71.8 Hz.

The calculated eigenfrequencies and mode shapes are confronted with an experimen‑
tal modal analysis of a similar wheelset in a workshop [42], as seen in Figure 11. The
wheelset was instrumented with 12 × 2 × 3 geophones around the two wheels and 7 × 3
geophones along the axle (all in three directions) and excited by a hammer vertically in the
mid of the axle (shifted by 0.3 m) and horizontally at the upper end of one of the wheels
(shifted by 30◦). The horizontal excitation yields the mainly horizontal mode at 33.2 Hz,
and the vertical excitation yields the mainly vertical mode at 79.3 Hz. The latter includes
an anti‑phase bending component. The free bending mode (in horizontal direction) has
been found at 70.3 Hz for both excitations. The restrained bending mode (in vertical di‑
rection) lies at 107.5 Hz for both excitations. This eigenfrequency is higher than in the
running train and in the calculation because of the stronger horizontal fixation at the con‑
tact point. Themain conclusion of the comparison is the confirmation that the free bending
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mode is at approximately 70 Hz, and that the two coupled vertical and bending modes are
close together.

The frequency‑dependent wheel and axle displacements are investigated by a simple
two‑mass model which is fitted to the known eigenfrequencies. It is given in full math‑
ematical detail in Appendix B for possible inclusion in a fast prediction software. The
results of the simple model are, in general, similar to the results of a more complex and
detailed finite element model in [43]. In Figure 12a–d (top), the two vertical resonances
of the wheelset can be found, but the amplifications are different for wheel and axle and
vary with the support stiffness. The highest amplification is for the axle mass, whereas the
wheel mass has a smaller resonance and even a zero at the eigenfrequency of the rigidly
bounded wheelset.
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tical hammer impact on the mid-axle, (a) horizontal at 32.3 Hz, (b) vertical (with out-of-phase bend-
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which is at the eigenfrequency of the free wheelset. The first resonance is always stronger 

Figure 11. Measured modes of the wheelset [42], horizontal hammer impact on the wheel (left) verti‑
cal hammer impact on themid‑axle, (a) horizontal at 32.3Hz, (b) vertical (with out‑of‑phase bending)
at 79.3 Hz, (c,d) horizontal (free) bending at 70.3 Hz, (e,f) vertical (restrained) bending at 107.5 Hz.

The dynamic support forces (Figure 12a–d, bottom) also have a characteristic zero,
which is at the eigenfrequency of the free wheelset. The first resonance is always stronger
than the second resonance. Themaximum amplification increases clearlywith the stiffness
of the support. Above the wheelset–track resonance, the force decreases compared to the
inertial force of the wheelset. This is of importance for high‑frequency excitations such as
the sleeper–distance excitation for which the wheel–rail force increases according to

p ≈ mWω2~mWvT2

only for low train speeds and remains constant for high train speeds.
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Figure 1. (a) Measurement points of the railway vehicle (passenger car) for the test runs, axle boxes 
A1, A2, bogie B1 and B2, carriage C1 and C2, right hand side, A3, A4, B3, B4, C3, C4 symmetrically 
on the left hand side; (b) one-third octave band spectra of the accelerations of the railway vehicle 
running with vT = 160 km/h, ,  wheelset A1 and A2, ,  vertical bogie part B1 and B2,  
horizontal bogie part B1, ,  car body part C1 and C2; (c) particle velocities of the track ,  left 
and right rail, ,  sleeper 1 and 2, , sleeper horizontal,  sub soil at 2.5 m distance. 

The test train has run on the test section with the following train speeds 

vT = 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h. 

A subset of these measurements, the train passages at the surface line, are used in the 
present manuscript to be compared with theoretical analyses. These measurements have 
been recorded using a 72-channel measuring system with programmable filters (here used 
for anti-aliasing), sample and hold amplifiers, and a 16-bit AD converter running at 2 kHz 
sampling rate. The measurements have been evaluated uniquely for a 2-s time record 
around the passage of the measuring car over the instrumented track section. The one-
third octave band spectra in Section 3 are calculated from the corresponding Fourier spec-
tra. 

In addition to the train passages, each system has been characterized by impulse 
measurements (hammer impacts), the rigid and flexible modes of the railway vehicle, the 
flexible modes of the wheelset, the natural modes of the bridge, the receptances of the 
three tracks, and the transfer mobilities of the soil. The modes of the car body have been 
measured for 92 degrees of freedom and the results are shown in Section 4.2 together with 
the theoretical analysis. To assure that natural modes have been identified, an identifier 
function (phase resonance function) has been evaluated, as per the details in [38]. The 
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flexi‑
ble and − rigid wheelset.

The variation of the response with the support stiffness is further demonstrated in
Figure 13. The resonance frequencies show two crossing asymptotes (Figure 13a). One
asymptote is the constant elastic eigenfrequency of thewheelset, the other asymptote is the
rigid body eigenfrequency (the wheelset–track eigenfrequency), which increases with the
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support stiffness. Around the crossing of the asymptotes, the curves deviate from these
asymptotes and the two eigenfrequencies change their role. The elastic eigenfrequency
jumps from the upper curve to the lower curve and from the higher value of the free eigen‑
frequency to the lower value of the rigidly supported eigenfrequency.
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The same things can be observed for the modal damping in Figure 13b. For low sup-
port stiffnesses, the low rigid body resonance has the strong support damping of D ≈ 0.25, 
and the higher elastic eigenfrequency has the low wheelset damping of D = 0.001. For high 
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The effect of the support stiffness on the maximum dynamic loads on the track is 
shown in Figure 13c. The resonance force is compared with the resonance force of a rigid 
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around the passage of the measuring car over the instrumented track section. The one-
third octave band spectra in Section 3 are calculated from the corresponding Fourier spec-
tra. 

In addition to the train passages, each system has been characterized by impulse 
measurements (hammer impacts), the rigid and flexible modes of the railway vehicle, the 
flexible modes of the wheelset, the natural modes of the bridge, the receptances of the 
three tracks, and the transfer mobilities of the soil. The modes of the car body have been 
measured for 92 degrees of freedom and the results are shown in Section 4.2 together with 
the theoretical analysis. To assure that natural modes have been identified, an identifier 
function (phase resonance function) has been evaluated, as per the details in [38]. The 

second mode.

The same things can be observed for the modal damping in Figure 13b. For low sup‑
port stiffnesses, the low rigid body resonance has the strong support damping ofD≈ 0.25,
and the higher elastic eigenfrequency has the low wheelset damping of D = 0.001. For
high support stiffnesses, the eigenfrequencies have changed their position but kept their
characteristic damping. The damping curves meet in the medium stiffness range and both
eigenfrequencies have a medium damping of D ≈ 0.12.

The effect of the support stiffness on the maximum dynamic loads on the track is
shown in Figure 13c. The resonance force is compared with the resonance force of a rigid
wheelset. This “rigid” resonance amplitude occurs for soft support stiffnesses and for the
first eigenfrequency. The second eigenfrequency, which consists of an anti‑phase vibration,
always has a smaller resonance force. For low support stiffnesses, the second mode is
the almost free bending mode of the wheelset with very small support forces. For high
support stiffnesses, the support mode is the second mode with support forces that are a
little smaller than the “rigid” resonance forces. The elastic mode is then the first mode
at nearly the fixed mode, and the resonance amplitude increases considerably with the
increasing support stiffness. Similar effects can be read from the difference of the axle and
wheel displacement (the elastic deformation) at resonance in Figure 13d. Once again, an
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increase of the elastic effects is found for the stiff support condition. Some explicit formula
for the coupling of a flexible system with a track or a general support stiffness are derived
for a two‑mass system in Appendix B.

The conclusion for the excitation of ground vibration is that the flexibility of the
wheelsets does not yield a considerable force increase on the track and ground. The only
exceptions are very stiff support conditions where resonance amplifications of the force at
the elastic eigenfrequency of thewheelset are possible. Note that the relevance of the elastic
wheelset mode is further limited by the primary damping, which has not been included for
simplicity. Usually, the most important mode of the wheelset is the vertical vehicle–track
mode, which yields a resonance and a force reduction at higher frequencies, whereas the
elastic and rocking wheelset modes can be measured at the axle boxes and have no effect
on the ground vibration (see also [13,44]) and can be neglected in the prediction.

6. Prediction of Irregularities, Force Spectra, and Ground Vibrations
As a result of the analyses in Sections 4 and 5, the effect of the irregularities on the dy‑

namic forces and the ground vibrations can well be approximated by the model of a rigid
wheelset. The irregularity amplitudes s decreases with frequency as s~f −2 for frequencies
below 40 Hz and s~f −0.75 for frequencies above 40 Hz according to [40] (Figure 14a). As
the force transfer function due to the inertia of the vehicle (the wheelset) increases with
frequency at the same time, the resulting force spectrum (Figure 14b) is nearly constant
with some increase around the vehicle–track resonance. Some similarities can be found
between the predicted excitation forces in Figure 14b and the measured wheelset acceler‑
ation in Figure 4c–f. The present axle‑box measurements confirm the general trend, the
smooth almost constant force spectra with amplitudes of approximately 1 kN per axle and
third of octave. This general trend has also been checked by many ground vibration mea‑
surements at different sites in [40]. The forces at higher frequencies, however, would be
overestimated by the axle‑box accelerations according to the analysis in Section 5.

The ground vibration for a train load with a constant force spectrum and for a ho‑
mogeneous soil is shown in Figure 14c. The low‑frequency velocity amplitudes increase
systematically with frequency; the high‑frequency amplitudes decrease due to the mate‑
rial damping of the soil. Therefore, the mid‑frequency range between 16 and 64 Hz is
dominant and these trends are in satisfactory agreement with the measurements. The pre‑
diction can be improved by using the calculated force spectrum and the transfer functions
of the layered soil at the measuring site (Figure 14d). The layering of the soil yields an ad‑
ditional low‑frequency cut‑off, and the layer resonance at 12 to 16 Hz and the vehicle–track
resonance at 50 to 64 Hz are now included. The even higher measured mid‑frequency am‑
plitudes for 160 km/h (Figure 3j) have been attributed to a scattering effect of the moving
static loads, as seen in the detailed analyses in [45]. The whole simple, fast, and efficient
prediction scheme is given with all details in [46].
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Hz. The car body is decoupled from the bogies and wheelsets starting from a very low 
frequency. Elastic modes of the car body are typically between 10 and 20 Hz, but they 
result in small support forces because they are almost free modes with balanced inertial 
forces. The rigid body modes of the bogies are at 7 to 15 Hz, but they are strongly damped 
for the passenger trains that have been analysed and measured. Moreover, the rotational 
modes of the bogie and the wheelset yield a couple of opposite forces which have no effect 
at some distance apart from the track. The elastic bending mode of the wheelset has little 
influence on the excitation force in most cases if its frequency lies above the fundamental 
vertical wheelset mode. The vertical wheelset mode, which is actually a wheelset–track–
soil mode and is also called the P2 mode, yields a resonance amplification and a reduction 
of the excitation forces at higher frequencies. The theoretical analyses and the simultane-
ous measurements of the vehicle, track, and soil are generally in good agreement so that 
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Figure 14. Vehicle and track irregularities (a) and wheel–rail forces (b) for different train speeds
from 63 to 160 km/h; ground vibrations at different distances from 3–50m for (c) a homogeneous soil
(vS1 = 270 m/s D = 5%) with a constant force of 1 kN, (d) for a layered soil (vS2 = 1000 m/s, h =10 m)
with the force from (b), vT = 160 km/h.

7. Conclusions
The excitation of ground vibrations is due to forces on the track and on the ground.

The excitation forces are mainly caused by the acceleration of the unsprung mass when
it is passing over irregularities of the track or the wheel. Additional effects due to vehi‑
cle dynamics are shown to be of little importance in the relevant frequency range of 4 to
100 Hz. The car body is decoupled from the bogies and wheelsets starting from a very low
frequency. Elastic modes of the car body are typically between 10 and 20 Hz, but they
result in small support forces because they are almost free modes with balanced inertial
forces. The rigid body modes of the bogies are at 7 to 15 Hz, but they are strongly damped
for the passenger trains that have been analysed and measured. Moreover, the rotational
modes of the bogie and the wheelset yield a couple of opposite forces which have no effect
at some distance apart from the track. The elastic bending mode of the wheelset has little
influence on the excitation force in most cases if its frequency lies above the fundamental
vertical wheelset mode. The vertical wheelset mode, which is actually a wheelset–track–
soil mode and is also called the P2 mode, yields a resonance amplification and a reduction
of the excitation forces at higher frequencies. The theoretical analyses and the simultane‑
ous measurements of the vehicle, track, and soil are generally in good agreement so that
train‑induced ground vibrations can be well predicted with the simplest vehicle model of
a rigid wheelset on the dynamic track–soil stiffness in most cases. The specific prediction



Vehicles 2023, 5 242

needs a realistic spectrum of the vehicle and track irregularities and the realistic transfer
functions of the layered soil.
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Appendix A. Fourier‑Spectra of the Vehicle during Acceleration Runs of the Test Train
A test run has been measured where the train was accelerated from 40 to 110 km/h.

The linear Fourier spectra are shown in Figure A1 for the whole test run as a spectrogram,
which provides additional information about the vehicle modes and the excitation. The
car body (Figure A1a) shows two strongly excited modes as horizontal lines at 2 Hz and
at 10 Hz and a weak resonance at 14 Hz. The bogie (Figure A1b) shows a strongly ex‑
cited region between 5 and 12 Hz, but with no clear peaks for the eigenfrequencies. All
four measured axle boxes are presented in Figure A1c–f. The most dominant line is due
to the sleeper distance excitation and runs from 20 to 50 Hz for all four wheels, most
strongly in Figure A1c. More regular lines are clearly visible at all vehicle points, which
are the wheel out‑of‑roundness lines of different orders. The first order is at 4–11 Hz, and
the higher orders are integer multiples. These regular lines are most clearly at the two
wheels of the wheelset in Figure A1d,f. Note that the fifth out‑of‑roundness is close to
the sleeper‑distance frequency and thus intensifies the corresponding effect. The eigen‑
modes of the wheelsets are difficult to find. There are some intensified frequency regions
around 75 Hz for the wheels A1 and A2 (Figure A1c,d), which are on the inner side of
the curve, and around 90 Hz for the wheels A3 and A4 on the outer side of the curve. The
out‑of‑roundness lines are clearly intensifiedwhen they pass through the resonance region
around 75 Hz (Figure A1d) and around 90 Hz (Figure A1f).
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Appendix B. Influence of the Support Stiffness for a Two‑Mass System
The two‑mass system consists of two mass–spring systems in series (Figure A2). At

the lower end of the lower system the harmonic displacement u0 is applied. The system
equation reads (
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The two eigenfrequencies follow from the zeros of the determinant

det K = 0 = m1m2ω4 − (k1m2 + k2m2+ k2m1)ω2 + k1k2

The following abbreviations are used when the influence of the support stiffness k1 is
discussed

ωA
2 = k1/m1       support frequency,

ωS
2 = k2/m2       structural frequency,

ωF
2 = k2(1/m1 + 1/m2)   free structural frequency,
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2 = k2/m1.
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hold. Therefore, it can be concluded for stiff and soft support [47]

stiff support  ωA
2 →∞  ω1,2

2 = ωA
2; ωS

2

soft support  ωA
2 →0  ω1,2

2 = ωF
2; ωA

2ωS
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2.

The stiff support yields the high support frequency ωA and the rigidly supported
structural frequency ωS, whereas the soft support yields the free structural frequency and
the low rigid body frequency

ωR
2 = ωA

2ωS
2/ωF

2 = k1/(m1 + m2).
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Thedisplacements and the support force can bewrittenwith the same abbreviations as

u1

u0
=

ωA
2(ωS
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(ω1

2 − ω2)(ω22 − ω2)

u2
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It follows that the support massm1 has a zero at the (fixed) structural eigenfrequency
ωS and that the support force has a zero at the free structural frequency ωF. For a soft
support stiffness, there is also the eigenfrequency ω2 close to the free structural eigenfre‑
quency ωF, and thus a pole‑zero compensation for the support force. The force transfer
function is close to that of a rigid mass with

pA
mω2u0

=
ωR

2ωF
2

ω1
2ω22 = 1 for low frequencies

pA
mω2u0

=
ωR

2

(ωR2 − ω2)
for high frequencies

The above formulas can be generalised for a hysteretically damped system by re‑
placing the stiffnesses by complex stiffnesses ki* = ki(1 + i2Di) with the material damping
values Di.

The conclusions can be applied to the flexible wheelset and the flexible car body. It
is also used for the prediction of the floor responses in buildings due to ground vibra‑
tion [46,47]. For continuous systems, the parameters can be adjusted to the fixed structural
eigenmode v

m2 =
(
∫

vdm)
2∫

v2dm

or to the free structural eigenmode w

m2

m1
=

∫
w2dm

w(x0)
2m

or to the ratio of the free and fixed structural eigenfrequencies

m
m1

=
ωF

2
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