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Abstract: The flammable hydrogen-blended methane–air and natural gas–air mixtures raise spe-
cific safety and environmental issues in the industry and transportation; therefore, their explosion
characteristics such as the explosion limits, explosion pressures, and rates of pressure rise have
significant importance from a safety point of view. At the same time, the laminar burning velocities
are the most useful parameters for practical applications and in basic studies for the validation of
reaction mechanisms and modeling turbulent combustion. In the present study, an experimental
and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of
methane–air and natural gas–air mixtures was conducted, using mixtures with equivalence ratios
within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were
performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs
were calculated from p(t) data, determined in accordance with EN 15967, by using only the early stage
of flame propagation. The results show that hydrogen addition determines an increase in LBV for all
examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen, rH,
follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a
stronger variation in LBV, as shown by both experimental and computed LBVs. Hydrogen addition
significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures, the rate of
heat release, and the concentration of active radical species in the flame front and contribute, thus, to
LBV variation.

Keywords: hydrogen; methane; natural gas; laminar burning velocity (LBV); closed vessel combustion

1. Introduction

In recent years, dependence on fossil fuels as the main energy source has led to a
worldwide crisis, due to fossil fuel depletion, and environmental problems due to pollu-
tant emissions have become severe. To respond to these problems, continuous attempts
have been made in the exploration of clean, renewable alternatives for sustainable devel-
opment [1,2]. The research on alternative fuels is mainly focused on natural gas [3–7],
hydrogen [8–15], and alcohols [16,17], able to be mixed with gasoline, diesel, or to form
mutual blends.

The extended use of natural gas (NG) as fuel in internal combustion (IC) and gas
turbines prompted numerous research groups to examine its combustion in air, under
various initial conditions (NG/air ratio, pressure, temperature, additives) [4–6]. A common
practice in NG use is its blending with hydrogen. Hydrogen has attracted the attention
of researchers as a renewable clean energy source. Hydrogen is easily ignitable and
its flame spreads quickly, which is essential for IC engines to order to work under an
improved combustion efficiency [7–15]. Hydrogen addition to NG is a good option for
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decreasing CO, CO2, and NOx emissions, especially for fuel-lean mixtures [18]. Other
effects of H2 addition to NG are the stabilizing effect on lean NG–air flames, along with
an increased risk of flame flash-back in burners originally designed for natural gas [3,19].
Hydrogen raises numerous safety issues, especially when mixed with other flammable
gases. The main cause of such effects is the higher reactivity of H2 compared to each
C1–C4 alkanes from NG, resulting in important variations of ignition and propagation
characteristic parameters of NG–air combustion: decreases in ignition delay times of self-
ignition and minimum ignition energies, increases in adiabatic flame temperature and
in laminar burning velocity [9,11,20,21]. Taking into account the variable composition
of NG as a result of current changes in its supplies, many studies were conducted on
CH4/H2/air flames [8,11,13,14,19–32]. Such studies revealed the effect of H2 enrichment:
enlargement of the flammability range of CH4–air mixtures [11,13,14], decreases in ignition
delay times in jet-stirred reactors, rapid compression machines or shock tubes [21,26,30],
decreases in maximum experimental safe gap (MESG) [11], and increases in flame speed
and laminar burning velocity [8,22–32]. Another beneficial effect of enriching methane
with hydrogen consists of the increase in flame resistance to strain-induced extinction,
as highlighted by Di Sarli et al. [33,34]. Di Sarli et al. investigated a hythane lean and
stoichiometric mixture with hydrogen mole fraction in the fuel, rH2, within 0–0.5 using
time-resolved particle image velocimetry (PIV). The authors discussed the interactions that
occur between the flame front and the observed toroidal vortex structures [33]. For the same
hydrogen-enriched methane/air premixed flames, Di Sarli and Di Benedetto investigated
the effects of non-equidiffusion on their unsteady propagation [34]. Numerical studies
of flame ignition and propagation also outlined the increase in reactivity determined by
H2 addition and discussed the pathways of CH4–H2 oxidation in air, as compared to CH4
oxidation [3,7,18,19,26,30,32,35].

Experimental and numerical studies were conducted on NG/H2/air flames as well at
various ratios [NG] to [H2], overall equivalence ratios, and initial pressures and temper-
atures, using stationary flames or outwardly propagating non-stationary flames, in both
unconfined and confined conditions [7,9,11,13,18,26,30–42].

Studies of closed vessel explosions delivered the characteristic parameters of flame
propagation under confined conditions (the maximum explosion pressure pmax, the explo-
sion delay time θmax, the maximum rate of pressure rise (dp/dt)max, and deflagration index
KG) for NG and H2-blended NG [11,13,29,43]. Closed vessel experiments offer the neces-
sary information for laminar burning velocity determination. This is a highly examined
topic, since laminar burning velocities are key factors for validation of detailed mechanisms
of fuel–air combustion. Studies of outwardly spherical flames based on transient records
of flame radius and pressure [8,22,25–30,36–42] were reported for H2-blended CH4 and
H2-blended NG with variable initial composition (variable [H2]/[CH4] and [H2]/[NG]
ratios or variable equivalence ratios), initial pressure, or initial temperature. Additional
information on flame structure (temperature and chemical species profiles) able to en-
lighten the influence of H2 addition on hydrocarbon fuel combustion is found in studies
on stationary flames [19,23,24,28,31,32,41].

The conventional combustion of either pure methane or of its blends with hydrogen
raises several issues related to emissions of high pollutants such as NOx. Such issues,
associated with the dense energy input caused by preheating the flammable mixtures,
can be solved by some new technologies, as suggested in recent articles describing MILD
(flameless) combustion [44,45]. The flameless combustion of CH4/H2 in a laboratory-
scaled furnace was investigated by Cellek [44], proving this is an effective way to reduce
pollutant emissions despite the intense energy induced by air preheating, which causes
higher flame temperatures. Even when various inlet operating conditions are used, outside
canonical configurations (e.g., inside a small-scale device), the specific MILD advantage
can be obtained by an adequate degree of dilution, as outlined by Cerello et al. [45].

The aim of the present work is to examine hydrogen influence on laminar burning
velocity for different methane/hydrogen and natural gas/hydrogen mixtures with air at
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ambient initial conditions. For this, p(t) data obtained in experimental investigations were
used. These measurements, performed according to European Standards EN 15967 [46],
were originally conducted to determine the maximum explosion pressure pmax, the max-
imum rate of pressure rise (dp/dt)max, and the deflagration index KG. The paper reports
LBVs of hydrogen-blended methane–air and natural gas–air mixtures, using mixtures at
ambient initial pressure and temperature (p0 = 0.97–1.04 bar, T0 = 22–25 ◦C). The mixtures
being studied consist of single fuel–air (CH4–air) and multifuel–air mixtures, where the
multifuel was CH4 blended with H2, or natural gas blended with H2, both under various
amounts of added hydrogen, within 0–50 mol% (in respect to the initial fuel amount). The
studied systems had either a constant fuel (CH4 or NG)/H2 ratio and a variable equiv-
alence ratio or a variable fuel (CH4 or NG)/H2 ratio and a constant equivalence ratio.
Their laminar burning velocities were determined from the cubic law constants, evaluated
from p(t) records obtained in the early stage of closed vessel explosions. Thus, the LBV of
H2-blended CH4–air and NG–air were determined from single p(t) records, without the
additional optical methods of investigation, and were found to describe well the behavior
of these multifuel mixtures.

The present results represent a contribution to the data pool regarding the flame
propagation in hydrogen-blended CH4/air and NG/air mixtures. Earlier studies [47,48]
provided data for risk assessment at gas processing facilities, especially those involving the
introduction of hydrogen into existing natural gas networks under project NATURALHY
financed by the EU. The unwanted consequences of such events, i.e., loss of assets, human
injuries, fatalities, or severe environmental impacts, can be avoided by a proper safety
analysis based on experiments, as discussed by Amin et al. [49].

2. Experimental Procedure

The experiments were conducted at BAM as part of a systematic investigation on
safety-related characteristics of natural gas–hydrogen mixtures [11,43]. The pressure–time
curves obtained during the determination of explosion limits, explosion pressures, and
deflagration constants (KG) could be used directly to calculate the LBVs using the method
described below. The laboratory set-up was previously described in detail [11]. The set-
up affords the monitoring of closed vessel explosions for gaseous mixtures of variable
composition, pressure, and temperature. A 14 L spherical vessel with central ignition
was used to perform experiments with quiescent gas mixtures. An exploding wire igniter
(nickeline wire, diameter: 0.12 mm, distance of electrodes: 5 mm) delivered about 15 J for
ignition. The ignition systems used are in accordance with EN 1839 [50].

The pressure measurements were made with piezoresistive pressure transducers, type
PAA10 (Keller). For mixture preparation pressure transducers with a measuring range
between 0 bar (abs) and 2 bar (abs) or between 0 bar (abs) and 5 bar (abs) were used. For
measuring the explosion pressure, pressure transducers with a measuring range between
0 bar (abs) and 10 bar (abs) were used. The measuring frequency was 20,000 Hz. The
digitized signals of the measuring sensors were connected to an A/D converter, type
MCL-USB (16 channels, 16 Bit A/D, sampling frequency: 500 kHz, from Jet Systemtechnik
GmbH) and a PC for displaying, storing, and evaluating the data.

Two types of European natural gas were tested: one representing a typical Russian
natural gas composition, nearly pure methane, and one of wet type containing CH4 and
a significant amount of C2–C4 alkanes, similar to Northern Sea natural gas [11]. The
composition of the studied natural gas is given in Table 1.

Table 1. Composition of studied wet natural gas.

Component CH4 C2H6 C3H8 n-C4H10

Fraction in NG, mol% 89.3 8.0 2.0 0.7
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Using pure CH4 and wet natural gas blended with H2, multifuel–air mixtures of
variable hydrogen content and equivalence ratio were studied at ambient initial pressure
and temperature. Their composition is given in Table 2. The hydrogen content in the initial
flammable mixture is expressed as the fraction rH , defined as:

rH =
[H2]

([CH4] + [H2])
or rH =

[H2]

([NG] + [H2])
(1)

The equivalence ratio, ϕ, of any flammable mixture is defined as:

ϕ =

[fuel]
[oxygen](
[fuel]

[oxygen]

)
st

where the index “st“ refers to the stoichiometric concentration of the fuel–air mixture.

Table 2. Studied systems (fraction of H2, rH , and equivalence ratios, ϕ).

Fuel rH Equivalence Ratios, ϕ

CH4–air 0 0.95–1.15

CH4–H2–air 0.05; 0.10; 0.25; 0.50 0.90–1.30

Natural gas (NG)–air 0 0.90–1.20

Natural gas (NG)–H2–air 0.10; 0.25; 0.50 0.95–1.15

The mixtures of CH4 or NG with different fractions of hydrogen and air were prepared
in a pressure resistant stainless-steel vessel, according to the partial pressure method at
total pressure of 2 bar or 5 bar, assuming an ideal gas behavior for all gaseous components.

3. Computing Program

The burning velocities of fuel–air and multifuel–air systems, at ambient initial condi-
tions, were delivered by the kinetic modeling of their flames using COSILAB software (ver-
sion 3.0.3) and Gas Research Institute (GRI) mechanism version 3.0 [51], where 53 chemical
species and 325 elementary reactions are taken into account. The input data were taken
from the thermodynamic and molecular databases of Sandia National Laboratories, USA,
according to the international standard (format for CHEMKIN). The runs were performed
for premixed 1D adiabatic laminar free flames of stoichiometric CH4–air, NG–air, and
H2-blended mixtures at ambient initial conditions. In these runs, a steady Newton solver
(25 iterations, relative tolerance 10−5; absolute tolerance 10−8), an unsteady Newton solver
(15 iterations, relative tolerance 10−4; absolute tolerance 10−6), and an unsteady Euler
solver were used, as mentioned earlier [52,53]. The parameters of the adaptive grid were
GRAD = 0.1, CURV = 0.2, with a maximum ratio of adjacent cell size between 1.3 and 1.1.

4. Data Evaluation

The pressure rise in the early stage of closed vessel explosions, ∆p, was found to
increase with time from ignition, t, according to so-called “cubic law” [52,54]:

or rH =
[H2]

([NG] + [H2])
(2)

The equation is valid as long as the spherical propagation of the combustion wave
is not disturbed. In small-scale explosions, the flame front of reactive mixtures does not
develop significant cellular structures and no gas turbulence appears. Indeed, the pressure
rise ∆p was found proportional to t3 in quiescent conditions of combustion (CH4–air, at
p0 = 1 bar (Dobashi [55]) and aviation grade JP-4 fuel with air, at p0 = 135–275 bar (Knapton
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et al. [56]) and to t3.6−6.0 in turbulent conditions (CH4–air, at p0 = 1 bar (Dobashi [55]). In
large-scale explosions (vessels with a volume between 1 and 10 m3), where the buoyancy
effect determines the distortion of the flame, even in the early stage, the time exponent
varied between 3.3 and 5.0 for stoichiometric CH4–air mixtures diluted with various
amounts of nitrogen (Sapko et al. [57]).

Assuming the isothermal compression of unburned gas ahead the flame front, the
laminar burning velocity, Su, was related to k, the cubic law coefficient of pressure rise by
the relationship [54]:

Su = R ·
(

k
∆pmax

) 1
3
(

p0

pmax

) 2
3

(3)

where R is the radius of the explosion vessel, ∆pmax is the peak pressure rise in the explosion
at the initial pressure p0, and pmax = ∆pmax + p0. The measured values of ∆pmax and pmax
are used as input values for Su calculation.

The cubic law coefficient can be determined for each experiment over a restricted
pressure range (p0 ≤ p ≤ 2p0) using a nonlinear regression method with a relationship of
the form:

∆p = a + k (t − c)3 (4)

where a and c are corrections for pressure and time, respectively, necessary for eliminating
the signal shift of the pressure transducer and the possible delay in signal triggering [52].
Smaller residuals and a random error distribution, indicating better correlations, were
obtained by using this modified Equation (4), instead of Equation (2).

The method was successfully used for determining LVBs of various hydrocarbon-oxidizer
mixtures [52–54,58–61] under various initial conditions of pressure and/or temperature.

5. Results and Discussion

A set of experimental burning velocities of CH4–H2–air mixtures obtained from p(t)
measurements in a closed spherical vessel at ambient initial pressure, temperature, and
constant rH , is given in Table 3.

Table 3. Typical values of Su for H2-blended CH4 mixed with air at rH = 0.25.

[CH4]/mol% [H2]/mol% [CH4 + H2]/mol% Equivalence Ratio, ϕ Su/(cm s−1)

8.40 2.80 11.20 0.978 58.6

8.84 2.96 11.80 1.037 61.0

9.14 3.06 12.20 1.077 60.2

9.14 3.06 12.20 1.077 60.9

9.14 3.06 12.20 1.077 61.9

9.30 3.10 12.40 1.098 61.6

9.44 3.16 12.60 1.117 58.6

9.60 3.20 12.80 1.139 58.0

10.04 3.33 13.40 1.199 51.5

10.50 3.50 14.00 1.263 45.6

The influence of the initial composition (characterized by rH and ϕ) on experimental
laminar burning velocities is shown in Figure 1, where data referring to CH4–H2–air and
NG–H2–air mixtures are given. The burning velocities of all mixtures increase by increasing
the equivalence ratio and reaching their peak values, then start to decrease at higher
equivalence ratios. The LBV variation due to H2 addition is observed already at rH = 0.05
for lean CH4–air mixtures. In the range of rich CH4–air and NG–air mixtures, the LBV
changes significantly only at rH > 0.10. For higher hydrogen contents (rH = 0.25 and 0.50),
a marked increase in LBV appears over the whole examined range of equivalence ratios.
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Figure 1. Experimental laminar burning velocities of single fuel–air and multifuel–air mixtures with various rH at ambient
initial pressure and temperature: (a) CH4–H2–air; (b) NG–H2–air mixtures (present data).

The LBV of the stoichiometric CH4–air mixture is Su = 40 cm s−1, in good agreement
with most literature data: Su = 41.2 cm s−1 [62], 41.0 cm s−1 [6], 40 cm s−1 [5], and
38 cm s−1 [53]. For this stoichiometric CH4–air mixture, the earlier reported LBVs vary
within 35 and 41.5 cm s−1 [4–6,62] at ambient initial conditions, a domain where the present
values range well. For the stoichiometric NG–air mixture, the LBV is Su = 45.7 cm s−1,
close to 44.0 cm s−1, previously reported [6,37].

Hydrogen addition to CH4 or NG results in an increase in Su at all initial concentrations
of CH4 or NG. The blended mixtures (CH4–H2 or NG–H2) with a constant [H2] having
various equivalence ratios develop the maxima of their burning velocities at slightly rich
mixtures, with ϕ = 1.05 ± 0.05.

Both datasets were well fitted by 2nd order polynomials, plotted as well in Figure 1.
The points are scattered around the best-fit lines; a possible cause is the turbulence created
already in the early stage of explosion by the ignition, made by a strong initiation source
(exploding wires, which delivered 15 J). This turbulence could determine deviations from
the spherical propagation and errors of the model used. Other methods were also used
to extract the laminar burning velocity from transient pressure measurements [63–67].
These methods require equilibrium calculations of unburned and burned gas states to
determine LBV using the transient burned mass fraction. They are rigorous methods,
which also deliver the temperature gradients in the burned gas and afford the evaluation
of the flame stretch effect on burning velocity. In comparison with them, the actual
method for determining LBVs from pressure measurements in the early stage of explosion
propagation has the advantage of delivering LBVs without additional computations and
without additional experimental techniques for measuring the flame radius. This aspect is
an advantage when flammable mixtures of multifuels or multi-oxidizers are examined, and
the thermodynamic calculations of the intermediate states are impossible or very difficult.

Examination of literature on LBV of H2-blended CH4–air and NG–air mixtures pro-
vides a wide database of comparison. All datasets show the same variation of burning
velocities when examined as a function of the equivalence ratio (at constant rH) or func-
tion of rH (at constant ϕ) [3,7,19,21,23,27–30,37,38,68,69]. Differences arise among mea-
surements performed using different techniques, involving various corrections of the
recorded information.

A closer examination of present results compared with literature data can be made by
examining the LBV of stoichiometric CH4–air and NG–air mixtures blended with hydrogen
at various fractions of added H2, as shown by the plots given in Figure 2. With respect to
CH4–H2–air mixtures (Figure 2a), the present results are found to match well with those
obtained as stretch-free LBV, using the technique of counter-flow flames [23]. For the
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examined range of the fraction of added hydrogen, rH ≤ 0.5, they seem to depend linearly
on it. The same holds for the other datasets, obtained mostly with stationary flames using
the heat flux technique [4,24,28,31]. However, by extending these plots to the whole range
of hydrogen composition (0 ≤ rH ≤ 1.0), one can see the fast increase in LBV at hydrogen
fractions higher than 0.5. At all fractions of added H2, the datasets obtained using the heat
flux method consist of lower LBV than the present data, which were not stretch-corrected,
but their trend is the same. The H2-blended NG–air mixtures can be characterized by
similar plots (Figure 2b); their LBV follows the same marked increase with rH at hydrogen
fractions higher than 0.3.
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Figure 2. Laminar burning velocities of single fuel–air and multifuel–air mixtures with various rH at ambient initial
pressure and temperature: (a) CH4–H2–air; (b) NG–H2–air mixtures (present experimental data, in comparison with
literature values).

A comparison of LBV for the stoichiometric CH4–H2–air and NG–H2–air mixtures,
using the present data, is shown in Figure 3 (experimental LBV) and Figure 4 (computed
LBV) where the dimensionless (relative) LBVrel , defined as:

LBVrel =
[Su] f uel+H2

[Su] f uel
(5)

is plotted against the mole fraction of hydrogen, rH .

Energies 2021, 14, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. Experimental LBV of H2-blended CH4–air and NG–air with various hydrogen contents at 

ambient initial conditions. 

 

Figure 4. Computed LBV of H2-blended CH4–air and NG–air with various hydrogen contents at 

ambient initial conditions. 

For both experimental and calculated datasets, H2 addition influences to a greater 

extent the LBV of CH4–air, as compared to NG–air. 

For the restricted range of hydrogen fractions 0 ≤ 𝑟𝐻 ≤ 0.5, the experimental relative 

burning velocities 𝐿𝐵𝑉𝑟𝑒𝑙 =
[𝑆𝑢]𝑓𝑢𝑒𝑙+𝐻2

[𝑆𝑢]𝑓𝑢𝑒𝑙
 are linearly correlated with 𝑟𝐻. This aspect was al-

ready observed for CH4–H2–air and NG–H2–air mixtures [23,36,68,69] and for other hy-

drogen-blended fuels as well [3,7,8,19,21,23,69,70]. 

At any hydrogen concentration, the burning velocities of NG–H2–air are smaller than 

those of CH4–H2–air, as a consequence of the presence of heavier hydrocarbons in NG. 

Both experimental and modeling studies on the effect of hydrogen addition to the C2, C3, 

or C4 alkanes [3,8,19–21,69,70] showed that the enhancement of LBV upon the addition of 

50% H2 was about 20–40% lower compared to when the fuel was pure methane. 

The computed LBV can be compared to present experimental LBVs when plotted as func-

tions of the equivalence ratios of H2-blended CH4–air and NG–air mixtures, as shown in 

Figure 5. The shape of the experimental (Figure 1) and computed LBVs plots is similar. 

The plots obtained for CH4–H2–air have marked maxima appearing around φ = 1.10 for 

all 𝑟𝐻. In contrast to them, the plots obtained for NG–H2–air are rather flat; their maxima 

appear in the range φ = 1.0–1.10. 

0.0 0.1 0.2 0.3 0.4 0.5

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 CH
4
-H

2
-air, exp. data

 NG-H
2
-air, exp. data

[S
u
] fu

e
l+

H
2
 /
 [
S

u
] fu

e
l

r
H

0.0 0.1 0.2 0.3 0.4 0.5

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 CH
4
-H

2
-air, computed data

 NG-H
2
-air, computed data

[S
u
] fu

e
l+

H
2
 /
 [
S

u
] fu

e
l

r
H

Figure 3. Experimental LBV of H2-blended CH4–air and NG–air with various hydrogen contents at
ambient initial conditions.
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Figure 4. Computed LBV of H2-blended CH4–air and NG–air with various hydrogen contents at
ambient initial conditions.

For both experimental and calculated datasets, H2 addition influences to a greater
extent the LBV of CH4–air, as compared to NG–air.

For the restricted range of hydrogen fractions 0 ≤ rH ≤ 0.5, the experimental relative

burning velocities LBVrel =
[Su ] f uel+H2
[Su ] f uel

are linearly correlated with rH . This aspect was

already observed for CH4–H2–air and NG–H2–air mixtures [23,36,68,69] and for other
hydrogen-blended fuels as well [3,7,8,19,21,23,69,70].

At any hydrogen concentration, the burning velocities of NG–H2–air are smaller than
those of CH4–H2–air, as a consequence of the presence of heavier hydrocarbons in NG.
Both experimental and modeling studies on the effect of hydrogen addition to the C2, C3,
or C4 alkanes [3,8,19–21,69,70] showed that the enhancement of LBV upon the addition of
50% H2 was about 20–40% lower compared to when the fuel was pure methane.

The computed LBV can be compared to present experimental LBVs when plotted as
functions of the equivalence ratios of H2-blended CH4–air and NG–air mixtures, as shown
in Figure 5. The shape of the experimental (Figure 1) and computed LBVs plots is similar.
The plots obtained for CH4–H2–air have marked maxima appearing around ϕ = 1.10 for
all rH . In contrast to them, the plots obtained for NG–H2–air are rather flat; their maxima
appear in the range ϕ = 1.0–1.10.
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Figure 5. Computed laminar burning velocities of single fuel–air and multifuel–air mixtures with various rH at ambient p0

and T0: (a) CH4–H2–air (b) NG–H2–air mixtures.
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Another comparison between the experimental and the computed burning velocities
is shown in Figure 6 for the stoichiometric CH4–H2–air and NG–H2–air mixtures with
various hydrogen contents.
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Figure 6. Laminar burning velocities of stoichiometric multifuel–air mixtures with various rH at ambient initial pressure
and temperature: (a) CH4–H2–air; (b) NG–H2–air mixtures.

For both CH4 and NG mixtures, the computed LBV are lower than the experimental
LBVs, and the differences increase in parallel with rH . Figure 6a contains an additional
plot of predicted LBVs, calculated from the experimental LBVs of pure H2–air and CH4–air
mixtures and the composition of blended mixtures by using an equation proposed by Di
Sarli et al. [25]:

Su,(CH4+H2)
=

1
rH

Su,H2
+ 1−rH

Su,CH4

(6)

The relationship is similar to Le Châtelier’s rule for predicting the flammability limits
of multifuel gases, using the flammability limit of each fuel from the mixture [71]. For
the examined range of hydrogen concentrations, the predicted LBVs are lower than those
directly obtained from experiments. However, one must consider that Su,H2 used to
determine the predicted LBVs were taken from the literature [71] and do not belong to the
present set of experimental burning velocities.

The deviations between experimental and computed LBV can be assigned to the
fact that GRI 3.0 Mech is adequate for modeling the combustion of C1–C4 alkanes (com-
ponents of natural gas) but less adequate for modeling the combustion of multifuel–air
mixtures with a high H2 content. Better predictions were obtained after using improved
mechanisms [19,25,28,30].

The enhancement effect of hydrogen upon flame propagation in H2-blended mix-
tures can be better understood by examining the flame structure obtained from the kinetic
modeling of CH4–air and CH4–H2–air flames. In this purpose, the stoichiometric com-
position of these flammable mixtures was chosen for systems at ambient initial pressure
and temperature.

The influence of H2 concentration on temperature and the volumetric rate of heat
release profiles of CH4–H2–air flames is shown in Figures 7 and 8 at 0 ≤ rH ≤ 0.5. The
temperature of burned gas is not influenced by hydrogen addition; only the flame front
thickness (evaluated as the half of the reaction zone) is decreased by H2 addition. This
variation was assigned by Salzano et al. [69] to the increased amount of NOx produced
by the combustion of H2-blended CH4–air ternary mixtures. In contrast to this trend, H2
addition to CH4–air results in a marked change in the heat release, as shown by data from
Figure 8. Similar plots were obtained for H2-blended NG–air ternary mixtures.
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Figure 7. Computed temperature profiles in the flame front of stoichiometric CH4–H2–air flames
with variable rH ; ambient p0 and T0.
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Figure 8. Volumetric rates of heat release in the flame front of CH4–H2–air flames with variable rH ;
ambient p0 and T0.

The change in the volumetric rates of heat release with the fraction of added hydrogen
is shown in Figure 9 for both CH4–H2–air and NG–H2–air flames. Similar plots are obtained
by examining rH’s influence on the sum of peak mass fractions of the most abundant radical
species: H, OH, O, and HO2, shown in Figure 10. The differences between CH4–H2–air
and NG–H2–air flames are observed only for mixtures with a hydrogen content below 0.25.
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Figure 9. Influence of hydrogen fraction, rH , on peak values of volumetric rates of heat release in the
flame front of H2-blended fuels; flames of stoichiometric mixtures at ambient p0 and T0.
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Figure 10. Influence of hydrogen fraction, rH , on the sum of peak mass fractions from radical species,
H2-blended fuels; flames of stoichiometric mixtures at ambient p0 and T0.

The modeling, thus, indicates a combined (synergetic) influence of these two factors:
the rate of heat release and the abundance of reactive radical species. Their individual
influence on LBVs is shown in Figures 11 and 12.
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Figure 11. Experimental LBV of stoichiometric CH4–H2–air and NG–H2–air mixtures in correlation
with the peak values of volumetric rates of heat release; flames at ambient p0 and T0.
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with the sum of peak mass fractions of radical species; flames at ambient p0 and T0.
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The literature data show that H2 blending of CH4–air or NG–air results in the enhance-
ment of their reactivity [3,7,8,19,21,23,36–38,69,70,72,73], determining the LBV increase
even if the temperature of their burned gases is little influenced by H2 addition. The
results of the present study, thus, show good agreement with previous studies on these
flammable mixtures.

A less examined factor contributing to the observed variations of LBV is the thermal
diffusivity of blended mixtures, which increases many folds by hydrogen addition. In
accordance with the thermal theory of flame propagation, the laminar burning velocity can
be written as:

Su ∼ [D · C1−n
0 · exp

(
− Ea

RTf

)
]

1
2

(7)

where D = λ
ρ·cP

is the thermal diffusivity of the flammable mixture, C0 is the total initial
fuel concentration, Tf is the end temperature in the flame front, and n and Ea are the overall
activation parameters (reaction order and activation energy) of the oxidation reaction [74].
The thermophysical properties of CH4, H2, O2, and N2 are listed in Table 4. Close values are
expected for NG, when compared to pure CH4. Indeed, the high thermal conductivity of
hydrogen influences the thermal diffusivity of H2-blended CH4–air and NG–air mixtures,
resulting in higher LBVs compared to non-blended flammable mixtures.

Table 4. Heat capacities, cp, densities, ρ, thermal conductivities, λ, and thermal diffusivities, D, of
gaseous components [75].

Additive CH4 H2 O2 N2

cp/(J·mol−1·K−1) 35.70 28.84 29.38 29.12

cp/(J·kg−1·K−1) 2231 14,420 918 1040

ρ (kg m−3) 0.717 0.0899 1.429 1.251

λ/(mW·m−1·K−1) 33.0 180.5 26.6 25.8

D·106 (m2 s−1) 20.63 129.2 20.28 19.83

6. Conclusions

The flammability characteristics of methane or natural gas enriched with hydrogen
are frequently studied to ensure the safe use of these mixtures in various activity branches.
Although, in practical applications, hydrogen concentration does not exceed 20%, the
present study was focused on hydrogen percentages between 0 and 50% in the blended
CH4–H2 or natural gas–H2 mixtures.

In the study, the propagation of H2-blended methane or natural gas–air flames in a
closed spherical vessel was monitored by means of p(t) variation recorded in the early
stage of spherical propagation. Its novelty consists of the possibility to determine LBV
from single p(t) records, without additional optical methods of investigation. This simple
method for evaluating data does not consider the flame stretch in this incipient stage
of propagation and the flame width. However, the delivered results can be used for a
preliminary characterization of the propagation stage by the LBV, extrapolated to the initial
moment of experiment, i.e., at (p0; T0). An additional reason is based on the possibility to
use the present method for multifuel- or multioxidizer-flammable mixtures, where the exact
calculation of thermodynamic conditions for the burned gas, under transient conditions, is
difficult, even impossible.

The experimental laminar burning velocities were examined in comparison with the
computed burning velocities obtained from the numerical modeling of 1D laminar flames
with the GRI 3.0 mechanism.

A fair agreement between the experimental burning velocities and reference values
from the literature was observed not only for CH4–air mixtures but for H2-blended CH4–air
mixtures as well. The same good agreement found for present LBVs of NG–air mixtures
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with literature values confirmed the possibility of using the actual simple method for
extracting laminar burning velocities from the measurements of transient pressure in the
early stage of explosion propagation.

The addition of increasing amounts of H2 to CH4 or to natural gas was found to
determine the increase in laminar burning velocity for all investigated compositions of the
methane–air or natural gas–air mixtures. In parallel, a strong influence of added hydrogen
on the rate of heat release and concentration of active radical species in the flame front
was observed. The results are assigned to the higher thermal conductivity and thermal
diffusivity of hydrogen, resulting in a higher reaction rate and a higher heat dissipation
rate of H2-blended mixtures.

The reported data can further help to identify the degree of danger of explosions and
develop more effective measures to prevent explosions of flammable mixtures.
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