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Abstract: In this paper, we present a collection of machine

learning assisted distributed fiber optic sensors (DFOS)

for applications in the field of infrastructure monitor-

ing. We employ advanced signal processing based on

artificial neural networks (ANNs) to enhance the perfor-

mance of the dynamic DFOS for strain and vibration

sensing. Specifically, ANNs in comparison to conven-

tional and computationally expensive correlation and lin-

earization algorithms, deliver lower strain errors and

speed up the signal processing allowing real time strain

monitoring. Furthermore, convolutional neural networks

(CNNs) are used to denoise the dynamic DFOS signal

and enable useable sensing lengths of up to 100 km.

Applications of the machine learning assisted dynamic

DFOS in road traffic and railway infrastructure monitor-

ing are demonstrated. In the field of static DFOS, machine

learning is applied to the well-known Brillouin optical

frequency domain analysis (BOFDA) system. Specifically,

CNN are shown to be very tolerant against noisy spectra

and contribute towards significantly shorter measurement

times. Furthermore, different machine learning algorithms

(linear and polynomial regression, decision trees, ANNs) are

applied to solve thewell-known problem of cross-sensitivity

in cases when temperature and humidity are measured

simultaneously. The presented machine learning assisted

DFOS can potentially contribute towards enhanced, cost

effective and reliable monitoring of infrastructures.
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Zusammenfassung: In diesem Beitrag stellen wir eine

Sammlung von verteilten faseroptischen Sensoren

(DFOS) vor, die mit Hilfe von Maschinellem Lernen

arbeiten und für Anwendungen im Bereich der

Infrastrukturüberwachung geeignet sind. Wir setzen

hierbei fortschrittliche Signalverarbeitung auf der

Grundlage Künstlicher Neuronaler Netze ein, um die

Leistungsfähigkeit dynamischer DFOS für die Messung von

Dehnungen und Vibrationen zu verbessern. Insbesondere

Künstliche Neuronale Netze (ANNs) liefern im Vergleich zu

konventionellen und rechenintensiven Korrelations- und

Linearisierungsalgorithmen geringere Dehnungsfehler

und beschleunigen die Signalverarbeitung, so dass eine

Dehnungsüberwachung in Echtzeit möglich ist. Darüber

hinaus wenden wir Convolutional Neural Networks (CNNs)

an, umdynamischeDFOS-Signale zu entrauschenunddamit

nutzbare Messlängen von bis zu 100 km zu ermöglichen. Es

werden Anwendungsbeispiele dieser durch Maschinelles

Lernen unterstützten dynamischen DFOS in den Bereichen

des Straßenverkehrsmonitorings und der Zug- und

Gleisüberwachung aufgezeigt. Im Bereich der statischen

DFOS wird Maschinelles Lernen auf das Verfahren der

Optischen Brillouin-Frequenzbereichsanalyse (BOFDA)

angewendet. Insbesondere CNN erweisen sich hier

als sehr robust gegenüber verrauschten Spektren

und tragen zu deutlich kürzeren Messzeiten bei.

Darüber hinaus werden verschiedene Algorithmen

des maschinellen Lernens (lineare und polynome

Regression, Entscheidungsbäume, ANNs) angewandt,

um das bekannte Problem der Querempfindlichkeit bei

DFOS in den Fällen zu lösen, in denen Temperatur und

Feuchtigkeit gleichzeitig gemessen werden sollen. Die hier

vorgestellten, durch Maschinelles Lernen unterstützten,

DFOS können zu einer verbesserten, kostengünstigen

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/teme-2022-0098
mailto:konstantin.hicke@bam.de
https://orcid.org/0000-0001-7411-8296
https://orcid.org/0000-0002-9065-3480


2 — C. Karapanagiotis et al.: A collection of machine learning assisted distributed fiber optic sensors

und zuverlässigen Überwachung von Infrastrukturen

beitragen.

Schlagwörter: verteilte faseroptische Sensoren;

Infrastrukturüberwachung; Künstliche Neuronale Netze;

Maschinelles Lernen; verteilte akustische Sensorik;

verteilte Brillouinsensorik.

1 Introduction

Distributed fiber optic sensors (DFOS) have already been

used for a broad range of different infrastructure monitor-

ing purposes in practice with many more being currently

investigated [1]. The most common measurands are usu-

ally strain (distributed strain sensing – DSS), temperature

(DTS) and acoustics/vibrations (DAS/DVS). However, a much

broader range of variables can bemeasured directly or indi-

rectly using DFOS, e.g., displacement [2, 3], pressure, force,

relative humidity [4–9] radiation [10–12], gas concentration

[13, 14] and others.

The advantages to use DFOS technology for infrastruc-

ture monitoring purposes, apart from the many different

measurable variables, are manifold. The distributedness,

i.e., the possibility to continuously measure without a gap

over large distances (many tens of kilometers) should

be considered the most important one. The distributed

nature of DFOS provides one with the opportunity to col-

lect spatial (and possibly temporal) profiles of the measur-

and of interest, which can, e.g., be projected onto certain

geometries. The gapless profiles can greatly simplify data

evaluation and make interpolation like with conventional

point sensors unnecessary. Moreover, particular signal

features, anomalies or even the existence of a significant

signal can be localized with great precision and accu-

racy over the entire sensing range. Furthermore, DFOS

require mostly one, sometimes two points of access only

and can fit into confined spaces easily due to their small

size. They are also inherently immune to electromagnetic

fields, can be employed in hazardous environments and do

not require electricity or cabling where they are measur-

ing. The fiber optic sensors themselves can be considered

cost-effective (due to their possible range), robust sensing

solutions that require little or no maintenance and can

be embedded into infrastructure or to its surface. DFOS

can be used for permanent monitoring of infrastructure

or for intermittent inspection measurements. All the above

make clear, that DFOS is an excellently suited technology

with a proven potential for many infrastructuremonitoring

applications.

Distributed strain and temperature sensing based on

the Brillouin effect in optical fibers have been utilized

for condition monitoring of geotechnical installations, like

dikes or dams [15, 16]. Pipelines have been monitored

using DTS systems based on Raman or Brillouin scatter-

ing to detect leaks via the Joule–Thompson effect [17] or

by employing DAS for security monitoring purposes [18]

(third-party interference) or for acoustic leak detection as

well [19–21]. Furthermore, extended energy infrastructure

like submarine power cables [22–26] or natural gas storage

cavern installations [27] are being monitored using DFOS

to ascertain their condition or to detect threats to their

safe operation. Moreover, the use of DAS for the monitor-

ing of large-scale transport and traffic infrastructure like

railway tracks [28–31] or roads [32, 33] to localize traffic

or detect damages is being investigated as well, while DAS-

based railroad monitoring is already being implemented

to some degree [34]. Structural health monitoring (SHM)

of civil engineering infrastructures like bridges [35, 36] or

tunnels [2] is another important field of application of DFOS

[37]. Finally, one field of research gaining significant inter-

est in recent years, is using DAS for seismic measurement

applications [38–43]. The use of Machine Learning for DAS

data treatment and processing is particularly important in

this area of research [44, 45]. Fiber optic sensors can be

embedded into concrete structures (bridges), can be applied

to surfaces (pipelines), can be rolled out using dedicated

transducer technology like geotextiles (tunnels, dikes), can

be integrated into components (power cables) or attached

to parts of the installations to be monitored (caverns, tun-

nels). Some applications allow for the use of already laid-out

fiber optic cables intended for telecom purposes (railways,

roads).

All these different applications are faced with a spe-

cific set of challenges or difficult requirements attached

to them, many of which can be mitigated or overcome

by the use of machine learning [46, 47]. Machine learn-

ing contributed towards the development of new multipa-

rameter fiber optic sensors alleviating the cross-sensitivity

effects without increasing the cost and complexity of the

system’s hardware and allowing the use of a single optical

fiber [4, 48–50]. Furthermore, due to the multidimensional

and complex raw data of some DFOS systems, advanced

signal processing based on state-of-the-art machine learn-

ing proved advantageous over traditional methods based

on correlation, linearization and least-square curve fit-

ting algorithms [51]. Specifically, machine learning enabled

real-time strain and vibration sensing replacing conven-

tional computationally expensive algorithms, enhanced

the performance increasing the measurands’ accuracy,
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proved more tolerant against noise allowing ultra-long

sensing and uncovered more insights from the data

[48, 52–56]. Machine learning has also been used to denoise

the DFOS spectra outperforming conventional denoisers

[57–60].

The DFOS techniques presented in this paper can

be subdivided into two groups: sensing approaches with

working principles based on the measurement of Rayleigh

backscatter in optical fibers (“Rayleigh-based”) and those

based on the Brillouin backscatter (“Brillouin-based”).

Together with Raman scattering, they are the three major

mechanisms used in DFOS. Rayleigh backscatter pro-

vides the strongest signal, does not require averaging,

Rayleigh-based DFOS thus allows for dynamic sensing, like

distributed acoustic sensing (DAS), e.g., for vibration mon-

itoring. Brillouin-based sensing is better suited for static

or quasi-static monitoring due to the low intensity of Bril-

louin backscattermaking averaging necessary. Nonetheless,

it is best suited for absolute and/or long-term monitor-

ing applications since measurements can be referenced

with offset measurements purely based on fiber material-

inherent properties. Distributed temperature sensing (DTS)

or distributed strain sensing (DSS) are common uses of

Brillouin systems. The precision of Rayleigh-based DFOS

usually supersedes that of Brillouin-based approaches, but

the latter’s’ accuracy is better than that of Rayleigh-based

ones which is especially relevant for long-term monitoring

applications.

This paper does, however, not focus on the working

principles of DFOS or their comparison but rather on the

applications of machine learning in DFOS. We show how

machine learning opens the way for new DFOS applications

and contribute towards cost effective and reliable monitor-

ing of infrastructures.

The paper is structured as follows: in the first section,

the use of Machine Learning algorithms for DFOS data pro-

cessing is demonstrated for dynamic (i.e., Rayleigh-based)

distributed fiber optic sensors, in particular for DAS appli-

cations. Firstly, the use of Artificial Neural Networks (ANNs)

to enable real-time capable dynamic strain sensing aiming

at road traffic monitoring is presented. Secondly, the uti-

lization of convolutional neural networks (CNNs) for DAS

data denoising is demonstrated which also extends useable

sensing range of the presented DAS system. Thirdly, ANN

are used for DAS data alignment as processing step in the

context of fiber optic train and railway monitoring in order

to increase processing speed and allowed input data range,

respectively, when compared to the corresponding alter-

native deterministic (i.e., rule-based) processing algorithm.

In the second section, Machine learning algorithms are

demonstrated for use in static (Brillouin-based) distributed

fiber optic sensing systems. First, CNNs are applied to

Brillouin-based distributed temperature sensing (DTS) to

enable faster measurements and higher accuracy in long-

range sensing applications. Afterwards, different Machine

Learning techniques like regression, decision trees or ANNs

are utilized and compared to make simultaneous multipa-

rameter sensing in a single fiber possible by addressing

inherent cross-sensitivities. The paper is finished with a

summary conclusions segment.

2 Machine learning assisted

Rayleigh-based DFOS

2.1 ANNs for dynamic real-time strain
monitoring

In this section we show how machine learning and partic-

ularly ANNs, can be employed to enhance the performance

in terms of strain accuracy and signal processing time of a

well-established and reliable fiber optic sensing technique

based on Rayleigh backscattering [33]. Specifically, we use

wavelength-scanning coherent optical time domain reflec-

tometry (WS-COTDR) [35]. The WS-COTDR signal results

from partially destructive and constructive interference of

the Rayleigh backscattered light due to the inhomogeneities

in the optical fiber. When strain is applied, the positions of

the scatterers change, which in turn alter the interference

conditions and the backscattered Rayleigh power. We note

that this holds, as long as the pulse wavelength is constant.

If the wavelength of the incident pulse changes, the change

in the backscattered Rayleigh signal due to strain effects can

be almost compensated.

2.1.1 Signal processing based on conventional

correlation algorithm and ANNs

Figure 1 illustrates the working principle of the WS-

COTDR and how strain is extracted using the conventional

approach based on correlation analysis and that of ANNs.

First, a wavelength scan using m frequencies is performed

when the fiber is free of strain at time t0. The minimum and

maximum frequency pulses are depicted in blue and green,

respectively (Figure 1(a)). That measurement (red power

signature) works as a reference. If strain is applied at time

t1, then a second scan will result in different backscattered

powers for every frequency (light blue). As observed in

Figure 1(d), the second trace at t1 is shifted towards higher
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Figure 1: Schematic representation of the data obtained from the

WS-COTDR and comparison of the conventional correlation-based

approach and ANNs. (a) Sequential pulse generation of frequencies

between v0 and vm with stepΔv during time periods of Ts. The signal for
the frequency modulation is given by a sawtooth function. (b)

Backscattered power signatures resulted from two time periods with and

without applied strain (illustrated in blue and red, respectively). (c) and

(d) Signal processing of the two traces for strain change estimation using

ANNs and the conventional correlation-based algorithm.

frequencies. The machine learning approach includes the

use of ANNs which have as inputs the two traces and

as an output a single strain value. The ANN architecture,

shown in Figure 1(c) consists of two fully connected hidden

layers with 1400 and 40 nodes in the first and second layer,

respectively. The conventional approach, on the other hand,

extracts strain by using Eq. (1):

Δ𝜀 = 1∕
(
K·Δ𝑣′

)
(1)

where Δv′ and K are the strain-induced frequency shift

extracted from a least mean square correlation algorithm

and the fiber’s strain coefficient, respectively. More details

about the correlation algorithm can be found in [35]. As

can be seen in the example of Figure 1 the two traces are

not identical due to the noise factor and the usage of the

correlation algorithm can be cumbersome (especially in cir-

cumstances when noise levels are high). ANNs enable much

faster signal processing and in contrast to the conventional

approach, allow for real-time strain estimation. Apart from

this, as presented later in Section 2.2.3, ANNs are more tol-

erant to noise and enhance the performance of the system

providing more accurate strain results and expanding the

measurement range.

2.1.2 Data and ANN training process

The ANN is trained using synthetic data and validated and

tested on experimental data. The synthetic data consists of

four million sweep pairs, similar to the red and light-blue

traces in Figure 1, with one trace being the reference with

zero strain change and the other one corresponding to a

strain change. The strain values in the train dataset are

uniformly distributed in the range of −200 nε to 200 nε.
Furthermore, noise forming a gaussian distribution with

mean equal to zero and standard deviation 𝜎 = 0.02 is

added to the ideal synthetic data to combat overfitting and

facilitate the algorithm to generalize [61]. We note that both

the size of the train dataset and the noise standard deviation

𝜎 are optimized after a systematic study of their impact on

the network’s performance.

The validation and test data are collected from exper-

iments conducted in the lab using a standard optical fiber.

The validation dataset corresponds to a fiber length of

approximately 1 km, while the test dataset is obtained from

measurement lengths of approximately 2 km and 5 km.

Strain is applied on a section of approximately 14 m at the

end of the optical fiber which is wound around a piezo tube.

The piezo excites sinusoidal strain signals with amplitude

100 nε and frequency 20 Hz (validation dataset) and 28 Hz

(test dataset). Figure 2 shows an example of the strain that

the piezo applies to the optical fiber over time. The model’s

performance is evaluated in terms of two key parame-

ters, namely, the total harmonic distortion (THD) which

represents the linearity of the sensor’s response and the
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Figure 2: Temporal strain distribution along the fiber section wound

around the piezo.

strain amplitude spectral density (ASD) noise which is an

indication of the system’s noise.

The schematic in Figure 3 depicts the whole training

pipeline. Firstly, data are synthetically generated and exper-

imentally collected. The synthetic data are used to train the

model, which is validated after every training epoch (a pass

through the whole training dataset) on experimental data.

The validation performance is estimated after every epoch

by the product of the two performance criteria, namely THD

and ASD. At the end of the training phase (determined by

the number of the epochs), the model with the best perfor-

mance, defined as follows:

Pmin = minepoch
(
THDepoch ⋅ ASDepoch

)
(2)

is stored.

Part of the training process is also the hyperparameter

tuning, which is performed by systematically tuning the

hyperparameters’ values and evaluating their impact on

the model’s performance Pmin. The hyperparameters then

need optimization during the ANN training are related to

the network’s architecture and the training algorithm. The

size (number of nodes) and the number of hidden layers are

among the most common structure-related hyperparame-

ters and their optimized values arementioned in Section 2.1

(two hidden layers with 1400 and 40 nodes, respectively).

The hyperparameters that determine the learning, like the

batch size and the learning rate are optimized at 1024

and 0.00003, respectively. Furthermore, a total number

of 500 epochs is found to be enough to achieve the best

Figure 3: Training and model’s evaluation pipeline. Synthetic data are

used for training, while experimental data are used for validation and

testing. All data are normalized. During training, the algorithm passes

through the train set many times, defined by the number of epochs. After

every epoch, the ability of the model to generalize on experimental data

(validation dataset) is examined. The model that arises from the training

procedure is the one that performs best on the validation data as

described in Eq. (2). This procedure is repeated systematically many

times so that the algorithm’s hyperparameters are tuned. In the end, the

model is evaluated on a different dataset (test data).

performance (Pmin). After optimizing the hyperparameters,

the model’s performance is finally evaluated on new and

independent test data.

2.1.3 Performance evaluation of the ANN-assisted

WS-COTDR

The ANN-assistedWS-COTDR is tested on data resulted from

measurements up to approximately 1 km, 2 km and 5 km.

The performance criteria are the already introduced THD

and ASD noise. Table 1 summarizes the strain prediction

performance of the correlation-based WS-COTDR and the

ANN-assisted WS-COTDR. We observe that the ANNs out-

perform the correlation-based approach achieving lower

ASD noise and THD values. We note that the correlation

approach fails when a 5 km fiber is used rendering the use

of ANNs essential.

We have shown that ANNs perform and generalize very

well on new data. However, we note that ANNs are not

capable of extrapolating. Therefore, themodel is expected to

perform well as long as the strain levels to be measured lie

within the strain range of the training dataset. For practical
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Table 1: Comparison of the performance of the correlation based WS-COTDR and the ANN-assisted WS-COTDR in terms of ASD noise and THD for

different measurement distances.

Distance [km] ASD noise [n𝛆/
√
Hz] THD [%]

Correlation ANN Improvement Correlation ANN Improvement

1 0.273 0.230 15.8% 0.452 0.337 25.4%

2 0.364 0.318 12.6% 5.827 0.663 88.6%

5 – 0.501 – – 0.663 –

The most significant improvement is related to the computation time. Specifically, the process of one million input sweeps using the correlation

algorithm and the trained ANN lasts 94 s and 0.353 s, respectively. This means that the ANN shortens the computation time by 269 times. We note

that these results are achieved by using an NVIDIA Quadro P4000 8GB RAM graphic card.

applications, where high levels of strain are expected, the

ANNs can be trained with a very large dataset including a

wide range of strain levels.

2.1.4 ANN-assisted WS-COTDR for real-time road traffic

monitoring

Above we mentioned that ANN is 269 times faster than

the conventional approach, which could enable real-time

measurements. However, this can only be achieved after an

extra step in signal processing is optimized. In practice, the

frequency scanning shown in Figure 1(a) is not linear, and

thus a numerical linearization is required. Specifically, a

Mach–Zehnder interferometer is used to acquire the actual

frequency changes Δv for each pulse that are used to lin-

earize the saw-tooth signal. This linearization process is also

time-consuming and for the process of one million sweep

pairs 33.21 s are needed. ANNs can also be implemented for

the frequency sweep linearization and reduce its computa-

tion time by 272 times. Further information regarding the

linearization problem is provided in [33].

Signal processing using ANNs proved approximately

270 times faster than the conventional correlation-based

signal processing. This potentially enables real-time strain

estimation without storing raw data and opens the way

for dynamic real-time and high-resolution strain (or vibra-

tion) monitoring in infrastructures using even the exist-

ing underground (dark) telecom fibers. As an example of

the ANN-assisted WS-COTDR capabilities, we demonstrate

near-surface strain monitoring (0.8 m depth) between two

locations of our institute using a 1.3 km long dark fiber. The

fiber is place at 5 m distance parallel to a car lane, and thus

road traffic monitoring is feasible. Figure 4 shows the tem-

poral soil deformation, calculated using the ANN-assisted

WS-COTDR while a car is pulling out of a parking slot.

The negative and the positive strain signature is attributed

to the car weight and to the soil relaxation, respectively.

Figure 4: Distributed strain, calculated from raw data using the

described ANNs, over time along fiber optic cable buried below sidewalk.

From the linear negative signature, one could also esti-

mate the car’s velocity, which in this case is approximately

30 km/h.

2.2 CNNs for spectra denoising and
real-time ultra-long distance vibration
sensing

Many applications require distributed fiber optic sensing

over ultra-long km distances which is the case, for example

in subsea power cable monitoring. However, the distance

range of DFOS systems is limited by low signal-to-noise

(SNR) data arising from distant backscattered signals [57].

This attenuation-limited distance range has been overcome

to some extent by increasing the complexity and cost of

the systems by employing additional hardware components

[62, 63]. In this section we show how machine learning,

and particularly CNNs can be used to denoise spectra and

achieve up to 100 km sensing distance using an ultra-low

loss optical fiber (Corning® SMF-28® ULL) [57]. The CNN-

based denoising approach is applied to the ANN-assisted

WS-COTDR system.
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2.2.1 Architecture of the CNN denoiser

The data recorded using the WS-COTDR corresponding to

a single time instance are two dimensional, with the axes

being the sensing distance and the optical frequency. These

two-dimensional data can be represented as images, which

are the inputs of the CNN. Figure 5 shows a schematic

of the complete CNN architecture starting from a noisy

input and ending with the denoised output image. The

CNN denoiser is characterized by a down and up sampling

functionality as described in [64]. The noisy image under-

goes a reversible down-sampling operation, which reshapes

the image into four sub-images with a reduced number

of pixels. The following CNN consists of a series of four

layers with four filters each. We note that the first three

layers are composed by a two-dimensional convolutional

(Conv2D) and rectified linear units (ReLU) operations. The

last convolutional layer is followed by an upscaling operator

(reverse operator of the down-sampling operator applied to

the noisy input image). In the end, the denoised image with

the same number of pixels with the noisy input image is

provided.

2.2.2 Data and CNN training process

The training of the CNN is supervised, which means that

a function that maps the input noisy images to the clean

(ground truth) images is learnt from examples. So, the

CNN is fed by pairs of noisy and clean images which are

obtained by real measurements. The output images result

from high SNR distributed measurements using up to 7 km

fiber lengths while the noisy input images are the output

images superimposed by noise. This noise results frommea-

surementswithout a fiber connected to the systembut using

the system’s settings for ultra-long-distance operation. The

noise added to the high SNR data is also multiplied by a

noise factor, which is treated as hyperparameter during the

CNN optimization. Therefore, noisy data similar to the ones

obtained by actual ultra-long-distance measurements are

generated.

Apart from the training dataset, validation and test

datasets are needed for the validation and model’s eval-

uation, respectively. The validation dataset results from

measurements over 100 km fiber length and is used to mon-

itor the training process and save the model with the best

performance in terms of strain error. Similar to the training

pipeline, described in Figure 3, the validation dataset is also

used to tune the hyperparameters. Among the most impor-

tant hyperparameters are the learning rate, batch size and

noise factor tuned at 0.00001, 16 and 4.5, respectively. We

note that the structure of the CNN (number of convolutional

layers, activation functions, down and up sampling conver-

sion layers, filter and kernel size) shown in Figure 5 is also

optimized in this training phase. The test dataset, used to

evaluate the final model’s performance contains data from

measurements along several fiber distances (70 km, 80 km,

90 km and 100 km).

In Figure 5we observe that the images consist of 96× 96

pixels. The number of pixels in the horizontal and vertical

axis results from the optical frequencies used to perform a

frequency sweep as illustrated in Figure 1 and the positions

in the fiber defining the sampling resolution, respectively.

Furthermore, we note that all measurements are conducted

using a 10 Hz frequency sweep rate with pulse repetition

rate equal to 1 kHz.

The evaluation of the image denoising performance

is commonly performed by using algorithms such as peak

signal to noise ratio (PSNR) [65] or the structural similar-

ity index measure (SSIM) [66] but because the aim of the

reported approach is to measure strain along very long

fiber length, the most valid method to quantify the CNN

performance is the estimation of the strain error when the

denoised images are used. This necessitates applied strain

levels on the optical fiber. In order to avoid unwinding

Figure 5: Architecture of the CNN-based denoiser.
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and cutting the fiber at several positions and placing piezo

stretchers, a strain-equivalent frequency shift modulation

is applied. As already explained in Section 2.1, frequency

shifts due to strain changes can be compensated by shifting

the laser’s central wavelength. Therefore, a way to induce

strain-equivalent shifts of the Rayleigh backscattered spec-

trum is to superimpose onto the laser current an additional

sinusoidal laser current modulation. The frequency of the

additional modulation is set to 2 Hz for the training and

validation data and 1 Hz for the test data. The 2 Hz and 1 Hz

modulation corresponds to strains amplitudes equal to 64

με and 67 με, respectively.

2.2.3 Performance evaluation of the CNN denoiser

The performance of the CNN denoiser is evaluated on the

test data and in terms of mean strain amplitude error. Fur-

thermore, themean strain amplitude errors extractedby the

CNN-denoised images are compared to those extracted by

the raw data and by a state-of-the-art denoiser called block

matching denoising algorithm BM3D [67]. The results are

shown in Table 2. We observe that at distances up to 80 km

both denoisers do not improve the sensor’s performance

significantly and no need for denoising is needed. How-

ever, above 90 km both denoisers reduce the strain error

with the CNN denoiser outperforming the state-of-the-art

BM3D.

Besides the significant performance improvement in

terms of mean strain amplitude error, CNN denoiser is

orders of magnitude faster than the BM3D. Specifically, the

Table 2: Comparison of the performance in terms of mean absolute

strain error for low SNR data (raw data) and denoised data using the

state of the art denoiser BM3D and the CNN denoiser.

Distance [km] Mean absolute strain error [n𝛆]
Raw data BM3D CNN

70 0.46 0.57 0.03

80 1.85 0.87 0.18

90 23.1 6.93 0.37

100 53.84 34.59 5.61

We observe that the CNN denoiser performs well not only on data

collected from the 100 km fiber but also on data with higher SNR

collected from shorter fibers. This means that the CNN denoiser

generalizes well and can potentially be used even if the data are not

noisy. The strain level is not expected to significantly affect the

performance of the CNN denoiser because the CNN is trained to simply

denoise the spectra and not to extract strain. Therefore, the performance

of the CNN depends mostly on the noise levels in the training dataset.

However, the strain levels in the dataset affect the performance of the

ANN models that are used to extract strain (Section 2.1).

CNN denoiser processes a single 96 × 96 image in only 15.4

μs, while the BM3D denoiser requires 1.5 s. This potentially

enables real-time denoising for fiber lengths up to approx-

imately 128 km using the same measurement settings. It is

of high importance to note that the computational times are

calculated using an NVIDIA RTX 2080Ti graphic card.

2.3 ANNs for real-time train-tracking

In this section, we demonstrate how quite simple ANNs can

be employed for efficient high-level processing of real-world

DAS measurement data to be used for smart infrastructure

monitoring. When compared to rule-based deterministic

processing algorithms, the use of ANNs for measurement

data processing can offer benefits in terms of process-

ing speed or computational cost and enhanced input data

ranges, thus improving adaptability to a broader range of

conditions. In our example, noises and seismic vibrations

induced by passing high-speed trains are monitored using a

DAS system interrogating telecom fiber optic cables laid-out

in parallel to the train tracks. The aim of processing these

detected signals is to determine the current position and

speed of running trains as precisely as possible and in real

time.

2.3.1 Using DAS for train and railway monitoring

The idea tomake use of trackside laid-out fiber optic cabling

for DAS to enable train and track monitoring emerged in

the last decade and has since garnered significant attention

[28, 68–75]. Rail systems can be considered prime use cases

for distributedfiber optic sensing based infrastructuremon-

itoring due to their sheer extent and the broad range of

possible application areas, e.g., network efficiency, security,

and maintenance [34]. Furthermore, the almost ubiquitous

availability of fiber optics alongside significant railroads

and the increasing sensing range of available DFOS systems

further facilitates this development. Concerning efficient

railway operations, the need for accurate, real-time-capable

localization of trains, the determination of correspond-

ing velocities and permanent verification of train integrity

(i.e., completeness) still is an important challenge [34].

In contrast to modern high-speed passenger trains, older

trains and most of freight train traffic is not supported by

GPS and/or other continuous positioning systems. Because

of safety requirements like minimum safety distances

between the trains, railroad networks are often operated

below theoretical capacity due to the sparsity of existing

train detection devices distributed along the tracks and

the resulting coarse localization capabilities. The precise

tracking of train movements continuously in time and
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distanceminimizes the length of a railroad segment blocked

by one train and increases the possible throughput of the

network.

2.3.2 Signal characteristics

In Figure 6 an exemplary DAS recording along an approx.

35 km long segment of fiber optic cable laid out in parallel

to railway tracks is depicted as a spatio-temporal water-

fall plot. It exhibits the noises of two high-speed ICE trains

running through the corresponding segment of the rail net-

work. The inset presents a zoomed view, showing parts

of the signal induced by the first train. The most obvious

and distinguishable signal features aligned vertically corre-

spond to the significant noises of consecutive bogie clusters

of the passing train. These strong signal features can serve

as support points for higher level measurement data pro-

cessing (see below). When they are clear and distinguish-

able as in our example, they also provide a simple means

to continuously check train integrity (i.e., completeness)

irrespective of train velocity, since the number of cars (and

thus the number of bogie clusters) is known for each train

[28, 34].

Using DAS for continuous accurate and precise local-

ization of trains faces significant challenges. For once, sen-

sitivity of the DAS system differs along a given railway

as the coupling of vibrations propagating from the track

through the superstructure to the fiber optic cable heav-

ily depends on the local conditions, e.g., the kind of the

superstructure, the distance of the cable tunnel to the track

or special environment like tunnels or bridges. This can

result in blind spots or fiber segments with low SNR. Fur-

thermore, environmental noises, e.g., fromnearby road traf-

fic or industry can degrade signal quality as they interfere

with signals coming from passing trains. These issues and

the diversity of environmental conditions faced with in

the real world significantly complicate the accurate deter-

mination of the trains’ position and speed. Moreover, the

enormous data throughput of modern DAS systems makes

real time analysis extra challenging. In order to enable

real time analysis of large noisy railway vibration data, a

multitude of data treatment algorithms have been inves-

tigated in the literature [76, 77]. Apart from conventional

rule-based algorithms, a promising way to fast analysis of

DAS signals are ANNs. ANNs have been applied for pattern

recognition and event classification tasks, such as identi-

fying environmental noises like construction work next to

tracks [78, 79]. Their use in DAS data processing algorithms

can also significantly speed up the data treatment process

[33]. Besides improving performance parameters like pro-

cessing speed or broadening input data ranges, ANNs can

also be used for speed analysis to be more robust, i.e., to

generalize better among diverse conditions and local or

temporary particularities in the obtained DAS signals. In

the following we describe a simple ANN-based approach

to efficiently obtain the train velocity from DAS-data and

compare its working with a deterministic conventional

algorithm.

Figure 6: Waterfall diagram of DAS recording along an approx. 35 km long segment of trackside laid-out fiber optic cable showing noises from two

successive high-speed ICE trains. The inset shows a zoomed view, with the width of the visible signal corresponding to the duration of passage of the

entire train at a fixed position. Signal features aligned vertically exhibit distinguishable noises of individual bogie clusters of the train successively

passing a position along the tracks.
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2.3.3 Conventional and ANN-based data processing

To analyze DAS data with regard to train velocity, corre-

sponding signals at different locations are shift-adjusted and

centered in the same time window of train passage along

all positions along the railway stretch as a pre-processing

step. This produces what has been called the “rail-view” of

a passing train [28–30]. The width of the resulting stripe

then directly corresponds to the duration of passage of the

train at a given position along the railway track, fromwhich,

togetherwith the known train length, the velocity can be cal-

culated. The horizontal lines stem from aligning the strong

signals induced by the successive bogie clusters. Accelera-

tion and deceleration of the train manifest themselves by a

narrowing and widening of the train’s signal at a specific

location, respectively, corresponding to a shorter or longer

time of passage, respectively.

From the coarsely aligned rail view the train speed can

be determined by further treating the pre-processed data

using a deterministic algorithm based on finding narrow

peaks in the signal or by direct processing utilizing a trained

ANN.

For the pre-processing, the train noises are shifted such

that the train’s signal is roughly centered in a 20 s time

window. This is done by detecting the center of the passing

train’s signal using a filter. Additionally, the train’s signal is

normalized at each spatial position.

For the velocity analysis approach based on a determin-

istic algorithm, amost precise result hinges on the appropri-

ate centering of the signal at each spatial position. To that

end, a narrow peak finder is used to detect signals from spe-

cific bogie clusters (e.g., the most central ones) to finer align

the rain signals using the bogies’ noises as support points.

This requires a continuously high SNR in the noises of a set

of at least a few bogie clusters of a given train. After that, fil-

tering and sliding averaging in time and space is performed

to smoothen the resulting rail-view [29]. Figure 7 shows an

exemplary DAS signal of an ICE high-speed train in rail view

format after the abovewas executed. The apparent high SNR

signal of the train results from the high speed and weight as

well as from adequate sensitivity of the DAS system along

the railway segment under investigation. This, in turn, leads

to high-quality velocity data for thismeasurement, as shown

in Figure 9 (red curve). Nonetheless, onemajor drawback of

the peak-finder data analysis used here is the need for man-

ual tuning of the peak finding threshold parameters, like

minimum peak height and peak width. These parameters

differ for different types of trains and can also vary from

one railway stretch to another. Moreover, the algorithm is

Figure 7: DAS signal of a single high-speed train along a 20 km railway

stretch. The train noises have been shifted in time so that the train signal

is centered within the shown 20 s interval. A peak-finding algorithm is

used to fine-tune the shifts at each spatial position. The resulting shifted

signal is normalized at each position and afterwards smoothed by

employing a moving average in spatial and temporal direction,

respectively.

comparably complex, and the resulting computational load

will impede real-time analysis.

A step towards train velocity determination from DAS

data that is robust enough to adapt to different types of train

and different tracks and railroad environments and fast

enough for real-time analysis, is using a machine learning-

based algorithm. In general, machine learning algorithms

can be adapted to range of different conditions by providing

it with real measurement data or synthesized data to be

used for training the algorithm. Here, we have used an ANN

with a simple architecture with seven fully connected hid-

den layers of 2048, 1024, 256, 128, 32, 8 and 2 neurons respec-

tively. As input, it is designed to take a 20 s sample time

trace at a given spatial position of the rail-view transformed

data to predict from it the train speed as its sole output. As

training data, we used synthetic DAS data resembling real

train noises at a range of different velocities, as shown in

Figure 8. This way, the input data range in terms of train

speeds can be easily adjusted.

Figure 9 (green curve) depicts the determined veloc-

ity result of this simple ANN. It is obvious that its speed

predictions are close to but not as precise as the results

from applying the conventional peak finder algorithm. Nev-

ertheless, the ANN’s performance is promising because it

works with a wider velocity range and provides a much

higher processing speed than the deterministic algorithm.

Future upgrades of the ANN algorithm, e.g., by train-

ing it using both synthetic and real training data could

improve its performance. Training the ANN with data from

recordings of many trains, with specific characteristics of a

given railway segment can also be included without having
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Figure 8: Synthetic DAS signals in rail view format corresponding to train

noises at different velocities used as training data for the used ANN.

Figure 9: Comparison of determined location-dependent train velocities

from DAS data corresponding to Figure 7. Compared are the cases of

employing a rule-based (“conventional”) approach using a peak finder to

identify the bogies’ signals (red curve) and utilizing the ANN-based

algorithm (green curve), respectively.

to tune parameters of rule-based peak finding algorithm

by hand.

3 Machine learning assisted

Brillouin-based DFOS

3.1 CNNs for time-efficient long-range static
temperature sensing

Brillouin optical frequency domain analysis (BOFDA) is

among the most well-established techniques for static tem-

perature and strain distributed fiber optic sensing [80]. A

BOFDA system can reach approximately 60 km measure-

ment length and achieve high spatial resolution on cm

and even on mm range [25, 81, 82]. Ultra-long distance

BOFDA sensing up to 100 km using Raman amplification

has also been reported [26]. However, the relatively low

cost is the characteristic that differentiates BOFDA from

other Brillouin-based fiber optic sensors (e.g., Brillouin opti-

cal time domain analysis (BOTDA)) [25]. The low cost is

attributed to the system’s interrogator that does not require

expensive fast electronics [80]. Similar toBOTDA, theBOFDA

signal is usually undergone a few averages duringmeasure-

ments in order to acquire spectra characterizedbyhigh SNR,

which, in turn, affects positively the system’s performance

in terms of temperature error [25]. However, the number of

averages, aswell as themeasurement lengthhave anegative

effect on the system’s measurement time. In this subsec-

tion we show that CNNs deliver lower temperature errors

than the conventional approach based on Lorentzian curve

fitting (LCF) when faster measurements with low SNR are

conducted. This shows that CNNs are more tolerant to noise

and can potentially open theway for applicationswhere fast

monitoring and low errors are essential.

3.1.1 BOFDA sensing using conventional and CNN-based

signal processing

BOFDA is a distributed fiber optic sensing technique based

on stimulated Brillouin backscattering. Brillouin scattering

is initiated by the pump waves travelling down the optical

fiber and the acoustic phonons of the medium. This scat-

tering is inelastic, and thus the frequency of the backscat-

teredwaves is shifted byΔfB, which is conventionally called
Brillouin frequency shift (BFS). As mentioned, BOFDA is

based on stimulated scattering, which means that the scat-

tering effect is stimulated by injecting additional counter-

propagating (Stokes) waves from the other end of the fiber

with frequency equal to the expected Brillouin backscat-

tered waves. We note that due to the damping ratio of

the medium, a slight detuning between the Stokes and the

Brillouin backscattered waves are still able to stimulate the

backscattering and thus a typical Brillouin gain spectrum

(BGS) is given as a function of Δf , which is the frequency

difference between the incident pump and counterpropa-

gating Stokes waves. The BGS is described by a Lorentzian

curve, as follows [83]:

g
(
Δ f

)
= gB∕

(
1+

(
Δ f −Δ fB

)2∕
(
𝑤∕2

)2)
(3)

wherew denotes the linewidth of the Lorentzian curve. The

BFS (ΔfB) is affected by changes in temperature and change
and is conventionally extracted by performing LCF.

BOFDA provides distributed information of tempera-

ture and strain along optical fibers which is defined by the

spatial resolution, which together with the measurement

length, the number of Brillouin frequency tuning steps and

the signal detection properties (namely the bandwidth and

the number of signal averages) are related to the system’s
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measurement time. In this paper a 30-km optical fiber is

measured with a spatial resolution set to 25 m and using six

Brillouin frequency steps. The Bandwidth detection is set

to 100 Hz and three signal averages are performed. These

measurement parameters result in total measurement time

of 4 min.

Figure 10 shows a typical BGS resulted from a 25 m

segment of a 30 km long optical fiber and how this is ana-

lyzed using both the conventional and the CNN approach

in order to acquire the temperature value corresponding

to that segment. We note that the sampling rate is set to

16 which results in sixteen equally spaced BGS within the

defined spatial resolution. While spatial resolution is set

before conducting the measurements, the sampling rate

adjustment belongs to the signal post processing. Details on

how spatial resolution and sampling rate are set in BOFDA

are given in [56].

With the conventional approach, one performs LCF to

every single BGS to estimate the BFS (ΔfB). The performance
of the LCF is related to the SNR and at distant positions,

where the SNR decreases significantly, the BFS estimation

becomes cumbersome and less accurate. Apart from the

BFS, a preliminary analysis of the fiber under different tem-

perature conditions is required to retrieve the temperature

sensitivity of the fiber (CT). The BFS is linearly dependent

on temperature and thus CT is estimated using linear fitting

[80]. With the CT known, temperature can be extracted by

any BGS. We note that the temperature extracted from the

sixteen BGS is averaged.

The CNN-assisted BOFDA extracts temperature directly

from the BGS without performing any curve fitting and any

preliminary analysis. Nevertheless, training and hyperpa-

rameter optimization is required. The input of the CNN is an

image 6 × 16 (Brillouin frequency steps × number of BGS)

image being a two-dimensional representation of the BGS

shown on the left side of Figure 10. The network’s archi-

tecture resembles that of the well-known VGG16, which is

usually employed for image recognition in machine learn-

ing [84]. Two 3 × 5 convolutional layers are used with a

depth of 16 and 32 for the first and second layer, respec-

tively. After applying downsampling pooling, which works

in one direction (1 × 2), the pooled feature map is flattened

and two fully connected layers with sizes with 32 and 16

nodes, as shown in Figure 10 are used. The batch normal-

ization layers are utilized to avoid overfitting [61] and alle-

viate the internal covariate shift [85]. The ReLU layers refer

to the activation function which performs the nonlinear

mapping [86].

The hyperparameters related to the algorithm itself are

also optimized. Specifically, the required number of epochs,

the batch size and the learning rate are 100, 64 and 0.001,

respectively. We note that an NVIDIA RTX 2080Ti graphic

card is used for training.

The CNN is trained, validated and tested using experi-

mental data which are collected frommeasurements under

different and controlled temperature conditions. Training

and validation data were collected from an approximately

200 m segment placed at the beginning of the 30 km optical

fiber. Specifically, 75% of that data are used for training and

25% for validation. The model is finally evaluated using test

data collected for an approximately 200 m segment placed

at the end of the 30 km optical fiber. The model is validated

and tested according to the diagram in Figure 3 with the

difference that the validation criterion being the validation

loss, calculated in terms of squaremean error instead of the

Pmin as defined in equation (2).

Figure 10: Schematic representation of the conventional and the CNN-based approach.
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3.1.2 Performance evaluation of the CNN-assisted

BOFDA

Figure 11 shows the mean temperature predictions (orange

dots) on the test data using the LCF-based conventional

approach and the CNN-assisted BOFDA in a range of tem-

peratures from 0 ◦C to 40 ◦C. We observe that the CNN

predictions are closer to the black dashed line that refer

to the best-possible outcome predictions. Apart from the

mean predictions, the prediction intervals corresponding

to the standard deviation of the predictions are also illus-

trated in blue and manifest that the deviation of the CNN

predictions is very low and varies significantly less than the

LCF predictions at each set temperature. The total temper-

ature absolute errors of the LCF and CNN-based approach

are 3.5 ◦C and 1.7 ◦C, respectively. Because the test data

arise from the segment at the end of the fiber, where the

SNR is significantly lower, the CNN proves to be more

tolerant against noise than the conventional LCF-based

approach.

Figure 11: Mean temperature predictions using the LCF-based

conventional approach (top) and the CNN (bottom), respectively. The

mean temperature predictions are shown with orange dots while the

prediction interval is illustrated in blue. The dashed lines represent the

best-possible temperature predictions.

Although CNNs provide more accurate temperature

predictions than the LCF approach on noisy data, the use

of CNNs on data with high SNR is not beneficial. When

high SNR spectra are obtained, the LCF is of high quality

and the extraction of BFSs results in reliable temperature

predictions, which cannot be improved further by CNNs. A

study on the evaluation of the generalization performance

of the CNN-assisted BOFDA shows that the usage of CNNs is

advantageous in applications where long-range sensing is

required [87].

The performance enhancement in terms of tempera-

ture error can also contribute towards shorter measure-

ment times. The number of signal averages increases the

SNR which can have a positive impact on the temperature

errors but on the other hand increases the measurement

time [56]. To estimate the improvement in measurement

time that is achieved using CNNs, we examine the number

of signal averages that are required to increase the SNR so

that the conventional method can reach the temperature

errors of the CNN-assisted BOFDA. This study is carried out,

as an example, at 0 ◦C and shows that at least 27 averages

are required which result in a total measurement time of

36 min. Therefore a nine-fold reduction in measurement

time is achieved.

3.2 Machine learning algorithms for
multiparameter sensing

In this section we show how machine learning can be used

to simultaneously monitor temperature and humidity using

BOFDA. In general, multiparameter Brillouin distributed

sensing in not trivial due to the effect of cross-sensitivity

[88, 89]. Specifically, both humidity and temperature affect

the BFS, and thus the conventional method cannot decouple

the two effects. To overcome this, a BOFDA setup charac-

terized by a high SNR and assisted by machine learning

algorithms is used.

3.2.1 Feature extraction and data acquisition

For simultaneous temperature and humidity sensing

a polyimide-coated (PI) optical fiber (Fibercore

SM1250(10.4/125)P) which is sensitive to both effects is

used. Figure 12A shows a multipeak BGS of the PI-coated

optical fiber (blue dots) retrieved by used our BOFDA

system. This setup proved capable of recording a multipeak

BGS, consisting of additional secondary peaks with

amplitudes orders of magnitude lower than that of the

fundamental peak. Furthermore, the multipeak LCF (red

curve) fits almost perfectly with the experimental data.
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Figure 12: Measured multipeak Brillouin gain spectra. (a) Normalized

logarithmic BGS at a random position along the FUT. Lorentzian curve

fitting (LCF) is shown with a red curve while the Lorentzian components

(LC) with colored dashed curves. (b) 2D representation of the normalized

and logarithmic BGS from 340 m to 400 m.

Together with the multipeak LCF, the individual Lorentzian

components are also depicted (colored dashed curves).

We note that the last peak is very broad indicating that

two peaks are superimposed, and thus two Lorentzian

components are used. The LCF is performed using the lmfit

python library [90]. The quantities extracted from the LCF

and used as features are the BFSs and linewidth of all the

Lorentzian components. In total ten features are used.

Measurements are conducted along a PI-coated optical

fiber of 400 m length. To regulate the temperature and

humidity conditions, a segment of the fiber of approxi-

mately 60 m is placed in a climate chamber. A 2D repre-

sentation of the BGS corresponding to this fiber segment

is shown in Figure 12B. Since temperature and humidity

conditions are the same along the optical fiber, we observe

that the BGS is almost identical along at all positions. The

temperature and humidity ranges are set from 40 ◦C to

60 ◦C and from 20%RH to 80%RH, respectively. At every

set temperature and humidity condition, two distributed

measurements along the optical fiber are conducted.

3.2.2 Performance evaluation of different machine

learning algorithms for temperature and humidity

discrimination

After extracting the BFSs and linewidths of all BGS using

multipeak LCF we perform an exploratory data analysis.

The scatter plot in Figure 13 shows, as an example, how the

linewidth and the BFS of the fundamental peak change with

relative humidity and temperature. We observe that while

the BFS changes with both temperature and relative humid-

ity, the linewidth depends solely on the BFS. Specifically, the

BFS increases with temperature and relative humidity with

coefficients equal to 1.1 MHz/◦C and 100 kHz/%RH, respec-

tively. Furthermore, we observe that the linewidth does

not change linearly with temperature and the higher the

temperature, the smaller the linewidth difference between

two consecutive temperature steps. Thismanifests that non-

linear algorithms are more appropriate.

Although in Figure 13 we show, exemplarily, the impact

of temperature and relative humidity only on the BFS

and linewidth of the fundamental peak, we make use of

all the features extracted from the multipeak BGS. This

results in 5 BFSs and 5 linewidths. First, a simple linear

regression algorithm, which assumes only linear relations

between the features and the target values (temperature

and relative humidity) [91]. Even though the algorithm is

very simple, it performs relatively well and manages to

discriminate temperature and humidity providing absolute

errors of 0.8 ◦C and 8.6%RH, respectively. To reduce the

errors, more complex algorithms are applied. Polynomial

regressionworks similarlywith linear regression butmakes

use of features converted in their higher order terms [91].

Although polynomial regression can catch nonlinearities in

Figure 13: Scatter plot indicating how the linewidth and the BFS of the

fundamental peak (LC0) vary with temperature and relative humidity.
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the data, it becomes prone to overfitting when the order

of polynomials increases. For this reason, L2 regulariza-

tion is used. This kind of regression analysis is also known

as ridge regression [91]. We find out that a second order

polynomial reduces the humidity error by almost 1 ◦C. No

significant change in temperature error is observed. Deci-

sion trees [92] are also utilized but only a slight decrease

in humidity error is achieved. Specifically, we make use

of an ensemble of five decision trees with depth and leaf

nodes equal to 8 and 60, respectively. We note that these

hyperparameters are optimized similarly to the optimiza-

tion in ANNs, as shown in Figure 3. ANNs are employed,

and they outperform all the previously used algorithms

delivering a humidity error of 6.5%RH. The ANN consists

of two hidden layers with 256 and 16 nodes in the first

and second layer, respectively. The training is performed

setting the batch size to 8 and the learning rate to 0.005.

A comparison of the performance of all algorithms used is

summarized in Table 3. We note that all the machine learn-

ing algorithms are applied using the Python scikit-learn

library [93].

The algorithms’ performance evaluation on tempera-

ture and humidity discrimination is estimated in this case

using leave-one-out cross-validation. Due to the long mea-

surement times, the number of the conducted distributed

measurements along the optical fiber is limited, and thus

there are not enough data that can be split into train, vali-

dation and test datasets. To make use of the whole dataset

but also to get an unbiased prediction on unseen data, a

kind of cross-validation is used. During cross-validation, N

models are training using N − 1 distributed measurement

excluding one measurement, which is used for testing. this

approach is called leave-one-out cross-validation [94]. The

errors shown in Table 3 are referred to themean error of the

N trained models. In the future more data will be collected,

and the model will be evaluated not only in its ability to

simply generalize on unseen data but also to interpolate

and extrapolate out of the training range. A future work

will also evaluate the model’s performance for applications

Table 3: Comparison of the machine learning algorithms’ performances

in terms of temperature and relative humidity mean absolute error.

Algorithm Mean absolute strain error

Temperature [◦C] Humidity [%RH]

Linear regression 0.8 8.6

Polynomial regression 0.7 7.7

Decision trees 0.7 7.4

ANNs 0.9 6.5

in the field of structural health monitoring of infrastruc-

tures (e.g., long pipelines, subsea cable monitoring, corro-

sion detection) to examine its capabilities to adapt to new

conditions [95].

The simultaneous measurements of temperature and

humidity are time-consuming which is attributed signifi-

cantly to the high SNR ratio that is required to obtain a clear

multipeak spectrum which is characterized by secondary

peaks whose amplitudes are more than two orders of mag-

nitude lower than that of the fundamental peak (Figure 12).

A future work will investigate the potential to use the

CNN-assisted BOFDA which is very robust against noise (as

described in Section 3.1) to discriminate temperature and

humidity from measurements conducted in considerably

shorter times.

4 Conclusions

We presented a few examples on how machine learning

enhances the performance of dynamic (Rayleigh) and static

(Brillouin) DFOS for applications in the field of infras-

tructure monitoring. Machine learning proved to be more

tolerant against noise in both types of DFOS reducing con-

siderably the temperature and strain errors. Moreover, in

the case of the WS-COTDR (Rayleigh-based DFOS), the com-

putation time to extract strain was reduced significantly

by using ANNs. Specifically, the ANN approach proved to

be 270 times faster than the conventional approach. This

signal processing time is fast enough to potentially enable

real-time dynamic strain monitoring. Applications of the

dynamic DFOS systems in the field of road traffic and rail-

way infrastructure monitoring were presented. CNNs were

also used to extend the measurement length of the WS-

COTDR and allow up to 100 km distributed sensing. In

the case of BOFDA (Brillouin-based DFOS), the CNNs con-

tributed significantly towards faster measurement times

achieving a nine-fold time reduction in comparison to the

classic system. Furthermore, machine learning was also

used to address the well-known cross-sensitivity problem in

DFOS and allow multiparameter sensing. In this case, tem-

perature and humidity was measured simultaneously with

errors equal to 0.9 ◦C and 6.5%RH. Therefore, the presented

machine learning assisted DFOS can open the way towards

a cost-effective distributed sensing for applications in long

subsea cable monitoring and corrosion prevention in long

pipelines.
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