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Abstract

Detailed knowledge about soil composition is an important prerequisite for

many applications, for example precision agriculture. Current standard labora-

tory methods are complex and time-consuming but could be complemented by

non-invasive optical techniques. Its capability to provide a molecular finger-

print of individual soil components makes Raman spectroscopy a very promis-

ing candidate. A major challenge is strong fluorescence interference inherent

to soil, but this issue can be overcome effectively using shifted excitation

Raman difference spectroscopy (SERDS). A customized dual-wavelength diode

laser emitting at 785.2 and 784.6 nm was used to investigate 117 soil samples

collected from an agricultural field along a distance of 624 m and down to

depths of 1 m. To address soil spatial heterogeneity, a raster scan approach

comprising 100 measurement spots per sample was applied. Based on the

Raman spectroscopic fingerprint extracted from intense fluorescence interfer-

ence by SERDS, 13 mineral soil constituents were identified, and even closely

related molecular species could be discriminated, for example polymorphs of

titanium dioxide and calcium carbonate. For the first time, the capability of

SERDS is demonstrated to predict the calcium carbonate content as an impor-

tant soil parameter using partial least squares regression (R2 = 0.94, root mean

square error of cross-validation RMSECV = 2.1%). Our findings demonstrate

that SERDS can extract a wealth of spectroscopic information from disturbing

backgrounds enabling qualitative and quantitative soil analysis. This highlights

the large potential of SERDS for precision agriculture but also in further appli-

cation areas, for example geology, cultural heritage and planetary exploration.

KEYWORD S

calcium carbonate, dual-wavelength diode laser, fluorescence rejection, shifted excitation
Raman difference spectroscopy, soil minerals

Received: 31 October 2022 Revised: 2 December 2022 Accepted: 5 January 2023

DOI: 10.1002/jrs.6500

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.

J Raman Spectrosc. 2023;1–14. wileyonlinelibrary.com/journal/jrs 1

 10974555, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/jrs.6500 by Fak - B

am
 B

erlin, W
iley O

nline L
ibrary on [23/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-7173-2677
https://orcid.org/0000-0003-1166-5529
https://orcid.org/0000-0001-8116-5808
https://orcid.org/0000-0001-5044-955X
mailto:kay.sowoidnich@fbh-berlin.de
https://doi.org/10.1002/jrs.6500
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jrs
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjrs.6500&domain=pdf&date_stamp=2023-01-20


1 | INTRODUCTION

Precision agriculture[1] and effective soil nutrient man-
agement are becoming increasingly important to improve
crop productivity, increase overall soil health, and reduce
excessive use of commercial fertilizers. Established stan-
dard laboratory methods for soil analysis are complex,
time-consuming and labor-intensive making the analysis
of larger areas with high spatial resolution difficult,[2] but
they could be complemented by non-invasive optical
measurement approaches. Such techniques, ideally with
the ability to be applied on-site without the need for sam-
ple preparation, have the potential to provide necessary
information for evidence-based decision support sys-
tems.[3] Raman spectroscopy is a powerful spectroscopic
tool that provides a fingerprint on a molecular level thus
enabling qualitative and quantitative sample analysis.
The technique has thus a great potential for soil composi-
tional analysis but, despite a wide range of potential
applications, to date is still largely underexplored in
this area.

The major reason for the scarce use of Raman spec-
troscopy is the interference of fluorescence[4] mainly aris-
ing from soil organic matter[5,6] and clay minerals.[7,8] In
some cases, strong fluorescence can even prevent success-
ful Raman analysis of soil samples.[9] One approach to
mitigate this issue is to use confocal Raman microscopy
to reduce the amount of out-of-focus fluorescence contri-
butions being detected. Micro-Raman studies have been
reported exemplarily for soil analysis in a forensic con-
text[10] and for the analysis of soil minerals.[11] However,
Raman microscopic investigations conducted by our
group have demonstrated that residual fluorescence
interference is still an issue potentially masking weak
Raman signals even when a confocal geometry is
chosen.[5,12]

Due to the severity of fluorescence interference in
many cases, additional approaches were required to
extract useful Raman spectroscopic information from soil
specimens. One of the simplest techniques is a mathe-
matical removal of background contributions as applied
for the analysis of Chinese farmland soils,[13] soil charac-
terization at archeological sites[14] and the identification
of phosphates in soil.[15] Such mathematical post-
processing of Raman spectra may be applicable for mod-
erate fluorescence interference, but our previous work in
the case of highly fluorescent soil specimens has shown
its limitations, for example when using polynomial back-
ground subtraction.[16] Furthermore, these techniques
are unable to adequately separate Raman signals from
non-Raman spectral features, for example fixed pattern
noise or artefacts, limiting their applicability in case of
low signal levels.

Another technique is fluorescence bleaching, that is
the reduction of the fluorescence intensity by exposing
the sample to laser radiation before starting the actual
spectral acquisition. This has been applied for the char-
acterization of Hawaiian soils[17] and for explosives
detection within soil.[18] A serious drawback of this
method is that heating, modification and even damage
to the sample due to prolonged exposure to the laser
beam cannot be ruled out. Another detrimental effect
is related to the extended amount of time required for
the measurements due to the bleaching time, which
can take up to 20% of the time used to record the
Raman spectra.[18]

An instrumental method to address fluorescence
interference is the usage of shorter excitation wave-
lengths in the ultraviolet (UV) spectral range. Although
the studies mentioned so far have applied laser wave-
lengths of 785, 532 or 514.5 nm, an excitation in the UV
can be beneficial. This has been reported using a laser
emitting at 325 nm to classify five types of Brazilian soil
but residual background contributions were still present
requiring an additional baseline subtraction.[19] To fully
exploit the benefits of this approach, deep-UV Raman
spectroscopy with excitation wavelengths below 250 nm
should be applied. This enables to efficiently separate the
spectral region containing the Raman signals from the
spectral range where fluorescence emission occurs. Deep-
UV Raman spectroscopy using 244 nm excitation has
been demonstrated for the analysis of phosphorous com-
pounds in different soils.[20] Unfortunately, due to the
high-energetic laser photons, most of the organic mate-
rial within the soil decomposed during the Raman mea-
surements, in some cases, even when strong sample
cooling to �100�C was applied.[20]

Shifted excitation Raman difference spectroscopy
(SERDS)[21,22] is another very promising approach to
address the fluorescence issue and our group evaluates
the potential of this technique for soil inspection. Based
on the consecutive excitation of the sample at two slightly
different laser wavelengths, SERDS is a powerful physical
approach to extracting the characteristic molecular fin-
gerprint of a specimen from interferences. The Raman
signals will directly follow the small shift in excitation
wavelength (e.g. 0.6 nm at 785 nm), whereas back-
grounds remain essentially unchanged. Subtracting both
recorded Raman spectra can then effectively separate the
characteristic molecular fingerprint of the sample from
background interferences caused by fluorescence and
also ambient lights.[23,24] We have recently demonstrated
that SERDS can successfully be applied for the qualitative
investigation of soil enabling the identification of quartz,
feldspar and hydroxyapatite[12] as well as for the determi-
nation of the soil organic matter content.[16]

2 SOWOIDNICH ET AL.
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In this paper, we present systematic SERDS investiga-
tions for the characterization of 117 soil samples collected
from an agricultural field. To address soil spatial
heterogeneity at multiple length scales, a raster scan
approach comprising 100 measurement spots per
sample was applied to the specimens collected from a
two-dimensional cross-section along a distance of 624 m
and down to a depth of 1 m. This allowed to incorporate
topsoil samples that are affected by agricultural machin-
ing (ca. 0–40 cm depth) as well as subsoil samples that
remain mostly unaffected (ca. 40–100 cm depth). The
SERDS spectra enabled us to detect and identify 13 major
and minor soil constituents enabling the discrimination
of even closely related molecular species within
soil including polymorphic forms. For the first time,
multivariate regression of representative average spectra
of the 117 topsoil and subsoil specimens could success-
fully be used for the quantification of the soil calcium
carbonate content, an important parameter in the context
of liming requirements.

2 | MATERIALS AND METHODS

2.1 | Experimental setup for shifted
excitation Raman difference spectroscopy

For our experiments, a compact laboratory setup for
shifted excitation Raman difference spectroscopy has
been developed and is described in detail in our previous
study.[16] Briefly, the excitation light of an in-house
developed 785 nm dual-wavelength diode laser[25] passes
through an optical isolator with 60 dB blocking
(FI-780-5TVC, Qioptiq) and is then focused into an opti-
cal fiber with a core diameter of 100 μm (LEONI Fiber
Optics). After collimation at the fiber output, the
laser light passes two bandpass filters (LL01–785-25,
Semrock) and is reflected at a Raman long-pass
filter (DI02-R785-25x36, Semrock) and a silver mirror
(Qioptiq). Subsequently, an achromatic lens with a focal
length of 30 mm and a diameter of 25.4 mm (Thorlabs)
focuses the laser light through a sapphire window
(Newport corporation) onto the soil sample with a spot
size of approximately 100 μm. Automatic probing of the
sample at selected points in a grid pattern is realized by a
motorized X–Y stage with a positioning accuracy of 4 μm
(TRA12CC, Newport corporation).

The back-scattered light emerging from the specimen
is collected by the same lens used for focusing the laser
light. Following reflection at the silver mirror and trans-
mission through a set of three Raman long-pass filters
(DI02-R785-25x36 and LP02-785RU-25, Semrock), the
Raman Stokes scattered light is launched into an optical

fiber with a core diameter of 200 μm (Thorlabs). This
fiber transfers the light towards the spectrometer (optical
resolution of 4 cm�1, Tornado U1, Tornado Spectral
Systems) with an attached charge-coupled device
detector (MityCCD H10141, CriticalLink) that is thermo-
electrically cooled down to �10�C. Adjustment of the
laser operation parameters, recording of the Raman
spectra and control of the motorized sample stage are
realized by in-house written software.

2.2 | Sample material and X-ray
fluorescence analyses

For our study, 117 soil samples were exemplarily collected
from the topsoil and subsoil layers (down to 100 cm
depth) of an agricultural field in northeast Germany
(Latitude: 52.394316 N; Longitude: 14.461156E) in 2020.
Additional information about selected soil parameters of
the field can be found elsewhere.[16] From previous inves-
tigations, it is well known that the field possesses a pro-
nounced spatial variability and samples were taken
accordingly along a line across the field covering a total
distance of 624 m with adjacent points being separated by
24 m. At each of the 27 probed locations, samples were
collected from up to five different depth ranges, namely
0–20, 20–40, 40–60, 60–80 and 80–100 cm to assess soil
layers strongly affected by agricultural machining as well
as those layers that remain mainly unaffected. In line
with sample preparation standards in soil science, the
specimens were air-dried at room temperature and sieved
to grain sizes smaller than 2 mm before further analysis.
Samples were divided into multiple sub-sets, where one
was used for the SERDS experiments and another one for
the X-ray fluorescence (XRF) reference analyses.

X-ray fluorescence measurements were performed
using a Panalytical MagiX Pro wavelength dispersive
spectrometer equipped with a 4 kW water-cooled tube.
Soil samples were placed as loose powder in X-ray sample
cups covered with a 6 μm thick X-ray Mylar® film and
measured under a helium atmosphere. The application
was calibrated with 16 certified reference soil materials
(CRM) from different institutions: GBW07402 and
GBW07405 from the National Research Centre for Certi-
fied Reference Materials (Beijing, China); NCS DC73023,
NCS DC73030, NCS DC85109 and NCS DC87104 from
the National Analysis Centre for Iron and Steel (Beijing,
China); TILL1, TILL2 and TILL3 from the Canadian
Centre for Mineral and Energy Technology—CANMET
(Ottawa, Canada); BAM-U110 from the Federal Institute
for Materials Research and Testing—BAM; Soil-5
from the International Atomic Energy Agency—IAEA
(Vienna, Austria); VS2498–83 from the ICRM Centre

SOWOIDNICH ET AL. 3
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(Moscow, Russia); NIST1646a, NIST2704, NIST2709 and
NIST2710 from the National Institute of Standards and
Technology—NIST (Gaithersburg, USA).

2.3 | SERDS measurement parameters

The SERDS experiments were conducted with the soil
samples being located in round aluminum cups (diame-
ter 30 mm � depth 7.6 mm) and covered with a sapphire
window to obtain a flat sample surface. The specimens
were mounted in a motorized X–Y stage and probed at
100 positions in a 10 � 10-point grid pattern with 1.1 mm
spacing between grid points thus covering an area of
1 cm2. At each spot, 10 single Raman spectra with an
accumulation time of 1 s were recorded for both excita-
tion wavelengths using an optical power at the sample
position of 20 mW.

2.4 | Processing of SERDS spectra

The data processing for SERDS is detailed in our previous
publication,[16] and only a brief overview will be given
here. Using an in-house developed algorithm implemen-
ted in MATLAB (R2017a, MathWorks, Natick, MA,
USA), initially, the SERDS difference spectrum was cal-
culated from the mean Raman spectra recorded at each
excitation wavelength. Following cubic spline fitting to
generate a zero-baseline-centred derivative-shaped differ-
ence spectrum, a numerical integration is performed to
obtain a reconstructed SERDS spectrum in a conven-
tional form. The last step comprises a baseline correction
of the reconstructed SERDS spectrum to achieve a
straight horizontal baseline. For qualitative analysis, the
obtained SERDS spectra were assessed individually for
the identification of soil constituents. For each sample,
outliers were removed if their SERDS intensity was above
an empirically determined threshold of four times the
mean intensity of the spectra recorded at the 100 different
locations.[16] In the case of quantitative analysis, the aver-
age of the remaining spectra was calculated to obtain one
representative mean spectrum for each specimen to con-
sider the inherent soil heterogeneity.

2.5 | Data analysis

In case of qualitative soil analysis aiming for the identifica-
tion of individual constituents present in the investigated
specimens, the following approach was used. As a first
selection criterion, individual SERDS spectra showing
strong characteristic Raman signals of the respective target

substance (e.g. quartz, feldspar, calcite etc.) were identified
by visual inspection. Aiming to obtain mostly “pure”
SERDS spectra of selected soil constituents, a second
selection criterion was applied. This is that the selected
spectra should exhibit pronounced Raman signals of the
respective target substance but also display minimal
interference from Raman signals of other soil constituents
(e.g. quartz as frequently present mineral). Based on this
procedure, the three “purest” SERDS spectra with strong
Raman signals of the target substance were chosen and
their average was calculated. As only two SERDS spectra
showing the clear presence of diopside were detected, only
these two spectra (rather than three as for the other
constituents) were averaged. These data (normalized to
the respective maximum intensity value and vertically
offset for clarity) are then presented in Figure 2.

For all univariate and multivariate analyses, the data
set containing average spectra for each of the 117 soil
samples has been normalized to the intensity of the
Raman signal at 749 cm�1, originating from the sapphire
measurement window. In a first attempt, calcium carbon-
ate Raman signal intensities were determined by using
mean values of three points each around 1084 and
711 cm�1 above zero baseline. When considering both
characteristic Raman signals, the sum of the intensities of
the two signals is used.

For comparison, the cumulative intensities of
17 points in the range 1076–1093 cm�1 (Raman signal at
1084 cm�1), 12 points in the range 705–717 cm�1

(Raman signal at 711 cm�1) or the sum of intensities in
both of these regions (Raman signals at 1084 cm�1 and
711 cm�1) were calculated. In all cases, the Raman signal
intensities were correlated with reference calcium car-
bonate contents as derived from soil calcium contents
determined by XRF analysis.

Prior to multivariate regression aiming for the quanti-
fication of calcium carbonate content, SERDS spectra
were truncated to two different spectral regions to assess
the effects of the inclusion or the exclusion of the major
carbonate Raman signal at 1084 cm�1. In both cases, the
major quartz Raman signal located at 465 cm�1 was
excluded from the analyzed spectral range as pronounced
variations in its signal intensity do not correlate with the
calcium carbonate content thus leading to decreased
model performance. The first region comprising the 500–
1100 cm�1 range was selected as it contains both charac-
teristic Raman signals of the target substance at 1084 and
711 cm�1 but excludes the strong quartz Raman signal
located at 465 cm�1. In the second case, the spectral
region was further narrowed to 500–1040 cm�1 to evalu-
ate modeling performance if the main Raman signal of
the target substance at 1084 cm�1 is not considered (see
Figure 2 for Raman spectra of soil constituents). For the

4 SOWOIDNICH ET AL.

 10974555, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/jrs.6500 by Fak - B

am
 B

erlin, W
iley O

nline L
ibrary on [23/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



partial least squares (PLS) regression of the SERDS data
against calcium carbonate contents calculated from soil
calcium contents determined by XRF, the MATLAB func-
tion “plsregress” included in the Statistics and Machine
Learning Toolbox and based on the SIMPLS algorithm[26]

was applied. Considering the sample size of 117 spectra,
10-fold cross-validation was chosen as a suitable cross-
validation approach.

The included maximum number of PLS components
in the regression models has been identified by calculat-
ing the model root mean square error of cross-validation
(RMSECV) as a function of the number of components.
The common practice in multivariate regression is then
to select the number of components giving the minimum
RMSECV.[27] Care must however be taken not to include
insignificant information, for example noise, into the
model. To address this issue, a further selection criterion
has been applied in our case. From the maximum num-
ber of components defined by the minimum RMSECV,
only those components that explained more than 1% vari-
ation in the response variables, that is the reference cal-
cium carbonate contents, were included in the partial
least squares regression (PLSR) models.

3 | RESULTS AND DISCUSSION

3.1 | Influence of soil heterogeneity on
detected spectra

In the case of micro-Raman spectroscopy with spot sizes
on the order of a few micrometers, identification of indi-
vidual soil constituents is rather easy as for each mea-
surement spot mostly pure component spectra can be
acquired.[5,11,12,17] It should be noted that in our study,
an excitation and collection spot size of approximately
100 μm has been selected to average out soil spatial het-
erogeneities on the micrometer scale. The recorded spec-
tra from individual measurement spots will thus very
likely contain molecule-specific information from more
than a single species in most cases. Nevertheless, in the
following, it will be demonstrated that the molecule-
specific information extracted from intense background
contributions by means of SERDS can successfully be
applied for a qualitative soil analysis to identify the pres-
ence of individual constituents.

3.2 | SERDS for identification of soil
constituents

In our previous work, we have shown that SERDS can
successfully be applied for the identification of selected

inorganic (quartz, feldspar, anatase, calcite and
hydroxyapatite) and organic (amorphous carbon) soil
constituents.[12,16] The present investigation is now
going a step further by discriminating even closely
related molecular species within soil including polymor-
phic forms.

As an example, the averaged 10 single Raman spec-
tra recorded for each excitation wavelength (784.6 and
785.2 nm) from a single measurement spot of one
selected soil sample are shown in Figure 1 (top curves).
Due to strong fluorescence interference, virtually no
Raman signals of soil constituents except for quartz
(SiO2) at 465 cm�1[28] can be observed. The spectral
shift of the quartz Raman signal following the applied
shift in excitation wavelength of 0.6 nm (corresponding
to 10 cm�1) can be recognized when comparing
the two Raman spectra. Application of SERDS
according to the procedure described above can reveal
additional spectroscopic information from the Raman
data. Due to the underlying physical approach, the

FIGURE 1 Average of 10 Raman spectra (top curves) excited

at 785.2 and 784.6 nm, SERDS difference spectrum (centre curve)

and reconstructed SERDS spectrum (bottom curve) obtained from

one single measurement position of a selected soil sample. Asterisk

indicates the Raman signal originating from the sapphire window.

[Colour figure can be viewed at wileyonlinelibrary.com]
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SERDS difference spectrum displayed in the center of
Figure 1 effectively separates Raman signals (present as
derivative-like structures) from interfering contributions,
for example fluorescence. In this way, the presence of
further Raman signal beside the major quartz signal
becomes evident.

The reconstructed SERDS spectrum (bottom curve in
Figure 1) provides a smoothing of the SERDS difference
spectrum due to the applied numerical integration thus
allowing for even better identification of several charac-
teristic Raman signals. A contribution from the sapphire
window used to cover the soil sample in the experimental
setup is indicated by an asterisk and can be found at
418 cm�1.[29,30] Furthermore, Raman signals of the min-
eral soil components anatase (TiO2) at 397, 515 and
637 cm�1[31] and calcite (CaCO3) at 1084 cm�1[11] can be
identified. SERDS could thus successfully be applied to
recover Raman spectroscopic information from strong
fluorescence interference in soil enabling the detection of
selected soil constituents.

In the next step, representative SERDS spectra of
mineral soil components identified within our investi-
gated set of soil samples will be presented. As outlined
above, these spectra were calculated as averages of
SERDS spectra from three measurement spots for each
component (except for diopside with only two spots being
averaged). The selection criteria of spectra for averaging
were strong Raman signal intensity of the target sub-
stance and minimal spectral interference from Raman
signals of other soil constituents. These data could serve
as a useful collection of reference spectra in terms of sub-
stance identification for further SERDS studies on soils,
for example for mineral classification applying multivari-
ate analyses.[32,33]

3.2.1 | Silicates

Among various soil constituents, silicate minerals are of
particular interest due to their relative abundance and
importance.[34] Representative average SERDS spectra
obtained from selected silicates are displayed in Figure 2A.
The asterisks indicate Raman signals at 418 and 750 cm�1

that are not due to intrinsic soil constituents but rather
originating from the sapphire window that is used to cover
the soil samples during the measurement.[29,30] In the case
of quartz (SiO2) as the major component of main types of
soil, the strongest Raman signal due to the Si–O–Si sym-
metric stretching vibration is located at 465 cm�1, whereas
another weak Raman signal attributed to a lattice mode at
356 cm�1 can be identified as well.[28]

In case of feldspar, Na- and K-rich modifications can
be recognized. The Na-feldspar (NaAlSi3O8) is character-
ized by two prominent Raman signals at 480 and
509 cm�1, whereas the K-feldspar (KAlSi3O8) has its two
major Raman signals located at 475 and 513 cm�1. In
both cases, these bands are due to the breathing modes
of the four-membered tetrahedral rings.[35–38] For
K-feldspar, two additional weak signals at 375 and
402 cm�1 that are specific to that modification could be
observed.[35,38] As both of the strongest feldspar Raman
signals shift in opposite directions with composition, a
reliable detection of the actual feldspar phase can be
realized. Identification is eased in this case as no strong
contributions from quartz are present as an intense
quartz signal at 465 cm�1 could partially overlap with
the feldspar Raman signals located in the range
475–480 cm�1. Nevertheless, on the condition that the
spectral resolution of the applied Raman instrument is
sufficiently high, a discrimination between feldspar

FIGURE 2 Averaged SERDS

spectra of identified soil constituents.

Each spectrum is calculated as the

average of three measurement positions,

except for diopside, where only two

spots were averaged. Asterisks indicate

Raman signals of the sapphire

measurement window, whereas the

letter “Q” denotes contributions from
quartz in spectra of other soil

constituents. Spectra are normalized to

their respective maximum value in the

range 340–1100 cm�1 and are vertically

offset for clarity. [Colour figure can be

viewed at wileyonlinelibrary.com]
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endmembers should, in principle, also be possible only
based on the Raman signal around 510 cm�1.

Two members of the garnet group could be recog-
nized in the recorded soil SERDS spectra, namely spes-
sartine (Mn3Al2Si3O12) and almandine (Fe3Al2Si3O12). In
case of spessartine, three characteristic Raman signals
can be recognized in the SERDS spectrum. The strongest
band due to the Si–O symmetric stretching mode can be
found at 908 cm�1. Two weaker Raman signals are
located at 553 and 353 cm�1 and correspond to the
O–Si–O symmetric bending mode and SiO4 rotation,
respectively.[39–41] Almandine as another garnet with dif-
ferent composition has its Si–O symmetric stretching
vibration located at 915 cm�1. Furthermore, weaker
bands at 863 and 1036 cm�1 due to O–Si–O asymmetric
stretching, at 554 cm�1 attributed to O–Si–O symmetric
bending vibrations and at 501 cm�1 due to O–Si–O
asymmetric bending vibrations can be identified.
Towards the lower end of the investigated spectral range,
two Raman signals assigned to SiO4 tetrahedron rotations
are observed at 348 and 375 cm�1.[28,40,42,43]

Zircon (ZrSiO4) could be detected as well based on its
characteristic Raman spectroscopic signature. The stron-
gest Raman signal is observed at 1002 cm�1 due to the
antisymmetric stretching mode of SiO4 tetrahedra.
Another prominent signal assigned to an external rota-
tion mode is located at 356 cm�1. Two weaker Raman
bands at 438 and 969 cm�1 are attributed to the symmet-
ric bending vibration and symmetric stretching vibration
of SiO4, respectively.

[44–46] It should be noted that the
Raman signal positions of natural zircon as observed in
our study are slightly different from those of highly crys-
talline zircon[47] due to structural changes associated
with radiation damage. This effect becomes evident by
the broadening of Raman signals and shifting of Raman
signal positions towards lower wavenumbers.[46,48]

The last silicate that has been detected is diopside
(CaMgSi2O6) and its average SERDS spectrum is dis-
played in the bottom part of Figure 2A. The strong
Raman signal at 1011 cm�1 is due to the symmetric Si–O
stretching vibrations within the SiO4 tetrahedron,
whereas another intense contribution from a mixed
stretching bending mode of the Si–O–Si bridging bond
can be observed at 665 cm�1. The two remaining Raman
signals at 359 and 393 cm�1 are attributed to modes
involving Ca–O and Mg–O bending and stretching
vibrations.[49–51]

3.2.2 | Titanium dioxides

Besides the various silicate species, a number of other
substances were detected in the soil specimens using

SERDS and their spectra are presented in Figure 2B. Tita-
nium dioxide exists in several polymorphic forms that
have the same chemical composition (TiO2) but exhibit
different molecular arrangements within their crystal
structure.[52] Due to the molecular fingerprint obtained
by Raman spectroscopy and SERDS, a clear distinction
between these polymorphs can be achieved. This is exem-
plarily shown in the top part of Figure 2B. The anatase
polymorph of TiO2 is characterized by three prominent
Raman signals. The symmetric Ti–O stretching vibration
is located at 637 cm�1, whereas O–Ti–O bending vibra-
tional bands can be observed at 397 and 515 cm�1. A
more precise assignment of the bending vibrations can-
not be given at this point as there is still some debate
about the contributions of symmetric and antisymmetric
modes to the observed Raman signals in the available lit-
erature.[31,53] Rutile is the second TiO2 polymorph that
has been detected within our soil specimens and its
SERDS spectrum is characterized by two prominent
Raman signals. The Ti–O symmetric stretching vibration
can be found at 609 cm�1, whereas the antisymmetric
O–Ti–O bending vibration is located at 447 cm�1.[53–55]

It is interesting to note that titanium dioxide poly-
morphs can be detected within the soil matrix despite
their low abundance. As determined by XRF reference
analysis, the TiO2 contents (as calculated from measured
Ti elemental contents) in our studied soil specimens ran-
ged from 0.45% to 0.78%. Fortunately, both detected poly-
morphs show strong Raman signals making their
detection possible despite low soil titanium contents. The
third TiO2 polymorph brookite was not observed in our
study, but its detection within soil has been reported pre-
viously.[56] In this case, identification was accomplished
based on the strong brookite Raman signal at 151 cm�1

that is not within the currently accessible spectral range
of our SERDS system.

3.2.3 | Phosphates

Intrinsic phosphate species are also present in the soil
and these could be identified as hydroxyapatite
(Ca5[PO4]3OH) based on the characteristic Raman signal
at 962 cm�1 that is attributed to the symmetric P–O
stretching vibration of the PO4 group.[15,20] This finding
is in accordance with our previous Raman and SERDS
studies on selected soil types where the detection of
hydroxyapatite has already been demonstrated.[5,12] This
result is not surprising as all calcium orthophosphates,
for example contained within commercial fertilizers, con-
vert to hydroxyapatite in soil over time.[9] It is important
to note that the intense and spectrally broad feature
above 1140 cm�1 in the shown SERDS spectrum of

SOWOIDNICH ET AL. 7
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hydroxyapatite is not a Raman signal as it does not shift
with the shift in excitation wavelength as applied for
SERDS. The observed band is rather due to residual con-
tributions from intense and spectrally narrow lumines-
cence bands that have already been observed and
discussed in our previous studies on different phosphate
species.[5,57] This type of luminescence feature is likely
caused by impurities due to rare earth elements and has
been reported for apatites before.[58]

3.2.4 | Carbonates

Another group of substances that has been detected and
identified within our soil samples is three selected car-
bonates with distinct Raman spectroscopic signatures as
displayed in the bottom part of Figure 2B. Aragonite
(CaCO3), calcite (CaCO3) and dolomite (CaMg [CO3]2)
exhibit their strongest Raman signal caused by the sym-
metric C–O stretching vibration of the CO3 group at
1083, 1084 and 1096 cm�1, respectively. Weaker contri-
butions attributed to the in-plane bending vibration of
the CO3 group can be observed at 702 cm�1 (aragonite),
710 cm�1 (calcite) and 724 cm�1 (dolomite).[11,59,60] The
calcium carbonates (calcite and aragonite) can readily be
distinguished from the calcium magnesium carbonate
(dolomite) based on the Raman signal position of the
strong CO3 symmetric stretching vibration in the region
of 1080–1100 cm�1. A discrimination between the two
calcium carbonate polymorphs calcite (trigonal crystal
system) and aragonite (orthorhombic crystal system) can
be realized considering the different spectral positions of
their in-plane bending vibration of the CO3 group around
700 cm�1.

The applied SERDS raster scan approach probing
100 individual spots for each sample thus permits to
recover the characteristic Raman spectroscopic signatures
of in total of 13 soil constituents from intense fluores-
cence interference. This includes the frequently occurring
species quartz and feldspars[61–63] but also substances
with low to very low abundance, for example titanium
dioxide, hydroxyapatite, dolomite, zircon or diopside.
Following qualitative soil analysis using SERDS, that is
the identification of selected soil constituents by
means of their characteristic Raman signals, the next
section will deal with quantitative soil analysis. Raman
spectroscopy is well-known to be suitable for quantitative
measurements. In soil, however, characteristic Raman
signals can be masked by fluorescence interference. Here,
SERDS is a powerful tool to recover the Raman spectro-
scopic information to unlock the potential for quantita-
tive measurements on soil.

3.3 | SERDS for quantitative soil
carbonate determination

Calcium, for example present in the form of calcium
carbonates, plays an important role within soil as it has
several functions. It is essential for plants, for example
serving as a pH regulator and promoting plant
growth.[64] Soil calcium content has also implications
for liming requirements, for example in precision
agriculture.[65] Furthermore, calcite has been shown to
be a nucleation and growth site influencing the trans-
formation and mobility of dissolved calcium orthophos-
phate species in soils.[66] For these reasons, using
univariate and multivariate analysis the average SERDS
spectra of each sample will be correlated with the con-
tents of calcium carbonate as derived from the elemen-
tal calcium contents determined by XRF reference
analyses to assess whether the occurring spectral varia-
tions can be used to determine this important soil
parameter quantitatively.

3.3.1 | XRF reference analysis

Soil calcium contents as determined by XRF analysis
served as reference values. It should be noted that XRF
is an established tool to determine the total soil calcium
content but is unable to determine its molecular spe-
cies. Our molecule-specific SERDS study has shown the
presence of five calcium-containing species in soil,
namely calcite, aragonite, dolomite, hydroxyapatite and
diopside, whereas another Raman study has also dem-
onstrated the detection of calcium sulfates in Atacama
Desert soil.[56] It would therefore generally only be rea-
sonable to correlate the total calcium amount measured
by XRF with the sum of Raman signal intensities of all
detected calcium species. However, from our qualitative
SERDS investigations, it is known that no significant
amounts of any calcium-containing molecular species
other than calcium carbonate (predominantly in the
form of calcite) were detected. Considering this addi-
tional molecule-specific information, it is justified to
use the elemental calcium contents obtained by XRF as
an estimate for the soil calcium carbonate content in
our case. It is important to note that this condition is
valid here but may not be applicable for other soil
investigations in general where significant amounts of
more than one calcium species can be present. It is
therefore reasonable for our study to calculate a
molecule-specific reference soil calcium carbonate con-
tent from the element-specific calcium contents deter-
mined by XRF.

8 SOWOIDNICH ET AL.
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3.3.2 | Univariate analysis

Based on the SERDS spectra normalized to the sapphire
Raman signal at 749 cm�1, the Raman signal intensities
of two selected calcite Raman signals were calculated
using different approaches. The determined calcium car-
bonate Raman signal intensities from the SERDS spectra
were then correlated with the soil calcium carbonate con-
tents derived from the XRF data. The coefficient of deter-
mination (R2) and the root mean squared error (RMSE)
were calculated as indicators of model quality.

Using the average intensity of three points around the
maximum of the major calcite Raman signal at
1084 cm�1, a very strong positive correlation with the ref-
erence calcium carbonate contents as calculated from soil
calcium contents determined by XRF analysis (R2 = 0.91)
and an RMSE of 2.59% was achieved. The same calcula-
tion performed on the minor calcite Raman signal at
711 cm�1 revealed a slightly weaker correlation with
R2 = 0.88 and RMSE = 3.09. A small improvement can
be realized when considering both Raman signals at 1084
and 711 cm�1 as shown in Table 1. Comparable but
slightly worse correlations can be achieved when the
cumulative Raman signal intensities in the spectral
ranges 1076–1093 cm�1 and 705–717 cm�1 are consid-
ered rather than only average peak maximum intensities.
Overall, univariate analysis considering characteristic cal-
cite Raman signals proved to be an efficient way to assess
the soil calcium carbonate content with an error rate
below 3%.

3.3.3 | Partial least squares regression

Following univariate analysis based on one or two char-
acteristic Raman signals of the target substance calcium
carbonate (in the form of calcite), this section now deals
with the assessment of PLSR for the prediction of the soil
calcium carbonate content from the SERDS spectra.
Averaged SERDS data of all 117 investigated soil samples

have been normalized to the Raman signal at 749 cm�1,
originating from the sapphire window used to cover the
samples, and subjected to PLSR analysis.

Initially, the spectral range from 500 to 1100 cm�1

has been selected for the calculation of PLSR models as it
contains two characteristic Raman signals of the target
substance calcite (1084 and 711 cm�1) and excludes the
very strong Raman signal originating from quartz whose
variations do not correlate well with the calcium carbon-
ate content. A number of two PLS components have been
identified by the procedure outlined in the materials and
methods section and PLSR of the recorded SERDS spec-
tra against the reference calcium carbonate contents
determined from the soil calcium contents measured by
XRF was performed.

A plot of the calcium carbonate content predicted
from the SERDS data in dependence on the correspond-
ing reference contents calculated from XRF data is given
in Figure 3. A very good linear correlation between pre-
dicted and measured soil calcium carbonate content with
a coefficient of determination of R2 = 0.94 is achieved.
The slope of the linear fit (dashed line) amounts to 0.96
and is very close to the ideal 1:1 relation (solid line,
slope = 1.0) between predicted and measured values. The
RMSECV amounts to 2.10% in this case.

In another attempt, the reduced spectral range from
500 to 1040 cm�1 including only the minor calcite Raman
signal at 711 cm�1 was used as input data for the PLSR.
Using the above-mentioned procedure, a number of five
PLS components have been selected. The coefficient of
determination shows only a minimal decrease to
R2 = 0.93 and also the slope of the linear fit of 0.95 is vir-
tually identical, indicating a very good linear correlation
between predicted and measured soil calcium carbonate
content. Nevertheless, the RMSECV worsens with an
increased value of 2.95%. Due to the exclusion of the
major calcium carbonate Raman signal at 1084 cm�1

from the analyzed spectral range, a decreased perfor-
mance compared to the previous model including both
characteristic Raman signals is not surprising. It is,

TABLE 1 Overview of coefficient of determination R2 and root mean squared error (RMSE) for selected calcite Raman signal intensities

correlated with reference calcium carbonate contents as calculated from soil calcium contents determined by XRF analysis

Calculation method Selected Raman signals R2 RMSE CaCO3 content/%

Mean intensity of three points 1084 cm�1 0.91 2.59

711 cm�1 0.88 3.09

1084 and 711 cm�1 0.91 2.55

Cumulative signal intensity 1084 cm�1 0.89 2.88

711 cm�1 0.86 3.31

1084 and 711 cm�1 0.90 2.73

SOWOIDNICH ET AL. 9
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however, remarkable that even when only considering a
minor Raman signal of the target substance, still, quanti-
tative predictions can be realized.

An overview of selected parameters for the calculated
PLS models using both or only one minor calcite Raman
signal is given in Table 2. In both cases, the cumulative
variance explained by the number of included PLS com-
ponents is more than 92% thus capturing a large amount
of the total variance present in the dataset.

To assess the spectral characteristics responsible for
the obtained correlations using the PLS models, a plot of
the corresponding regression coefficients for the two
selected wavenumber ranges is presented in Figure 4.
When the spectral region from 500 to 1100 cm�1 is
applied, the major contribution can be found at the main
calcium carbonate Raman signal at 1084 cm�1 whereas a
smaller contribution from the second calcium carbonate
Raman signal located at 711 cm�1 can be recognized as
well. This behaviour is expected as for the prediction of
calcium carbonate its characteristic Raman signals
should be prominent in the regression coefficients. In this
case, the regression coefficients contain the Raman sig-
nals of calcite as the most frequently detected calcium
carbonate.

When the truncated range from 500 to 1040 cm�1

without the main calcium carbonate Raman signal is
used for the regression, the dominant contribution arises
from the remaining calcium carbonate Raman signal at
711 cm�1 that is attributed to calcite. In both cases, char-
acteristic Raman signals of the predicted target substance
calcium carbonate (present as calcite polymorph) domi-
nate the corresponding regression coefficients, and no
further strong contributions from other molecular species
can be observed.

TABLE 2 Details of PLS regression models applied for the

prediction of soil CaCO3 content from SERDS data using spectral

range containing both CaCO3 Raman bands (500–1100 cm�1) or

spectral range comprising only the smaller CaCO3 Raman band

(500–1040 cm�1)

Spectral range/cm�1 500–1100 500–1040

Number of components 2 5

Variance explained/% 94.5 92.7

R2 0.94 0.93

Slope of linear fit 0.96 0.95

RMSECV/% 2.10 2.95

FIGURE 3 Soil CaCO3 content predicted from SERDS spectra

using PLS regression model with two components (spectral range

500–1100 cm�1) plotted in dependence of soil CaCO3 content

calculated from Ca content measured by XRF analysis. (dashed

line: linear fit, solid line: 1:1 dependence) [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 4 Regression coefficients of separate PLS models with

two components (spectral range 500–1100 cm�1) and five

components (spectral range 500–1040 cm�1) used to predict soil

CaCO3 content from SERDS spectra. Coefficients were normalized

to their respective maximum and vertically offset for clarity.

[Colour figure can be viewed at wileyonlinelibrary.com]
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It should be noted that PLS considers spectral contri-
butions of all soil constituents with Raman signals being
located in the analyzed spectral range (this also includes
the strongest Raman signals of all five identified calcium-
containing species: calcite, aragonite, dolomite, hydroxy-
apatite and diopside) and tries to correlate their varia-
tions with variations present in the reference CaCO3

contents (as calculated from XRF data). Here, the out-
come is that calcite plays the dominant role in the car-
bonate content prediction, whereas the other four
calcium-containing species do not play a major role due
to their much lower abundance in the soil. Overall, the
molecule-specific information derived from the SERDS
data is well suited for the quantitative assessment of the
soil calcium carbonate content.

In the following, a brief comparison of the perfor-
mance of univariate and multivariate models for calcium
carbonate prediction in the set of investigated soil sam-
ples will be given. For univariate analysis, the best pre-
diction could be realized using the sum of mean
intensities of both calcite Raman bands (1084 and
711 cm�1) with R2 = 0.91 and RMSE = 2.55%. When
considering only the mean intensity of the minor Raman
signal at 711 cm�1, according to expectations, the perfor-
mance decreases to R2 = 0.88 and RMSE = 3.09%. In the
case of multivariate PLSR, values of R2 = 0.94 and
RMSECV = 2.10% were achieved when considering both
calcite Raman signals while the model based only on the
minor Raman signal at 711 cm�1 led to inferior values of
R2 = 0.93 and RMSECV = 2.95%. It is noteworthy that a
simple univariate analysis based on Raman signal inten-
sities performs only slightly worse than PLSR. This obser-
vation can be explained by the fact that the main
contributions in the multivariate regression coefficients
are actually limited to the spectral regions containing the
two Raman signals of the target substance calcium car-
bonate (present as calcite polymorph). Thus, Raman
band intensities, as well as integrated band intensities/
areas within a specific wavenumber range, can provide a
suitable measure for the prediction of the soil calcium
carbonate content.

3.4 | Spatial distribution of calcium
carbonate

As mentioned above, the soil samples were collected at
equidistant intervals of 24 m covering a total length of
624 m across the agricultural field and also considering
selected depths below the soil surface down to 1 m. From
the predicted calcium carbonate contents using PLSR, it
is therefore possible to visualize the spatial distribution of
calcium carbonate across the field and with respect to soil

depth (see Figure 5). Due to the natural and man-made
soil heterogeneity at the field scale,[67] the occurrence of
calcium carbonate is not evenly distributed along the
investigated length scales. For the majority of sampling
positions, the calcium carbonate content is well below
5%, mostly irrespective of the investigated soil depth.
There is, however, an area around the center of the field
with elevated concentrations, roughly between 200 and
320 m as measured from the starting point. In this range,
the highest concentrations of up to 36% can be found in
the subsoil layers at depths below 40 cm, whereas the

FIGURE 5 Spatial distribution of CaCO3 content predicted

from SERDS spectra using PLS regression (model with two

components in the spectral range 500–1100 cm�1) plotted in

dependence of the distance along the field for different sampling

depths below the soil surface, false-color plot (A) and logarithmic

CaCO3 content plots for individual depth layers (B). White bars in

(A) indicate positions where no sample was collected. [Colour

figure can be viewed at wileyonlinelibrary.com]
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upper soil layers exhibit maximum concentrations in the
range of 10%–15%.

The present spatial heterogeneity, even between
adjacent points at 24 m distance away from each other,
highlights the need for advanced sensing techniques to
adequately capture such variations. Currently applied
soil inspection procedures in many countries are mostly
based on the collection of one mixed sample from large
areas up to 3 ha[65] and subsequent standard laboratory
analysis. This means that neighboring sampling points
are separated by distances on the order of 100 m or
more. Unfortunately, due to the time-consuming and
expensive nature of conventional laboratory analysis,[68]

an increase in the number of samples to be collected is
not practically feasible. A potential solution could be
the application of portable sensing systems for the
on-site acquisition of soil parameters. As demonstrated
in this paper, SERDS is a powerful technique for
qualitative and quantitative soil analysis. To further
evaluate the potential of the technique in the context of
precision agriculture, a portable SERDS system has
been developed by our group and was successfully
tested in a field trial.[69]

4 | CONCLUSIONS

SERDS in combination with a raster scan approach has
been demonstrated as a suitable tool for qualitative and
quantitative soil analysis. Within a diverse set of soil sam-
ples, the method enabled the detection and identification
of in total 13 mineral soil constituents. Based on the
Raman spectroscopic fingerprint extracted from intense
fluorescence interference by SERDS, discrimination
between closely related molecular species including poly-
morphic forms of titanium dioxide and calcium carbon-
ate could be realized. Within a set of 117 soil samples
collected from an agricultural field along a distance of
more than 600 m and down to depths of 1 m, the spectro-
scopic information derived by SERDS could be used for
quantitative soil analysis as well. Both univariate and
multivariate approaches showed very good performance
for the prediction of the calcium carbonate content as an
important soil parameter.

The results highlight the large potential of SERDS as
a promising tool for soil analysis in precision agriculture
opening new avenues for efficient soil nutrient manage-
ment. Besides the agricultural sector, further application
areas could benefit from the capabilities of SERDS for
substance identification and quantification as well.
Examples include geological studies, for example for min-
eral characterization on planetary surfaces[38,70] and the

field of cultural heritage, for example for archeological
studies[71,72] or investigations of deterioration effects on
monuments.[73,74]
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