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“Advanced Pulse Laser Machining Technology” is a rapidly growing field that can
be tailored to special industrial and scientific applications. This is significantly driven by
the availability of high-repetition-rate laser sources and novel beam delivery concepts. In
recent publications, Saraceno et al. [1], Schille and Löschner [2], and Weber and Graf [3]
presented graphs of the development of ultrashort-pulse laser technology over the past few
decades (see the synthesis of data from [2,3] provided in Figure 1). Obviously, the average
power of ultrafast lasers follows a type of Moore’s law, leading to the doubling of the
average power of these lasers every two years [4]. Additionally, the average power attained
by the lasers in research laboratories precedes the average power of standard industrial
lasers by about ten years [3], visualized here as the horizontal separation between the
two lines in Figure 1. The impressive progress in laser technology currently culminates in
the availability of a fiber-laser-based average power of 10.4 kW at a 1.4 µm wavelength,
254 fs pulse duration, and 80 MHz repetition rate [5]. Currently, the industrial standard is
ultrashort-pulse lasers emitting average powers of the order of 100 W.
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“Advanced Pulse Laser Machining Technology” is a rapidly growing field that can 
be tailored to special industrial and scientific applications. This is significantly driven by 
the availability of high-repetition-rate laser sources and novel beam delivery concepts. In 
recent publications, Saraceno et al. [1], Schille and Löschner [2], and Weber and Graf [3] 
presented graphs of the development of ultrashort-pulse laser technology over the past 
few decades (see the synthesis of data from [2,3] provided in Figure 1). Obviously, the 
average power of ultrafast lasers follows a type of Moore’s law, leading to the doubling 
of the average power of these lasers every two years [4]. Additionally, the average power 
attained by the lasers in research laboratories precedes the average power of standard 
industrial lasers by about ten years [3], visualized here as the horizontal separation be-
tween the two lines in Figure 1. The impressive progress in laser technology currently 
culminates in the availability of a fiber-laser-based average power of 10.4 kW at a 1.4 µm 
wavelength, 254 fs pulse duration, and 80 MHz repetition rate [5]. Currently, the indus-
trial standard is ultrashort-pulse lasers emitting average powers of the order of 100 W. 

 
Figure 1. Progress in ultrafast laser technology featuring an exponential increase in the average 
output power over the past 20 years. The plot is a synthesis of data, indicating the related laser 
technology (fiber, thin disk, and InnoSlab) as fully colored data points [2], as well as their realization 
in laboratories or as commercial industrial products as open black data points [3]. The black lines 
guide the eye. 

For industrial use, the high output power of ultrafast lasers must be directed to the 
workpieces to be machined by appropriate beam guidance and deflection systems [6]. For 
many materials such as metals and semiconductors, moderate laser fluences (i.e., laser 
pulse energies) are sufficient to process the workpiece with high precision and efficiency 
[7–9]. Therefore, high laser pulse repetition rates up to the above-mentioned MHz level 
can be utilized to significantly reduce the processing times. This requires extremely fast 
beam deflection systems, possibly coupled with optics for multibeam processing. In a 
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Figure 1. Progress in ultrafast laser technology featuring an exponential increase in the average
output power over the past 20 years. The plot is a synthesis of data, indicating the related laser
technology (fiber, thin disk, and InnoSlab) as fully colored data points [2], as well as their realization
in laboratories or as commercial industrial products as open black data points [3]. The black lines
guide the eye.

For industrial use, the high output power of ultrafast lasers must be directed to the
workpieces to be machined by appropriate beam guidance and deflection systems [6]. For
many materials such as metals and semiconductors, moderate laser fluences (i.e., laser pulse
energies) are sufficient to process the workpiece with high precision and efficiency [7–9].
Therefore, high laser pulse repetition rates up to the above-mentioned MHz level can be
utilized to significantly reduce the processing times. This requires extremely fast beam
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deflection systems, possibly coupled with optics for multibeam processing. In a recent
study, an area processing rate up to 3.8 m2/min was demonstrated with a single-pass raster
on steel sheets with a scanning speed of the laser beam of 950 m/s [10]. The key element of
the experimental setup was a polygon scanner [11] in connection with a MHz laser system.

The Special Issue addresses not only the advantages of modern laser processing using
short and ultrashort laser pulses, but also limitations caused by unwanted secondary
hazards such as X-ray emissions. This phenomenon is not completely new and was
described for laser machining applications using ultrashort laser pulses with repetition
rates of the order of 1 kHz two decades ago [12–14]. However, the use of high pulse
repetition rates in the multi-100 kHz range and burst pulses has recently exacerbated the
problem [15–21]. Therefore, it is a pleasant fact that five publications in this Special Issue
discuss this problem area in detail and, thus, make an important contribution to the field of
combined laser and radiation protection for improving work safety aspects [22–26].

The use of laser pulse bursts enables new process regimes for metals and allows for an
increase in the structuring rates and surface quality of machined samples. Results of both
experimental and numerical investigations in this context are reviewed by Förster et al. [27].
The machining strategies using pulse bursts with intraburst repetition frequencies in the
MHz up to GHz regime must consider an increased risk of secondary X-ray emissions with
this mode of operation [21,25,26].

This Special Issue bundles together 1 review paper [27], 1 perspective article [28], and
14 original research articles [22–26,29–37], all focusing on the latest achievements in areas of
surface and volume laser material processing, including laser-induced forward transfer and
laser printing technologies [28], spatial and temporal beam shaping [29–32], Bessel-beam
structuring of high-aspect-ratio void channels inside glass [34], direct laser interference
patterning [35], pulse burst machining [27], waveguide writing [36], fs-pulse laser-induced
amorphization and recrystallization of single-crystalline silicon [37], and a comparison of
different beam shuttering technologies [33]—an aspect that is often neglected, but most
practically relevant.
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6. Račiukaitis, G. Ultra-short pulse lasers for microfabrication: A review. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1100112.
[CrossRef]

7. Kautek, W.; Krüger, J. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials. Proc. SPIE
1994, 2207, 600–611.
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