Supporting Information

Ergometrine sensing in rye flour by a magnetic bead-based immunoassay followed by flow injection analysis with amperometric detection

Soraya Höfs, Valerie Jaut, Rudolf J. Schneider

Figure S1 Amperometric current signals obtained with the flow injection system and screenprinted gold electrodes at 0 V vs. Ag/AgCl for the injection of 300 μ L 10 μ M potassium ferricyanide in 100 mM potassium phosphate buffer with 100 mM KCl (pH 7) and a flow rate of **a**) 0.5 mL min⁻¹ and **b**) 4 mL min⁻¹.

Figure S2 OD-Signals obtained with different tracer and antibody concentrations in the platebased ELISA (without the addition of ergometrine) for the optimization of the assay.

Figure S3 a) ELISA calibration curves for ergometrine, ergotamine or ergocristine. Obtained cross-reactivities were 100% for ergometrine ($C_{ergometrine} = 25.5 \pm 0.8$ nM ($8.3 \pm 0.3 \mu g L^{-1}$)), 7% for ergotamine and <0.1% for ergocristine; **b)** Ergometrine ELISA calibration curves with different tracer incubation times. The ergometrine standards were incubated in total for 30 min with the antibody-coated microplate and the tracer was added immediately after the standards or after 5 min, 10 min or 15 min of pre-incubation with standard. The obtained C-values were C_{0 min} = 26 ± 9 nM ($9 \pm 3 \mu g L^{-1}$), C_{5 min} = 19.8 ± 0.1 nM ($6.43 \pm 0.05 \mu g L^{-1}$), C_{10 min} = 16 ± 1 nM ($5.3 \pm 0.3 \mu g L^{-1}$), and C_{15 min} = 12 ± 3 nM ($3.8 \pm 0.8 \mu g L^{-1}$).

Figure S4 ELISA calibration curves for ergometrine in absence and in the presence of 5% acetonitrile, $C_{w.o. acetonitrile} = 26 \pm 9 \text{ nM} (9 \pm 3 \mu g \text{ L}^{-1}) C_{5\% \text{ acetonitrile}} = 63 \pm 9 \text{ nM} (21 \pm 3 \mu g \text{ L}^{-1})$.