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Abstract: The aim of this work is to achieve reliable nondestructive evaluation (NDE) of adhesively
bonded aerospace components by developing novel multidimensional data fusion techniques, which
would combine the information obtained by ultrasonic and X-ray NDE methods. Separately, both
NDE techniques have their advantages and limitations. The integration of data obtained from pulse
echo immersion ultrasound testing and radiography holds immense potential to help improve the
reliability of non-destructive evaluation. In this study, distinctive features obtained from single
techniques, traditional ultrasonic pulse echo testing, and radiography, as well as fused images, were
investigated and the suitability of these distinctive features and fusion techniques for improving the
probability of defect detection was evaluated. For this purpose, aluminum single lap joints with brass
inclusions were analyzed using ultrasound pulse echo and radiography techniques. The distinctive
features were extracted from the data obtained, and images of features obtained by both techniques
were fused together. Different combinations of features and fusion algorithms were investigated,
considering the desire to automate data evaluation in the future.

Keywords: data fusion; ultrasonics; radiography; adhesive joints; adhesive bond; non-destructive
evaluation; interface defects; multiple reflections; signal modeling

1. Introduction

Recently, adhesive bonding technology has gained considerable attention in various
industrial sectors, especially in the aviation, automobile, civil, and marine industries due to
the weight reduction of the structure, uniform distribution of mechanical stresses, fairly
high strength-to-weight ratio, and ability to join dissimilar materials [1–3]. Adhesive
joints also provide improved performance of the structure and reduce fuel consumption,
which benefits the economic sector. All the advantages and abilities of adhesive joints
make this technology the most effective and practical for joining material components, in
comparison to traditional bonding techniques, such as riveting, welding, etc. Adhesives are
used to bond metal and composite materials to produce different structural components
and advanced materials. In the aerospace industry, a substantial number of parts are
fabricated using the adhesive bonding of metal and composite materials; however, the
manufacturing processes are still unfavorably manual, resulting in various types of defects
in the components [4,5]. Factors that can affect the durability of adhesive joints and
cause the occurrence of different defects are moisture, poor curing, contamination, a
constant structural load, impact force, and others [2,3]. Distinct types of defects, such as
delamination, debonding, and weak or kissing bonds, can appear in adhesive joints. These
internal defects are extremely critical for structural integrity due to their invisibility and
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the strong influence on bonding quality. As a result, it becomes difficult to predict the
mechanical behavior of the joints in the case of the presence of internal defects [6]. The
presence of flaws or discontinuities in the bonded joints should be avoided at all costs
for implementing them in critical aerospace components to provide environmental safety,
safety of human life and health, and economic benefits.

Recently, many different investigations were carried out using different non-destructive
testing (NDT) methods, such as ultrasonic [7], thermography [8,9], eddy current stimulated
thermography [10], and others for the inspection of adhesive joints [11–14]. However, each
non-destructive method has its own advantages and limitations upon which the selection
of the appropriate method depends. Moreover, the choice of method depends on the
structure to be inspected, since most of the methods become impractical after the structure
is assembled due to the geometrical complexity of the structure, one-sided access, or even
coverage with other layers of functional material [15].

The ultrasonic testing technique is widely and successfully used for the inspection of
different structures. Ultrasonic non-destructive testing is advantageous and widely used
in identifying and locating defects and can be utilized to evaluate the coherence of the
adhesive bonded joints. This method was used by many researchers for the characterization
of adhesion quality [16,17]. Adhesive joints can have complex geometry, roughness of the
surface, curved surface, or interface layers of the component, which in addition can be
not parallel, with varying thicknesses of the materials and their types. All these factors
influence the ability of the technique used to detect defects. Zhang et al. [18] investigated
the detection of disbonds in multi-layered structures using the laser ultrasonic technique.
The technique used was pulse-echo mode for defect detection, and quantitative evaluation
was used for defect sizing. Numerical simulations and ultrasonic inspection were also used
for the detection of fatigue debonding in composite lap joints in the work of Liu et al. [19].
Liu et al. [20] used numerical and experimental investigations of ultrasonic guided waves.
Disbonds were detected because of the variation in the arrival time of the ultrasonic waves.
Many other researchers suggest the use of different ultrasonic methods for the detection
of interface defects in multi-layered structures, including guided waves, laser ultrasonics,
and non-linear ultrasonic evaluation [13,21–24]. Samaitis et al. proposed a novel approach
based on the classical pulse echo technique and machine learning for the classification of
weak bonds [25] As a result, ultrasonic techniques are extremely popular and more suitable
for the inspection of multi-layered structures for detecting debonding-type defects.

X-ray radiography can offer significant spatial resolution and can investigate the
overall thickness of the adhesive. For this reason, X-rays can image and quantify voids over
the entire adhesively bonded joint, being an attractive alternative for different inspection
techniques [26]. However, in terms of feature detection, contrast is required [27]. Good
contrast is achieved when the attenuation coefficient of the X-rays differs significantly in
the material inspected in contrast to the defect and/or there is a significant difference in
the propagation path length of X-rays in the various materials (defect/non-defect) [28].
Therefore, X-ray radiography is especially good for the detection of volumetric defects,
such as large voids [29] or inclusions. In the case of the inspections of thin structures,
such as lap joints, where the thickness of the adhesive is small, this poses difficulties in
detecting the defects in the joints where thickness along the propagation path of the X-rays
is negligibly small (such as in the case of disbonds) and where the attenuation of X-rays in
good/bad joints are almost the same.

In addition, it is difficult to detect interface defects with high reliability, since there are
many influencing factors depending on the techniques used, samples under investigation,
and interface defect types. Therefore, it is significantly important to select and develop a
high-performance NDT technique that will satisfy the requirements of testing adhesive
joints for high-reliability internal defect detection. The limitation of identifying appropriate
NDT techniques has had a considerable influence on the general usage of adhesives, as it is
widely assumed that if NDT techniques were reliable enough to ensure bond line integrity,
adhesive bonding would be utilized significantly more than it is now.
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Given that each non-destructive evaluation technique has varying sensitivity to differ-
ent defects depending on the component inspected, multiple non-destructive evaluation
methods are frequently applied to achieve improved, more reliable, and precise results,
demonstrating the need for data fusion of multiple techniques [30]. X. E. Gros published
the first book on the applications of NDT data fusion [31]. It provides a variety of research
studies reflecting on how multi-sensor NDT is competent to integrate redundant data,
distinguishing flaws more precisely and achieving a better signal-to-noise ratio (SNR) [32].
Later, a state-of-the-art survey of NDE data fusion techniques was provided by Liu et al. [33].
Each individual non-destructive method has its own advantages and limitations. For exam-
ple, ultrasonic waves are best for the detection of delamination or disbond type of defects,
while radiography is best for the detection of changes in density. Therefore, the most
suitable single NDT method has to be selected according to the requirements to achieve
the evaluation goal. Furthermore, it is observed that none of the single NDE techniques
can fully characterize the object inspected, and it has its own uncertainty of the obtained
result. Moreover, accuracy and reliability requirements are constantly increasing, especially
in the field of aerospace and nuclear power industries. Therefore, to meet such require-
ments, multiple inspection techniques are needed. The fusion of multiple inspections
benefits from the advantages of all individual non-destructive inspection methods and
diminishes the uncertainty of the measurement result, as well as enhancing the signal.
In addition, combining fusion techniques with advanced post-processing algorithms can
improve the evaluation results. Fusion can help reduce the uncertainty of the results [33].
Currently, data fusion extends to a wide range of diverse applications [34]. B. Yilmaz et al.
illustrated the implementation of the data fusion algorithm in advanced NDT techniques
for the identification of defects in single lap composite adhesive joints [35]. Wang et al.
have performed terahertz and X-ray image fusion to improve the evaluation of damage of
composite materials [36].

In addition, when NDE is applied in industry, there is always a desire to automate
the evaluation of data to avoid human factor and increase the probability of detection [37].
Therefore, one of the objectives of this work is to develop the process of determination
and extraction of features for different inspection results for their further fusion, as well as
to create a fusion algorithm to develop a reliable NDT technique for the investigation of
multi-layered structures with bonding defects.

The aim of this work is to achieve reliable non-destructive evaluation (NDE) of adhe-
sively bonded aerospace components by developing novel multidimensional data fusion
techniques, which would combine the information obtained by ultrasonic and X-ray NDE
methods. Separately, both NDE techniques have their advantages and limitations. For
instance, ultrasonic NDE methods are sensitive to elastic properties and density and are
good at detecting planar defects, such as lack of bonding/delamination; however, they
may suffer from attenuation or diffraction. X-rays are very sensitive to changes in density
and volumetric defects, but their performance on planar defects is limited. The integration
of data obtained from pulse-echo immersion ultrasound testing and radiography holds
immense potential for helping to improve the reliability of non-destructive evaluation. The
objective of this investigation was to study and compare distinctive features obtained from
single techniques, traditional ultrasonic pulse echo testing and radiography, and fused
images, as well as to evaluate the suitability of different features and fusion techniques to
improve the probability of defect detection.

On the basis of the data fusion algorithms, this article presents feature-based image
fusion of ultrasonic and radiography testing. For this purpose, single lap aluminum
joints with brass inclusions were analyzed using ultrasound pulse echo and radiography
techniques. Then, different features were extracted from the obtained data. Then, images of
the features of both techniques were fused together. Different combinations of features and
fusion algorithms were investigated considering the desire to automate data evaluation in
the future. The discussion of the qualitative and quantitative analysis obtained is presented
in the discussion section, followed by the conclusions.
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2. Materials and Methods

The workflow of the NDE of the adhesive joints using ultrasonic, radiography, and
data fusion of both is presented in Figure 1. It consists of the following steps:

• Data acquisition (using ultrasonic and radiography techniques);
• Modelling of ultrasonic signal to determine the zone of interest in ultrasonic A-scans;
• Feature extraction;
• Feature-based data fusion;
• Evaluation of results.
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Figure 1. Schematic algorithm of the workflow.

2.1. Sample Description

The aluminum–epoxy adhesive single lap joints were manufactured by COTESA
GmBH, Germany. For aluminum–epoxy joints, adherend was selected as 1.6 mm sheet
2024 aerospace aluminum alloy. The aluminum plate shown in Figure 2 had dimensions of
280 × 215 × 1.6 mm. A 3M Scotch-Weld AF 163-K red structural adhesive epoxy film with
a thickness of 0.16 mm was used as adhesive. The lap joint was 25 mm wide. Following
the necessary surface preparation, the epoxy film was placed on the adherend. There were
10 brass inclusions placed on the adhesive of different dimensions—5 large inclusions
with a size of 12.7 mm, while the space between the consecutive defects is approximately
12.75 mm. On the other side, five smaller brass inclusions of size 6.35 mm were equally
distributed with the space between the consecutive defects, approx. 18.05 mm. In further
investigations, four out of five smaller defects were investigated because the holder was
shadowing one of the defects. The schematics of the sample with the size and position of
the defects is shown below in Figure 2. The thickness of the double-sided brass inclusion
was 0.05 mm.
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Figure 2. Single lap adhesive joints with brass inclusions prior to bonding: (a) schematic;
(b) aluminum–epoxy joint.

2.2. Investigation Techniques

The aluminum single lap joint was examined using pulse-echo immersion ultrasonic
and radiographic testing, and then the fusion of the results obtained by these two techniques
was performed.

2.2.1. Immersion Ultrasonic Testing

The investigation of the aluminum adhesive lap joint with brass inclusion was carried
out in an immersion tank using an Olympus V328-SU focused transducer with a central fre-
quency of 15 MHz and a diameter of 10 mm. The far-field distance between the transducer
and the sample top surface was kept fixed at 48 mm. The transducer was positioned in
such a way that the emitted beam was perpendicular to the sample surface. Investigation
of the single-lap joint was carried out on the entire bonded region with a 0.2 mm scan step
and 1422 × 289 scanning points. The schematics of the ultrasonic pulse-echo immersion
testing is shown in Figure 3.
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2.2.2. Radiographic Testing

The adhesive bonded single lap joint was scanned using radiography as well. For
this, the Rayscan 3D CT system was used. In this investigation, a 225 kV microfocus tube
was used. The detector of the computed tomography system was a 2048 × 2048 flat matrix
detector equipped with a scintillator. The schematic of the experimental set-up of the
radiographic testing is shown in Figure 4. During the measurements, an X-ray source
irradiated the sample at a voltage of 150 kV and a current of 300 µA with the cone beam
and a 2D image was recorded at the detector with the integration time of 1500 ms. The
focal spot was 47 µm, while the voxel size was 145 µm.
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2.3. Ultrasonic Signal Modelling

Modelling was performed to study the behaviour of ultrasonic waves propagating
through the layers of adhesively bonded aluminum to aluminum with brass inclusion
defects located between metal and adhesive, as well as to study their propagation and
reflection paths from the sample interfaces to determine time instances of each for determi-
nation of gates to be used when selecting the part of the signal of interest for determination
of features. According to our previous work [3], it was discovered that the analysis of
multiple interface reflections improves the probability of defect detection. Therefore, time
instances of ultrasonic impulses that correspond to multiple interface reflections were
studied in this part.
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The model that complies with the sample under investigation was modelled in MatLab
software. Sample and medium characteristics are presented in Table 1. The distance
between the focused transducer and the sample surface was 48 mm.

Table 1. Characteristics of the sample materials and medium.

Material Thickness, mm Density, kg/m3 Ultrasound
Velocity, m/s

Water 48.5 998 1496
Aluminum 1.6 2780 6532
Adhesive 0.16 1214 2433

Brass inclusion 0.05 8730 4430

As a result of modelling, pulse responses of each reflection from the structure boundary
were obtained. Images with impulse plots characterizing the arrival time of each signal
reflected from different sample boundaries with and without defects are presented below
in Figure 5. Additionally, in Figure 6 the propagation paths of the ultrasonic wave for each
signal impulse reflected from the sample interfaces, as well as their time moments for the
non-defective and defective options, are presented.
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Figure 6. Ultrasonic wave propagation paths through the boundaries and time instances for: (a) not
defected and (b) defected options.

According to obtained plots of impulses, the time moments of multiple reflected
signals from the sample interfaces coincided: aluminum–adhesive interface (impulses 2, 5,
7) in the case of the sample without defect and aluminum–brass inclusion (impulses 2, 5, 7)
for the sample with defect. In addition, for the sample with defect, there was a change in
phase, for multiple interface reflections: aluminum–brass inclusion, which differed from
the option of sample without defect. In addition, additional wave reflections from the brass
inclusion bottom appear and overlap with other reflections from the boundaries.

To obtain time diagrams of the signals propagating in the investigated structure, the
convolution of the pulse response and the excitation signal was performed. The excitation
signal was a sine burst of 15 MHz frequency 2 periods with a Gaussian envelope. The time
diagrams obtained in defect-free and defective objects are presented in Figure 7a,b, respec-
tively. In the case of defect-free objects, individual pulses reflected from different material
boundaries were easily distinguished. Pulse no.1 was surface reflection, pulse no.2 was
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reflection obtained from aluminum–adhesive boundary, pulses no.3–5 were multiple reflec-
tions in adhesive layer, and pulse no.6 was the second reflection from aluminum–adhesive
boundary. However, in the case of a defective sample, the analysis of the reflected signals
(Figure 7b) was much more complicated: pulse no.1 was surface reflection, while pulse no.2
was the result of interference of pulses reflected from aluminum–brass, brass–adhesive,
and adhesive–aluminum boundaries (see Figure 5b pulses 2–7). It can be observed that it
was impossible to separate signals reflected from separate boundaries. However, there is a
particularly important feature that allows us to determine the presence of the defect—the
phases of second reflections were opposites. In case of defect-free sample wave, it reflected
from aluminum–adhesive boundary, i.e., from material with lower acoustic impedance. In
this case, the wave was reflected with opposite phase. In case of defective sample ultrasonic
wave, it reflected from aluminum–brass boundary, i.e., from material with higher acoustic
impedance. In this case, the wave is reflected with the same phase.
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In terms of the impulse response, Figure 7 presents the main signals reflected from
the different layers of the sample, whereas in Figure 8 the experimental data are presented
with an overlayed theoretically calculated impulse response. Red spikes denote pulses
with positive phase, blue with negative, and green is the combination of two pulses with
the same flight time but opposite phases, as can be seen in Figure 8. The measured data
were normalized according to the first plate backwall and adhesive interface reflection.
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According to the analysis of impulses and waves propagation paths, most the informa-
tion of the defect was from time moment of wave reflection from the aluminum–defect inter-
face. From the previous study [3], analysis of multiple reflections increases the probability
of defect detection. Therefore, time intervals starting from the moment of aluminum–defect
reflection to the next multiple reflections were used as a feature for setting the gates in the
step of data fusion.

2.4. Data Fusion

It is not always possible to extract all relevant data from a single sensor and detect
defects in a component. Often, there is a need to have information from two or more
sensors/techniques for the better evaluation of the results. Data fusion can be used at
various levels: pixel, signal, feature level [38]. In this work, feature-based fusion was chosen
for the fusion of ultrasonic and radiographic testing results. In Figure 9, the workflow of the
procedures applied is shown. Using two different measurement techniques, the different
features were extracted. Then, different combinations of ultrasonic and radiographic
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features were supplied to a variety of fusion algorithms to test the suitability of features
and fusion algorithms for automation of the defect detection in the future.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 21 
 

workflow of the procedures applied is shown. Using two different measurement 
techniques, the different features were extracted. Then, different combinations of 
ultrasonic and radiographic features were supplied to a variety of fusion algorithms to 
test the suitability of features and fusion algorithms for automation of the defect detection 
in the future. 

 
Figure 9. Workflow of data fusion. 

2.4.1. Preparation of Data for Data Fusion 
Before the fusion, the data needed to be prepared, undergoing several steps of 

preparation: noise reduction, coordinate matching, registration/interpolation, and 
normalization (see Figure 10). It was important to align the data obtained from different 
NDE techniques before the implementation of the data fusion. The raw data obtained from 
the experimental investigation of the single lap adhesive joint using ultrasonic and 
radiographic testing were aligned based on different parameters, such as noise removal, 
coordinate matching, interpolation, and normalization. The multi-step algorithm 
describing the pre-processing on the experimental data of two different techniques of non-
destructive testing is shown in Figure 10. 

Figure 9. Workflow of data fusion.

2.4.1. Preparation of Data for Data Fusion

Before the fusion, the data needed to be prepared, undergoing several steps of prepa-
ration: noise reduction, coordinate matching, registration/interpolation, and normalization
(see Figure 10). It was important to align the data obtained from different NDE techniques
before the implementation of the data fusion. The raw data obtained from the experimental
investigation of the single lap adhesive joint using ultrasonic and radiographic testing
were aligned based on different parameters, such as noise removal, coordinate matching,
interpolation, and normalization. The multi-step algorithm describing the pre-processing
on the experimental data of two different techniques of non-destructive testing is shown in
Figure 10.

The evaluation of bonding quality in the aluminum single-lap joint was conducted
using separate experimental set-ups, and as such the data obtained had a local coordinate
system. To perform data fusion on such varied systems, the coordinates of the experimental
data from the investigation had to be matched. The data were aligned with the position of
the bonding edges of the adhesive joint to match the coordinates. The data from immersion
ultrasonic inspection had to be flipped to match the radiographic testing data and further
interpolated to match the coordinates of the newly registered data shown. Finally, the
values of the radiographic and ultrasonic data were normalized using linear scaling (0 to 1).

2.4.2. Selection of Features

Several distinctive features for both the ultrasonic and radiographic experimental
data were used as input for data fusion. Previous work on the reliability of detecting
debonding defects with ultrasonic techniques in adhesive joints showed that in addition
to the amplitude of the ultrasonic echo, the attenuation and the amplitude in frequency
domain play important roles in the defect contrast [2], allowing higher probability of defect
detection. Therefore, in this study, in addition to the peak-to-peak amplitude, we also
selected signal attenuation, frequency domain maximum amplitude, and absolute energy as
features of the ultrasonic inspection results, as shown in Table 2. The features are extracted
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by applying the specified formula to 3D ultrasonic data (x, y, t), hence the dimensions
are reduced to 2D (x, y). On the other hand, we applied 2D image processing techniques
to obtain 2D (x, y) X-ray radiography results to create additional features, namely, FAST
(features from accelerated segment test), Harris corner detection, and Sobel edge detection.
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Table 2. Different features extracted from the measured data.

NDT
Technique Feature Formula

Ultrasonic Peak-to-peak
amplitude max(A(t))−min(A(t))

Ultrasonic Attenuation (max(A(t0))−min(A(t0)))−(max(A(tk))−min(A(tk)))
max(A(t0))−min(A(t0))

Ultrasonic Frequency domain
maximum amplitude max(FFT(A(t)))

Ultrasonic Absolute
energy ∑

t
A(t)2

X-ray Amplitude none

X-ray FAST Sp→x =


d, Ip→x ≤ Ip − T
s, Ip − T < Ip→x <
b, Ip + T ≤ Ip→x

Ip + T

X-ray
Harris
Corner

Detection
E(u, v) = ∑

x,y
w(x, y) [I(x + u, y + v)− I(x, y)]2

X-ray Sobel Edge
Detection

Gx =

1
2
1

 ∗ ([+1 0− 1] ∗ A),

Gy =

+1
0
−1

 ∗ ([1 2 1] ∗ A),

Θ = atan2
(
Gx, Gy

)
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2.4.3. Data Fusion Algorithms

The main purposes of employing data fusion in different testing environmental condi-
tions are to reduce the probability of error and improve the reliability of defect detection. A
wide range of fusion algorithms can be used for the fusion of two-dimensional data, in-
cluding wavelet-based combinations, Bayesian theory, Kalman filter, Dempster Shafer [39],
and artificial neural networks [40]. This piece of work focused on the application of multi-
ple feature-based fusion algorithms, namely averaging, difference, Hadamard, Dempster
Shafer rule of combination, and pyramid fusion with saliency detection.

Simplest of all fusion algorithms, average, is performed at a pixel level—the average
of feature matrices obtained from two sources is calculated. On the other hand, difference
fusion is estimated based on the feature value difference on each pixel value from different
NDT results. Hadamard fusion is calculated with the pixel-wise multiplication of same-
size matrices.

The Dempster–Shafer theory was initially proposed by Arthur Dempster in the 1960s
for reasoning uncertainties and later developed by Glenn Shafer in the 1970s [41,42]. The
Dempster–Shafer (DS) theory is applicable to instances wherein non-probability uncertainty
is evident. The DS evidence theory is based on mass, belief, and plausibility functions.
The DS rule of combination is used to calculate the unique evidence mass (m) for the
hypothesis by incorporating the evidence masses (m1, m2). In this study, the hypothesis
was categorized as positive in case of defects and negative in case of non-defects.

Saliency detection is a hot topic that has recently piqued the interest of researchers
from a wide range of disciplines. In our investigation, source images of ultrasonic and
radiographic testing were decomposed into approximation base layer coefficients and detail
layer coefficients using the multi-scale decomposition algorithm [43]. The salient features
of the X-ray and ultrasonic features are extracted using a basic saliency map detection
algorithm [44].

The data fusion algorithms used, their short descriptions, and mathematical formulas
are provided in Table 3.

Table 3. Data fusion algorithms.

Fusion Algorithm Description Mathematical Formula

Average at the pixel level, the average of feature
matrices from two sources: UT 1 and RT 2

FUT+FRT
2

Difference at the pixel level, the difference of feature
matrices from two sources: UT 1 and RT 2 FUT − FRT

Hadamard t pixel-wise multiplication of same-size feature
matrices of two sources UT 1 and RT 2 (FUT ◦ FRT)ij = (FUT)ij(FRT)ij

Dempster –Shafer evidence theory based on mass, belief,
and plausibility functions 3 (m1 ⊕m2)(A) = 1

K−1 ∑
FUT∩FRT=A 6=∅

m1(FUT)m2(FRT)

Saliency
the salient features of the X-ray and ultrasonic

features are extracted using a basic saliency
map detection algorithm

χm =
∣∣κη(p, q)− κµ(p, q)

∣∣
1 UT stands for feature matrix of ultrasonic testing. 2 RT stands for feature matrix of radiographic testing.
3 F—feature matrix; κη is the mean filter output, and κµ is the median filter output of the source images p, q;
K = ∑

B∩C=∅
m1(B)m2(C).

3. Results

The aluminum adhesive lap joint with brass inclusions of varied sizes has been investi-
gated using the techniques described above: ultrasonic immersion testing and radiography.

3.1. Features

From the results obtained, different feature images were extracted to be used later for
data fusion. The selection of features was based on our previous investigations of adhesive
joints [35]. The features described in the previous sections were used. In Figure 11, images
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for the following ultrasonic features are presented: peak-to-peak amplitude, attenuation,
and frequency. In the case of radiographic testing, the following features were analyzed
(see Figure 12): amplitude, FAST corners, Harris corners, Sobel edges.

3.2. Data Fusion

Data fusion was applied to the combination of ultrasonic and X-ray-based features, as
shown in Table 2, using five fusion algorithms. The selected combinations of the results are
presented in Figure 13.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21 
 

 
(a) 

 
(b) 

(c) 

 
(d) 

 
(e) 

 
(f) 
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4. Comparison of Different Techniques and Discussion

The features and fused images of the X-ray and ultrasonic testing were analyzed using
the response operating characteristics (ROC) curves and the area under curve (AUC) values.
The photo of the sample with defects before bonding, as shown in Figure 2, was used as
the reference image to evaluate the quality of the fusion results: the form and position
of the defects was extracted from this photo to evaluate the accuracy of the features and
fused images, in terms of inclusion-type defect recognition. First, registration (including
interpolation and normalization) and coordinate matching have been applied to the image,
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considering the fusion data size. Then, the defect positions have been determined via
postprocessing of the edge detection algorithm. The fusion results of each defect have
been evaluated separately, considering this image. The results are evaluated using the area
under curve estimations of response operating characteristic curves.

An arbitrary reference matrix was constructed based on the known location of the
defects, with defected regions given the value 1 and perfectly bonded regions—0. By
knowing the position of the defects, it was possible to create a mathematical formulation of
a defect and a non-defect matrix that was used for comparing techniques. Every reference
matrix was converted to binary so that the ROC curve could be used for the evaluation.
Histogram-based segmentation was carried out. The segmented pixels in the matrix were
then categorized into one of four categories: true positive (TP) indicates the presence of
a defect in the defect position, false positive (FP) indicates the defect in a perfect bond
region, true negative (TN) represents the defect-free good bond region, and false negative
(FN) represents the defect-free position. The true positive and false positive rates for each
segmented matrix were calculated in accordance with specific and sensitivity information
and could be mathematically expressed as follows:

RTP =
NTP

NTP + NFN
(X)

RFP =
NFP

NFP + NTN
(X)

where RTP is the true positive rate, RFP is the false positive rate, NTP is the number of true
positives, NFN is the number of false negatives, NFP is the number of false positives, and
NTN is the number of true negatives.

Figure 14 shows the average performance of the distinctive features, according to the
ROC curves and AUC values. It could be observed that in the case of the inclusion type
of the defect, all features extracted from radiography data perform better according to the
ROC curves and the AUC values.
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Figure 14. Overall defect detection performance of different features, according to ROC curves and
AUC values.

The fused results were evaluated with distinctive features that were extracted from
the results obtained by different techniques and are presented in Figure 15. The analysis
of the results shows that from the fusion algorithms used, simple average and saliency
gave the best results in the case of a brass inclusion type of defect. It is surprising that the
performance of the Hadamard and Dempster–Shafer algorithms was much worse than
expected. For ultrasonic features in terms of suitability for fusion, the best performance was
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achieved when using following features: ultrasonic signal attenuation (U2), peak-to-peak
(U4), and absolute energy (U6). Although all radiographic features performed similarly,
the final result was more influenced by the fusion algorithm.
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The AUC values for each feature are given in Figure 14, and the AUC values presented
for each feature and fusion combination are presented in Figure 15. The combination
of features refers to the values given in Figure 9. It could be observed that fusion with
averaging and saliency performs best in almost all fusion combinations. Additionally,
the defect detection performance of radiographic features (except for the radiography
amplitude feature) can be improved by the fusion application of the best performing
ultrasonic signals (U2, U4, U6).

In addition, the visual examination of the fusion results presented in Figure 13 reveals
that fused results give additional information about the structure. It is obvious that radio-
graphy reveals the inclusion type defects very well; however, ultrasonic results provide
additional information about the structure—additional disbond regions around the edges
of the inclusions are visible.

5. Conclusions

The purpose of this investigation was to develop a feature-based data fusion tech-
nique to improve the probability of defect detection in the adhesive lap joints. Data were
experimentally obtained using two common NDE techniques: ultrasonic pulse-echo and
radiography. For this investigation, single lap adhesive-bonded aluminum joint with differ-
ent sizes of brass inclusions were used. For the selection of the zone of interest in ultrasonic
A-scans, theoretical analysis and modelling of impulse responses from interfaces in the
sample were performed and multiple reflections inside the sample were analyzed, as well
as different propagation paths. The modelling results were confirmed by experimental
investigations of the propagation of ultrasonic waves. For the analysis, several distinctive
features were extracted from the experimental ultrasonic and radiographic data and used
as inputs for the data fusion. The comparison of extracted features shows that, at least
in the case of the inclusion type of defect, the most promising features giving the highest
contrast in terms of the defect/non-defect region from ultrasonic images are signal attenu-
ation, peak-to-peak amplitude, and absolute energy; however, other features, especially
frequency domain related, should not be disregarded. Feature-based image fusion of both
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techniques was also applied and evaluated using different data fusion algorithms. This
helps to overcome the limitation of multimodal imaging and improves the prediction
possibility and reconstruction of the missing information from the images of the single
techniques. The fused image i provides intricate details of the defects in the sample on a
finer scale. Although radiographic image contributes to the detection of the inclusion type
of defect the most, the ultrasonic image provides extra information about additional types
of defects, such as disbonds around the edges of the inclusions, which are not visible in the
radiographic images. Of the fusion algorithms used, the best performance was achieved
using average and saliency algorithms—AUC values of more than 0.99 are achieved.
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