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ABSTRACT:
This paper considers an indirect measurement approach to reconstruct a defect in a two-dimensional waveguide model

for a non-destructive ultrasonic inspection via derivative-based optimization. The propagation of the mechanical waves

is simulated by the scaled boundary finite element method that builds on a semi-analytical approach. The simulated

data are then fitted to given data associated with the reflected waves from a defect which is to be reconstructed. For

this purpose, we apply an iteratively regularized Gauss-Newton method in combination with algorithmic differentia-

tion to provide the required derivative information accurately and efficiently. We present numerical results for three

kinds of defects, namely, a crack, delamination, and corrosion. The objective function and the properties of the recon-

struction method are investigated. The examples show that the parameterization of the defect can be reconstructed effi-

ciently as well as robustly in the presence of noise. VC 2022 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/
4.0/). https://doi.org/10.1121/10.0013574

(Received 6 April 2022; revised 29 July 2022; accepted 30 July 2022; published online 26 August 2022)

[Editor: Steffen Marburg] Pages: 1217–1229

I. INTRODUCTION

Ultrasonic guided waves, especially Lamb-waves, are

used in non-destructive testing (NDT) and structural health

monitoring (SHM) to identify defects. Here, the long testing

range that can be covered using guided waves is one of the

main advantages over conventional scanning techniques.

However, this advantage also yields new challenges. The

multi-modal nature of guided waves with different wave

velocities and the large distance between the defect and the

sensor makes the localisation and characterisation of defects

more difficult. On the other hand, Lamb-waves provide the

flexibility to choose the most appropriate mode, which is the

most sensitive to a specific type of defect.

Most models for crack identification assume that the

data containing the waves scattered by the defect are avail-

able at certain sensor positions. Depending on the type of

sensor, this data can be an electrical signal that represents a

displacement or velocity field. We will refer to this data as

measurement data, even though for many publications,

including this one, it is generated artificially by appropriate

simulations. There are two main types of methods to detect

a defect in a waveguide. One approach is based on imaging

to localise and characterise the defects. Another class of

algorithms fits a damage model directly with the measured

data. The resulting damage model can then be further ana-

lyzed, e.g., using fracture mechanics techniques. This also

supports other objectives, such as NDT and SHM investiga-

tions, and can answer the question of whether the damage is

severe and will lead to structural failure.

Most imaging algorithms assume a sensor network

around the defect and consider a surface view of the wave-

guide as sketched in Fig. 1. Often these approaches are

called guided wave tomography or migration in the seismic

community. The measurement data are then propagated

backwards from the sensors on the surface. As a possible

method of backward propagation, each pixel of the surface

is analyzed by the direct sound path between this pixel and

the transmitter/receiver pairs.1 This approach relies on the

assumption that there is only one dominant wave mode to

use its group velocity for the backward propagation. Other

methods do not need a dominating mode, for example, if a

time-reversal approach is utilized as backward propagation

method.2 There are many competing approaches for the

backward propagation method. Since a full review is out of

the scope of this introduction, we refer the reader to Refs. 3

and 4 for a comparison of the various methods. If the back-

ward propagation method is defined by the transmitter/

receiver-path, it depends strongly on the number of sensors

and their position.3 In other cases, the resolution of these

approaches is directly linked to the physical properties of

the propagating waves, for example, the wavelength.2 Most

tomography algorithms show only a projection on the sur-

face of the waveguide and do not show any depth of the

defect.

As an alternative to the above imaging algorithms, the

localization and characterization of defects can be viewed as

an inverse problem, where one tries to find the set of parame-

ters of a damage model that yield the smallest distance of the

simulated data to the measurement data. These approaches

consist of three main components. First, a forward model that

generates simulated data representing the damage for thea)Electronic mail: Jannis.Bulling@Bam.de
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current set of parameters. Second, one uses an objective func-

tion that compares the measurement and simulation. Third,

an optimization algorithm updates the parameter values to

minimize the objective function, i.e., obtain a better fit of

simulation and measurement. With regard to the simulation

method, damage model, target function and optimization,

there are different approaches that are briefly discussed in the

following.

For a discrete damage model, the extended finite ele-

ment method (XFEM) is often used, because of its possibil-

ity to define mesh independent cracks.5–9 Rabinovich et al.9

used the XFEM in the frequency domain to reconstruct a

single straight crack. The objective function is based on the

least square error between measurement and simulation

data, oscillates and has several local minima. A genetic

algorithm (GA) optimizes the objective function to over-

come the difficulty of getting trapped in a local minimum.

The same authors improved the results by switching to the

time-domain9 and changing the objective function to one

that is based on the “arrival time” of the reflection, which is

often used in classic defect detection in an ultrasonic test.

Using the arrival time, the objective function oscillates less,

but there are still local minima. Livani et al.7 investigated

multiple defects with particle swarm optimization. Finally,

three dimensional problems with multiple cracks are solved

by Agathos et al.5 They used a two-step GA approach for

elliptical cracks. Jung and Taciroglu6 consider curved cracks

and inclusions together with a gradient descent as the opti-

mization method. Multiple optimization runs are performed

with different starting points representing different cracks to

circumvent local minima.

A time-reversal approach can also be used to optimize

defect parameters. If a sensor signal is reversed in time and

transmitted back in the domain, it will be refocused at the

source. Amitt et al.10 defined an objective function based on

refocusing the wave in a specific part of a membrane. The

word membrane should indicate that the Helmholtz equation

is solved instead of the elastic wave equation. Unfortunately,

this objective function is oscillating.10 A full scan of the

parameter space that defined the crack and its position was

performed for optimization. An experimental validation of

this approach is contained in Ref. 11.

Seidle and Rank12 used another time-reversal approach

for a membrane. An integral damage model is employed

which lowers the stiffness for certain elements. The

connection between XFEM and a stiffness-reduction can be

found in Ref. 13. This approach, also known as full wave-

field inversion, allows many possible defect geometries and

is not limiting their number, but the resolution of the defect

depends on the computational grid. A highly refined compu-

tational grid can lead to very time-consuming calculations,

especially for three-dimensional problems. A theoretical and

experimental investigation of a similar approach can be

found, e.g., in Rao and co-workers,14–16 where an acoustic

inversion is used for elastic wave propagation to lower the

computational demand. A change in both stiffness and den-

sity is considered in Ref. 16.

The approaches mentioned above exploit the surface of

the waveguide, whereas also a cross section view may serve

as alternative description, which is commonly utilized for

waveguides. A plane strain simplification can be used to

derive a two-dimensional problem—see Fig. 1. It is important

to stress that these alternative dimensions of the cross-

sectional view enable the analysis of the depth of the defect

and the mode conversion due to defects with a certain depth.

Wu et al.17 analyzed composite plates with the strip element

method. The model allows investigating horizontal and verti-

cal cracks in the cross section. Semi-analytical methods such

as the strip element method have the advantage that the for-

ward calculation is efficient. This simulation approach is com-

bined with a genetic algorithm to perform the optimization.

Gravenkamp proposed another semi-analytical method,

the scaled boundary finite element method (SBFEM), for

simulating plate-like structures in the context of NDT and

SHM.18 The SBFEM was first developed by Song and Wolf

to compute bounded and unbounded domains with the same

approach.19,20 The domain is divided into super elements.

Quasi-polar coordinates, called scaled boundary coordi-

nates, construct this first type of super element. For prob-

lems in the frequency domain, the super element has only

degrees of freedom on the boundary, which leads to a reduc-

tion of one dimension in the computational cost. Later,

Gravenkamp and co-workers used another coordinate trans-

formation to construct super elements with a constant cross

section for bounded and unbounded domains in two dimen-

sions.21,22 These super elements are very efficient for simu-

lating waveguides. The approach was extended to curved

waveguides, three-dimensional waveguides, and waveguides

with fluid/structure interaction.23–26 In addition to the simu-

lation of unbounded domains, a discrete crack model is an

essential development in SBFEM.27 Quite recently, the

SBFEM was used in a shape optimization scheme for a horn

speaker and meta-materials28 illustrating the flexibility of

this formulation in the meshing process and with respect to

infinite boundary conditions.

So far, the researcher examined only forward models

with the SBFEM to investigate the wave-defect interactions

for plate-like structures. In this contribution, we propose a

general method for reconstructing a single discrete defect

model inside a cross section model of a waveguide and solv-

ing the inverse problem. The SBFEM is used as an efficient

forward model for the simulation with very few degrees of

FIG. 1. (Color online) Different views for a 2D-simplification of the 3D-

problem.
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freedom in the final linear system of equations. The defect

reconstruction is formulated as an optimization problem and

a derivative-based optimization algorithm is utilized to solve

it in a systematic and efficient way. The technique of algo-

rithmic differentiation (AD),29,30 provides the required gra-

dient information exactly and with low computational costs.

We analyse the resulting approach with respect to properties

of the objective function, the reconstruction quality and the

robustness against noise.

The remainder of this paper is organized as follows:

The forward model and physical assumptions are presented

in Sec. II. It is assumed that a particular defect type is pre-

sent and that it is known which mode interacts most sensi-

tively with that defect type at the chosen center frequency.

Thus, the sensor arrangement and temporal excitation can

be chosen accordingly. Section III summarizes the optimiza-

tion scheme. This section includes several subsections. First,

the objective function is discussed. This is followed by a

summary of AD, on which gradient-based optimization is

built. The third subsection describes the overall flow of the

optimization. First, the approximate defect position must be

determined; this serves as the initial value for the first

defect parameter for the optimization. Then, in the next par-

agraph, the initial values of the remaining parameters are

determined. The last paragraph finally presents the step-

by-step optimization. In Sec. IV, three numerical examples

are presented to show the versatility of the approach for

different damage geometries. Conclusions are given in

Sec. V. The Appendix contains additional implementation

information.

II. SBFEM FORWARD MODEL

This section introduces the forward model to simulate

the guided waves. Throughout, we consider only the two-

dimensional case. As mentioned in the Introduction, the

damage is incorporated directly into the waveguide model

such that specific parameters define the damage. The for-

ward model incorporates all important aspects of an ultra-

sound test on a waveguide. However, some aspects can only

be designed for a specific experiment. Hence, certain simpli-

fying assumptions have to be made to achieve greater gen-

eral validity.

The first of these assumptions is that the defects are in a

specific area within the waveguide modeled as an infinite

domain. It is assumed that the vertical edges are far enough

away from this area of interest so that the reflections from

the vertical edges of the waveguide do not interfere with the

reflections from the damage.

The second assumption is that the excitation by a sensor

can be modeled by a traction force �f ðx; tÞ on one part of the

boundary. This traction is mapped into the frequency

domain by the Laplace-transformation. In contrast to the

Fourier-transformation, the imaginary part of the Laplace-

transformation should weaken the resonance and wrap-

around effects of the numerical model. In the discrete-time

version, this procedure, known as the exponential window

method (EWM),31 is given by

�f ðx; tÞ ¼ f ðxÞ�sðtÞ ¼ f ðxÞ
XN

n¼0

ðsxn
exp ð�ixntÞ þ c:c:Þ; (1)

where c.c. denotes the complex conjugated of the previous

term. The complex angular frequency xn ¼ ðnxD � ifÞ 2 C

is defined by a uniform frequency step xD and a small

parameter f. Note that only the real part of the complex

angular frequencies changes.

Algorithmically, the EWM is implemented in the fol-

lowing three steps:

(i) Multiply �sðtÞ with the window function exp ð�ftÞ
with f ¼ 0:5xD, where the frequency step xD results

from the time vector, use the fast-Fourier-transform

(FFT) on the product, and search for the relevant

frequencies.

(ii) Approximate the displacement spectrum for all rele-

vant complex frequencies xn [see Eqs. (3) and (4)].

(iii) For evaluation in the time-domain, transform the dis-

placement by the inverse FFT and afterwards multi-

ply the inverse window function expðftÞ.

For all examples, the time dependent part �sðtÞ of the

excitation is a sin-modulated Gaussian pulse, i.e.,

�sðtÞ ¼ sin ð2pfctÞ exp �ðt� tcÞ2

2f�2
c

 !
(2)

with the center frequency fc ¼ 200 kHz and a time shift of

tc ¼ 5f�1
c . Figure 2(a) shows the pulse in the time-domain,

while Fig. 2(b) illustrates the spectrum. Additionally, the

plot presents the dispersion curves of the group velocity

associated with the waveguides in the numerical examples.

The dispersion curves are computed with the SBFEM.22

This figure shows that the relevant spectrum of the excita-

tion is in the range where only the two fundamental modes

propagate.

For each discrete angular frequency step, the SBFEM is

used to approximate the displacement in the equations of

linear elastodynamics

$ � r uðxÞð Þ þ x2
nquðxÞ ¼ 0; x 2 X � R2;

r uðxÞð Þn ¼ f ðxÞsxn
; x 2 C; (3)

with the displacement u ¼ ðux; uyÞT, the linear stress tensor r,

the density q, and where n is the outer normal vector. The linear

stress tensor r is given by Hooke’s law, r ¼ C : e, and the lin-

ear strain-displacement-relationship, e ¼ 0:5ðð$uÞT þ ð$uÞÞ,
where C is the fourth-order elasticity tensor, that is defined by

the material parameters, and e is the strain.

As for many other numerical methods, when using the

SBFEM, the PDE in Eq. (3) is converted into systems of lin-

ear equations

Sxn
uxn
¼ fxn

(4)
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with the global, dynamic stiffness matrix Sxn
that depends

on the complex angular frequency, the nodal displacement

vector uxn
, and the global traction vector fxn

. To compute

the global dynamic stiffness matrix Sxn
, the domain has to be

sub-divided into super elements, i.e., X ¼ [K
k¼1Xk. Figure 3

shows such a subdivision into super elements. For each super

element Xk, parts of the boundary are meshed with 1D finite

elements with two degrees of freedom per node—one degree

for ux and the other for uy. Mainly, eigenvalue decomposi-

tions are used to compute the local stiffness matrix Sk
xn

for

each super element Xk. These local stiffness matrices are

then assembled into the global matrix, while the global trac-

tion vector is assembled directly from the 1D boundary finite

elements. The 1D edge finite element approximation uses

spectral shape functions based on the Gauss-Lobatto points.

For example, Fig. 3 shows elements with shape functions of

degree p ¼ 4 with five nodes (marked with •). The vertices

of the finite elements may depend on a parameter set qi,

which is later modified by the optimization process. Only the

vertices of the elements near the defect can be changed by

the optimization algorithm, while the elements near the exci-

tation are independent of the parameters.

The rectangular super elements are used to approximate

the extended parts of the waveguide. Figure 3 shows exam-

ples with the super elements X1; X3; X4, and X6. These

super elements require a constant cross section. The cross

section parallel to the y axis is then meshed with the 1D

finite elements and scaled in the x-direction. If the super

element is finite, as X3 in Fig. 3, the finite element meshes

must coincide on both sides. Note that the length in

x-direction does not influence the computational cost

because there are only nodes at the cross-sections. The low

number of nodes leads to a very efficient calculation for

long parts of the domain. The outer boundaries parallel to

the x-direction, illustrated by thin lines in Fig. 3, have

traction-free conditions. Rectangular super elements can

also approximate semi-infinite parts of the model, see, e.g.,

X1 and X6 in Fig. 3. So, the models assume that there are no

reflections at the ends of the plate. For the derivation of the

local stiffness matrix of the super element, see Refs. 21, 32.

The main part of the computation to set up the local stiffness

matrix is an eigenvalue problem. A direct formula33 com-

putes the derivative of the eigenvalue problem inside the

differentiated algorithm when applying AD.

The super element that forms a star-convex polygon is

always required when the rectangular super element can no

longer define the geometry or boundary conditions. Here,

1D a finite element line mesh is scaled toward a single point.

The single point is called the scaling center. In the figures,

the thin lines meet in the scaling center. In general, the posi-

tion of the scaling center can be dependent on the parameter

set qi to be determined by the optimization, but this is only

the case for super elements near the defect. The super ele-

ment only needs nodes on the boundary yielding a high level

of effectiveness. An additional special feature is that the

super element also provides a simple crack model because a

double node can introduce it. The crack is illustrated in X5

(see Fig. 3), where a red node marks the double node. The

red line is a traction-free boundary due to the double node.

Despite the crack tip singularity, one still observes exponen-

tial convergence under p-refinement34–36 using such super

elements. For the derivation of the local stiffness matrix of

the super element, we followed Ref. 37. The derivation of

the local stiffness matrix is quite involved. A continued-

fraction-based approach builds on one algebraic Riccati

equation and several algebraic Lyapunov equations.38,39 In

this paper, both algebraic equations are solved by an eigen-

value decomposition within the SBFEM algorithm. The

solution of the Riccati equation can be found in Ref. 39,

while the Lyapunov equation is solved in the Appendix.

FIG. 2. Time and frequency dependency of the excitation signal in Eq. (2). (a) Excitation signal �s in the time-domain. (b) Excitation signal s in the fre-

quency-domain.

FIG. 3. (Color online) SBFEM model for the waveguide with a crack with degree p ¼ 4. The q-dependent defect is marked in red with a white border at x
¼1200 mm.
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It is worth mentioning that previous investigations have

shown that polygonal super elements are quite robust for

small and large finite element sizes inside the same mesh.40

This robustness is important if geometric optimization

changes the element sizes on the fly.

III. THE ADAPTED OPTIMIZATION APPROACH

A. The inverse problem

In general, the procedure described here to identify the

defect properties is an indirect method. The aim is to solve

the inverse problem

min
q2Q
jjFðqÞ � ymeasjj

2; (5)

where ymeas is given by physical measurements performed

to detect the defect and FðqÞ : q 7! ysim denotes the forward
operator. The forward operator is given by a simulation of

the same quantity assuming that the defect is characterized

by some vector q. The forward operator is a short notation

for the EWM together with the SBFEM-model described in

Sec. II. The space Q and its elements q 2 Q represent one

possible parameterization of the considered defect. For the

examples considered in this article the space Q is scaled to

½1; 2�N , where N ¼ 2 or N ¼ 3 is the dimension of the

parameter space. This scaling to the same range of values

for all parameters supports the solution of the inverse prob-

lem. Solving the optimization problem (5), one obtains a

parameterization qmin for the defect which best approxi-

mates the measurement data.

In practice, inverse problems are usually hard to solve

for several reasons. First, the resulting optimization problem

need not (and generally does not) have a unique solution

which may not depend continuously on the measurement

data ymeas. Such inverse problems are called ill-posed prob-

lems and are prevalent throughout almost all applications of

parameter identification problems. In order to solve ill-

posed problems, one is usually well-advised to deploy

custom-tailored regularization techniques to the problem.

On the other hand, a different issue that may arise is

that the error function in Eq. (5) may be hard to optimize as

it may have adverse optimization properties such as not

being sufficiently smooth or incorporating many only

locally optimal points. In this case, it may be advantageous

to modify the forward operator F and the measurements

ymeas so that the objective function is better suited for opti-

mization purposes.

A simple approach uses the response data measured

directly at a point. The y-component is more interesting as

the x-component because of its practical relevance. For

example, a single laser Doppler vibrometer measures the y-

component of displacement or velocity, depending on the

type of measurement method. We will assume that the dis-

placement is measured, i.e.,

ð~ymeasÞi ¼ uyðtj;PÞ; (6)

where uy is the y-displacement and tj ¼ ðj� 1ÞDt;
j ¼ 1;…; J, are the discrete time steps. In this contribution,

the time step is Dt ¼ 1=ð30fcÞ ¼ 1=6 ls and the last index is

J ¼ 15 000. Since the displacement and the velocity have

very similar characteristics, all results are transferable to the

velocity. For all numerical examples, the first geometric

parameter is the global position of the defect. Figure 4(a)

shows in gray the y-displacement of the model in Fig. 3 at

the point P for the global defect x-position q1, where the other

parameters, crack depth and angle, are kept constant at 1.5.

Additionally, the envelope of the signal is shown in black or

dark green. Figure 4(b) depicts the objective function based on

the displacement, where the middle (green) signal in Fig. 4(a)

is used as measurement data ~ymeas ¼~Fðq�Þ. However, as the

waveguide is excited via a sinusoidal pulse, the measured dis-

placement also incorporates the oscillating behavior. In fact,

one can see that the objective function (5) also inherits these

features, see Fig. 5(a) for illustration, which is a rotated

detailed view of the dashed box in Fig. 4(b). We note that the

resulting objective function has many only locally optimal

points near the global optima. Hence, many optimization

methods would have difficulties solving this optimization

problem to global minimality.

The authors also experimented with different variations of

the data such as using the spectrum of the response. However,

the problem caused by many local minima remained. Many

tests we conducted have shown that the measurement data

FIG. 4. (Color online) Signals and objective functions for the waveguide with a crack. (a) Response uy and envelope ey at point P. (b) uy-based objective

function ~F. (c) ey-based objective function F.
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with the best characteristics from the optimization point of

view is the envelope of the displacement, i.e.,

ðymeasÞi ¼ eyðtj;PÞ with ey ¼ envðuyÞ; (7)

where env is the envelope function over time calculated via

a Hilbert transformation. Analogous to the pure displace-

ment, Fig. 4(c) shows the objective function for all crack

positions between the middle (green) envelope in Fig. 4(b)

with a forward operator F which included the calculation of

the envelope. Figure 5(b) shows the detailed view around

the global minimum.

In addition to the global minimum, Fig. 4(c) shows two

local minima. These local minima are associated with the

mode conversion. The excitation, to the left of the dashed

line, is a pulse that corresponds to the S0-mode. However,

the S0-mode and the mode converted A0-mode are reflected.

If the S0-wavepackage of the forward simulation is at the

position of A0-wavepackage of the measurement data, this

leads to a local minimum. Compare the middle (green) line

with the line above in Fig. 4(a). Our approach to circumvent

the local minima is to get a sufficient good initial guess,

which lies near the global minimum. The details of the ini-

tial guess can be found below.

For the rest of the paper, the measurement data ymeas is

the envelope of the y-displacement at a single point P for all

time steps [Eq. (7)], while the forward operator F includes

the calculation of the envelope. Please note that using the

displacement data directly for optimization yields the same

results as when using envelope data if the starting values

were obtained by the optimization method described below

based on only the envelope data. Hence, solely using the

unmodified displacement data yields no benefit with regard

to global solutions of the optimization problem.

B. Algorithmic differentiation

In order to use gradient-based optimization methods for

the reconstruction of defects, derivatives of solutions of the

partial differential equation are required. These could be

approximated via finite differences (e.g., Ref. 6) or com-

puted by setting up and solving the adjoint equation of the

partial differential equation considered (e.g., Refs. 12 and 14)

We tested the use of finite differences and found the approxi-

mation to be insufficient for the optimization procedure.

Furthermore, in the development phase of this project we

experimented with different boundary conditions. Hence, an

adaptation of the adjoint equation as a time-consuming and

error-prone process would have been necessary in order to

compute derivatives via the adjoint approach.

Therefore, we apply algorithmic differentiation (AD),

also called automatic differentiation, which provides deriva-

tive information of arbitrary order for a given code segment.

The derivatives are provably accurate up to working accu-

racy due to the fact that the computer program evaluating

the function is broken down into a sequence of elementary

evaluations upon which the chain rule of calculus is system-

atically applied. There are numerous AD tools available for

a wide range of programming languages, see the website in

Ref. 41 for an overview of tools and references. Since our

forward operator described in detail in the previous section

is implemented in MATLAB, we apply the AD-tool ADiMat42

to compute derivatives of solutions of the partial differential

equations. Some mild modifications to the code were neces-

sary such as computing derivatives of the Lyapunov equa-

tion which originally was not available in ADiMat.

C. The resulting optimization procedure

Even though we made some effort to reformulate the

objective function (5) so that it is easier to optimize, we can-

not eliminate all issues entirely. Hence, in this subsection,

we present the optimization algorithms that we deployed.

A first simple approach for the solution of the optimiza-

tion problem (5) is to use standard optimization software

naively. This can involve derivative-based approaches such

as IPOPT,43 WORHP,44 or the optimization routine fmincon
provided by MATLAB. Alternatively, one may use derivative-

free approaches such as coordinate descent, genetic optimiza-

tion or other heuristic-based optimization methods like

particle-swarm methods.

Derivative-based optimization algorithms have the

great benefit of fast and provable convergence but generally

only converge locally. With derivative-free methods often

there is the hope associated that these methods converge

globally. However, global convergence cannot be proven.

Moreover, the whole optimization procedure may require

thousands of function evaluations. The required number of

evaluations is of particular significance as the simulation in

our case involves solving a partial differential equation;

thus, one objective function evaluation is already quite

expensive—solving the partial differential equations many

times is simply impractical.

FIG. 5. Comparison of the different

objective functions in a detailed view

of the dashed box in Figs. 4(b) and

4(c), respectively. (a) Objective func-

tion ~F based on the y-displacement. (b)

Objective function F based on the

envelope of the y-displacement.
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In light of these facts, the approach presented here is a

two-step approach: We first generate a refined initial guess for

all variables. After a good initial point is established, we deploy

a gradient-based optimization with fast convergence properties.

1. Initial guess for the global position

As mentioned above, the first geometric parameter q1 is

the global position of the defect for all numerical examples.

To get an initial guess for the defect position q1, we consider

the time of flight to get a physical position L1 inside the

waveguide. This physical position is then mapped linearly

into the parameter space. The physical position of the defect

L1 can be estimated by

L1 � TD

cex
g � cre

g

cex
g þ cre

g

; (8)

where TD is the time of flight, cex
g is the group velocity at the

center frequency of the excited mode, and cre
g is the group

velocity of the reflected mode with the highest amplitude. For

all our examples prior investigations have shown that the high-

est reflections for the y-component are always associated with

the A0-mode [see Fig. 4(a)], so the reflection velocity cre
g is the

A0-group velocity cA0
g at the center frequency—see Fig. 2(b).

The computation of the time of flight TD is based on cross-

correlating the excitation pulse with the rest of the signal. The

excitation pulse is separated by a defined threshold Tex from the

reflections. If the envelope of the cross correlation is maximal,

the argument is an approximation of the time of flight, i.e.,

rðtÞ ¼ env uyðt;PÞ t < Tex½ � ? uyðt;PÞ Tex � t½ �
� �

; (9)

TD ¼ argmaxt rðtÞ; (10)

where ? is the cross correlation operator and ½�� is the Iverson

bracket. The Iverson bracket is one if the statement inside is

true and zero otherwise. Figure 4(a) shows the threshold as a

dashed line, and the excitation pulse is on the left side while the

rest of the signal is on the right side. In the presented examples,

the function r(t) has a distinct maximum, which is associated

with the A0-mode. However, if there is any ambiguity in the

maximum value or the mode associated with the maximum

value, it is a straightforward option to run the inverse method

with multiple start values for the first parameter.

2. Refined initial guess for all parameters

In order to obtain a refined initial guess for the gradient-

based optimization, we can use Eq. (8). The approximation for

the first coordinate given there is fairly accurate and is located

within the valley of the objective function, see Fig. 5(b).

However, with a simple line-search in the vicinity of the valley,

the accuracy of the initial guess can be greatly improved. This

simple line-search requires very few function evaluations, and

the computational cost is insignificant. The accuracy of the first

coordinate is important as inaccurate values lead to locally opti-

mal values (especially in the presence of noise) for the other

coordinates with which optimization methods have difficulty

escaping. The other coordinates are determined by selecting the

vector with the smallest objective function from M random vec-

tors, where our default value of M is 10. As the line-search is

computationally very cheap, we also refine the other coordi-

nates in the same fashion, beginning with the least critical or

problematic coordinates. Due to many only locally optimal

points, see Fig. 11(a), the amount of randomly selected points is

increased to 100 for corrosion-type defects. The whole proce-

dure is sketched in Algorithm 1.

ALGORITHM 1: Refined initial guess

1: Evaluate Eq. (8) for an initial guess of the first coordinate.

2: Sample M random points q1
0;…; qM

0 2 Q for the remaining second and

possibly third coordinate.

3: Evaluate corresponding objective values

jjFðqm
0 Þ � ymeasjj

2m ¼ 1;…;M
and select qm

0 with the smallest objective value.

4: Apply coordinate-wise line-search to qm
0 to decrease the objective func-

tion value. The resulting parameter is q0.

3. The stepwise optimization procedure

One way to deal with an objective function that has

many locally optimal points is to introduce regularizing

techniques. Hence, instead of solving the original problem

(5) we add a Thikonov-type regularization term

min
q2Q
jjFðqÞ � ymeasjj

2 þ akjjq� q0jj
2: (11)

This new problem has much better theoretical and practical

properties. If the regularization parameter ak is large, the

optimization problem is dominated by the second term which

is a convex problem with a unique solution. However, as we

interested in solving the original problem we choose a mono-

tonically decreasing sequence ak ! 0 for an iterative proce-

dure k!1. For ak � 0 we get a solution to the original

problem. By further linerarizing the first term a unique

solution for each step is given by the so called iteratively reg-

ularized Gauss-Newton method (IRGNM), see, e.g., Ref. 45.

The overall procedure is given in Algorithm 2, where F0 is

the Jacobian matrix of the forward operator, I is the identity

matrix, and ð�ÞH denotes the adjoint operator. In this work, the

regularisation parameter is updated by anþ1 ¼ 0:9 � an.

ALGORITHM 2: Iteratively regularized Gauss-Newton method

(IRGNM)

1: Initialize q0 and ðanÞn2N ! 0

2: for n ¼ 0;…;maxiter do

3: qnþ1 ¼ qn þ ðF0ðqnÞ
H

F0ðqnÞ þ anIÞ�1ðF0ðqnÞ
Hðymeas � FðqnÞÞ

þanðq0 � qnÞÞ
4: if jjqnþ1 � qnjj < �, then

5: qmin ¼ qnþ1

6: STOP

IV. NUMERICAL EXPERIMENTS

In this section, we present several numerical examples to

show the versatility of the approach. Each model considers a

J. Acoust. Soc. Am. 152 (2), August 2022 Bulling et al. 1223

https://doi.org/10.1121/10.0013574

https://doi.org/10.1121/10.0013574


different type of defect. The first example is about classic crack

identification. The second example shows a similar set-up but

tries to find a horizontal crack or rather a delamination defect.

The third type of defect is a model of a corrosion defect.

All waveguides in the following examples are made out

of steel. The isotropic material parameters are given in

Table I, and for all waveguides a plane strain is assumed.

All meshes use shape functions of degree p ¼ 4, i.e., ele-

ments with five nodes. The necessary degree is determined

in advance by investigating the critical geometric parameter.

For example, the smallest and the largest crack length are

the critical geometric parameter for the first model. For all

our models, a simulation with a degree of p ¼ 4 leads to a

difference in the signals below 0.1% compared to a simula-

tion with p ¼ 5. It is worth noting that there are numerous

convergence studies for the SBFEM34,36,37,46 and the code is

thoroughly validated using commercial FEM tools.

A. Waveguide with a crack

This example considers a steel plate with a single straight

crack. Figure 3 shows an overview of the model. Note that the

x axis is interrupted to fit the model into the figure. The left side

of Fig. 3 depicts the excitation of the plate. Arrows in Fig. 3

show the area and direction where spatially constant traction is

applied. Note that the phase angle of the excitation is contained

by the phase of the complex value sxn
in Eq. (3). At these parts,

the excitation takes place by a normal traction force

f S0ðxÞ ¼ �n x 2 Cs½ �: (12)

The traction is a model for the excitation of a double trans-

ducer set-up47 that can produce both fundamental modes by

applying a force in the same or opposite direction on the

plate. For this traction, the S0-mode is excited, so the group

velocity cex
g in Eq. (8) is S0-group velocity cS0

g . Here, the

S0-excitation is appropriate because the S0-mode leads to

larger reflections for these kinds of cracks.

The center part of Fig. 3 contains the evaluation point

P. The envelope of the y-displacement is evaluated as a time

series. As described above, the y-component is of practical

relevance as it can be measured using a single laser Doppler

vibrometer. Figure 4 shows the y-displacement at point P in

gray and the envelope as a black curve over the signal of dif-

ferent crack positions.

The right side of Fig. 3 shows the defect. All 1D finite

elements and the scaling center in this part of the domain

are dependent of the parameter vector q. A double node is

inserted into a super-element based on continued-fraction.

The resulting inner traction-free boundary is marked in red

with a white border in Fig. 3. Note that the continued-

fraction approach handles the singular stress at the end of

this crack model. In total, the model has 180 (complex-

valued) degrees of freedom. This low number is possible

because the semi-analytical approach approximates the large

undamaged part of the waveguide. At this center frequency,

the wavelength is approximately 25 mm for the S0 mode

and approximately 12 mm for the A0 mode. With other sim-

ulation methods, this leads to a much higher computational

effort.

There are three parameters for the optimization. These

parameters change the defect and its location. The first

parameter q1 defines the global position of the crack by shift-

ing the super element X5 along the x axis and changing the

length of the super element X4 accordingly. The second and

third parameters control the crack length and angle by mov-

ing the crack tip inside the super element X5 relative to the

boundary. The maximal and minimal values for the parame-

ters are listed in Table II. The crack length is between 0.25

and 2.6 mm. Here, the parameters are restricted to allow a

numerically stable solution. Similar parameter restrictions

can be found in other publications like Ref. 5.

The objective function value of the optimization

problem (5) for varying values of q1 and q2 is displayed in

Fig. 6(a). Here, q3 is held constant at 1.5, i.e., only cracks

orthogonal to the surface are considered. The artificial target

measurement corresponds to the midpoint of the parameter

space. The surface is relatively smooth and has only a few

local minima. The global minimum at ð1:5; 1:5; 1:5ÞT clearly

has the lowest value. Using the result of Algorithm 1 as

refined initial guess, the defect properties can be obtained by

applying the IRGN method Algorithm 2 without any need

for using a more in-depth initial guess search.

Another important aspect of an inverse method, espe-

cially in view of the measurement data, is its performance

under noise. To analyze the performance of the proposed

optimization algorithm, we create artificial measurement

data by a single forward simulation with a parameter vector

q� and add random noise to this target signal. The noise is

defined in terms of the excitation pulse. The same threshold

as for the time of flight is used to identify the excitation

pulse. In Fig. 4(a), the dashed line shows this threshold. The

excitation pulse is to the left of the dashed line. A noise

level of 10�2 and 10�3 means that a normal-distributed

noise with vanishing mean value and a standard deviation of

1% and 0.1% of the maximum amplitude of the excitation

pulse has been added to the target signal, respectively. The

envelope of the target signal is calculated afterward. Figure

6(b) shows the reconstruction error jqmin
i � q�i j per parameter

for the midpoint of the parameter space. Here, the first

parameter, the global position of the crack, shows the

TABLE I. Material parameters for structural steel.

Isotropic material

E : 200 GPa � : 0.3 q : 7.85 g cm�3

TABLE II. Parameters for the waveguide with a crack, where the origin of

q2 and q3 is the center of X5.

Description Parameter Min Max Unit

Global x-position of X5 q1 200 2200 mm

Local x-position of the crack tip inside X5 q2 �0.5 þ0.5 mm

Local y-position of the crack tip inside X5 q3 �2.25 0 mm
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smallest error. A lower error in the first parameter is also

expected because the range in the physical space is much

larger compared to the other parameters—see Table II.

Translating the error in the physical space, the error stays

under 1 mm for a noise level under 3%, which is a satisfac-

tory level of precision for most applications. The error in the

second parameter, on the other hand, shows lower robust-

ness to noise. This parameter, which is linked to the crack

angle, is likely to produce incorrect results. However, the

more critical third parameter, which is more related to the

crack length, has a significantly lower reconstruction error.

In general, this investigation is only valid for the current tar-

get parameter q�; as the crack length gets smaller with the

third parameter, it is also expected that the error increases

due to the negative influence of the noise. In conclusion,

there are also physical boundaries to an appropriate parame-

ter space depending on the noise inside the experimental

data.

Figure 7(a) shows the convergence of the reconstruction

error with a noise level of 10�5. This noise level is intro-

duced to prevent an “Inverse Crime” as both the target data

and the reconstruction algorithm use the same simulation

method. We observe an asymptotic rate of decline that, as

theoretically expected, coincides with the rate of the regula-

tion parameter in Algorithm 2.

To further validate the inverse method, ten different tar-

get parameters are randomly drawn. Noise with a standard

deviation of 10�5 is added to the corresponding signals, and

the parameters are reconstructed. Table III lists the recon-

struction error for these points. For all reconstructions, the

error is below 1%.

B. Waveguide with a delamination

This example considers a plate with a single straight

horizontal delamination model. Figure 8 shows an overview

of the model. Note that once again, the x axis is interrupted

at some places to fit the model into the figure. The two col-

ors inside the figure indicate that these defects are often pre-

sent between two different layers. However, the material of

these layers in our example is the same steel.

Prior investigations have shown that the A0-excitation

will lead to larger reflections for delaminations. The traction

is chosen accordingly as

f A0ðxÞ ¼ ð0;�1ÞT x 2 Cs½ �: (13)

Hence, cex
g in Eq. (8) is the A0-group velocity cA0

g at the center

frequency—see Fig. 2(b). The center of Fig. 8 highlights again

the evaluation point P, where the envelope of the y-component

of the displacement is taken as the data. The right part of Fig. 8

contains the defect. Here, the 1D finite elements and the scaling

centers are affected by the parameters qi. The delamination is

modeled by inserting double nodes in two super elements. The

SBFEM semi-analytical solution again captures the points with

singular stresses.

There are two parameters for the optimization. The first

parameter q1 denotes the global position of the delamina-

tion. The second parameter changes the length of the delam-

ination. The maximal and minimal values for the parameters

are listed in Table IV.

Figure 9(a) depicts the objective function dependent on q1

and q2. As in the previous example, the target signal is

FIG. 7. (Color online) Error in the

reconstruction procedure with a small

amount of additional noise of 10�5,

where the target parameter q� is the

center of the parameter space. (a) Error

in the reconstruction for the waveguide

with a crack. (b) Error in the recon-

struction for the waveguide with a cor-

rosion defect.

FIG. 6. (Color online) The objective

function and reconstruction with noisy

data for the waveguide with a crack,

where the target parameter q� and the

associated artificial measurement signal

ymeas correspond to the midpoint of the

parameter space. (a) Objective function

for varying parameters q1 and q3. (b)

Reconstruction error of parameters

jqi
min- qi

*j with noisy data.
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FIG. 8. (Color online) SBFEM-model for the waveguide with a delamination with degree p ¼ 4. The defect is marked in red with a white border around

x¼ 1200 mm.

TABLE III. Error for reconstruction qmin for differently shaped defects q� 2 ½1; 2�3 for the waveguide with a crack with a noise level of 10�5.

q�1 1.33 1.73 1.72 1.58 1.58 1.43 1.46 1.54 1.71 1.31

q�2 1.25 1.54 1.57 1.37 1.50 1.52 1.34 1.42 1.40 1.37

q�3 1.47 1.67 1.74 1.69 1.68 1.38 1.41 1.40 1.47 1.46

jjqmin � q�jj 2E�5 3E�3 2E�3 6E�4 5E�3 7E�4 1E�4 1E�4 4E�4 5E�6

TABLE IV. Parameters for the waveguide with a delamination.

Description Parameter Min Max Unit

Global x-position of X5;X6 q1 200 2200 mm

Delamination length inside X5;X6 q2 2.5 7.5 mm

FIG. 9. (Color online) The objective

function and reconstruction with noisy

data for the waveguide with a delami-
nation, where the target parameter q�

and the associated artificial measure-

ment signal ymeas correspond to the

midpoint of the parameter space. (a)

Objective function for varying parame-

ters q1 and q2. (b) Reconstruction error

of parameters jqi
min� qi

*j with noisy

data.

TABLE V. Error for reconstruction qmin for differently shaped defects q� 2 ½1; 2�2 for the waveguide with a delamination with a noise level of 10�5.

q�1 1.45 1.28 1.29 1.35 1.66 1.54 1.33 1.47 1.26 1.69

q�2 1.69 1.38 1.27 1.59 1.67 1.39 1.44 1.43 1.29 1.32

jjqmin � q�jj 1E�6 1E�5 7E�6 2E�7 2E�6 8E�6 4E�6 3E�6 1E�5 9E�6

FIG. 10. (Color online) SBFEM-model for the waveguide with a corrosion defect with degree p ¼ 4. The q-dependent defect is marked in red with a white

border around x¼ 1200 mm.
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generated with the midpoint of the parameter space for q�.
Figures 9(a) and 6(a) show a similar shape, but the two side

channels with local minima are not present in this example.

These side channels are missing because delaminations in the

center of a waveguide do not lead to mode conversion for the

A0-mode.

For this example, we could set the regularization parame-

ter an ¼ 0 and achieve convergence within five iteration steps.

In Fig. 9(b), the error for reconstruction with noise is given.

Both parameters show high robustness against the noise.

Additionally, Table V lists the reconstruction error for ten dif-

ferent randomly drawn target parameters with a noise level of

10�5. The error indicates a high level of precision.

In total, the model has 226 degrees of freedom. A single

forward calculation is performed in under 4 s on a modern

desktop computer, while the reconstruction is computed in

less than 5 min, including all preprocessing steps. The time

is averaged over 100 reconstructions.

C. Waveguide with a corrosion defect

The last example considers a steel plate with a simple

model for a corrosion damage. The assumption is that parts

of the steel are missing, and a tapering has formed in the

waveguide as illustrated by Fig. 10. Note that again the x
axis is interrupted. The traction f S0 is the same as in first

example [Eq. (12)], which leads to an S0-mode excitation.

The S0-mode shows greater sensitivity than the A0-mode to

changes in thickness. Therefore, the S0-excitation is used.

The two re-entrant corners34 in sub-domains X5 and X9 are

located at the scaling center to handle the possible singular

stresses for a deep corrosion. The model has 210 degrees of

freedom in total.

There are three parameters to be optimized. Once more,

the first parameter defines the global position of the defect.

The second parameter defines the length of the corrosion by

changing the size of the super element X7. The third param-

eter denotes the depth of the corrosion—see Fig. 10. The

maximal and minimal values for the parameters are listed in

Table VI. Figure 11(a) shows the objective function for a

constant corrosion depth. The surface is more complicated

due to the two main reflection points at the scaling centers,

leading to mode conversion. As mentioned earlier, we had

to increase the number of random vectors drawn for the ini-

tial guess because of the more complicated shape of the

objective function. In Fig. 11(b) the error for reconstruction

with noise is given. Additionally, Fig. 7(b) shows the con-

vergence behavior for the reconstruction error at the mid-

point of the parameter space. Despite the more complicated

behavior of the objective function, the parameters show

robustness against noise. For all ten tests, the reconstruction

leads to small errors as listed in Table VII.

V. CONCLUSION

In the paper, we showed that a semi-analytical wave-

guide model given by SBFEM can be combined success-

fully with derivative-based optimization to reconstruct

defects of different nature in a two-dimensional waveguide,

even in the presence of noise. For this purpose, SBFEM is

implemented in MATLAB, coupled with the AD tool ADiMat

and embedded in an iterative solution procedure. The recon-

struction can be performed on a standard desktop computer

within a very moderate time such that our approach offers

considerable runtime advantages compared to alternative

methods. Three numerical tests were conducted to illustrate

our approach: The first example covers a crack identifica-

tion, the second one a delamination, and the third one a cor-

rosion. In all three cases, the waveguides were made out of

steel. In the cross-sectional models, the reconstruction with

a minimal amount of data are possible. Only the envelope of

the y-displacement at a single point is sufficient if a certain

geometry of a single defect is assumed. Due to the limited

number of local minima, the envelope curve shows the most

promising features for an optimization. In all tests carried

out, the approach demonstrates robustness against noise and

varying defect parameters.

TABLE VI. Parameters for the waveguide with a corrosion defect.

Description Parameter Min Max Unit

Global x-position of X5;…;X9 q1 200 2200 mm

Corrosion length on the surface q2 7.5 57.5 mm

Corrosion depth q3 0.25 1.00 mm

FIG. 11. (Color online) The objective

function and reconstruction with noisy

data for the waveguide with a corrosion
defect, where the target parameter q�

and the associated artificial measure-

ment signal ymeas correspond to the

midpoint of the parameter space. (a)

Objective function for varying parame-

ters q1 and q2. (b) Reconstruction error

of parameters jqi
min� qi

*j with noisy

data.
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Future work will be dedicated to the extension of the

three-dimensional case and anisotropic material behavior.

The future work will allow the use of the proposed approach

for non-destructive testing and structural health monitoring

in real-life applications like carbon-enforced structures.
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APPENDIX: IMPLEMENTATION DETAILS

This appendix shows how the Lyapunov equation can

be solved with the help of an eigenvalue decomposition.

The Lyapunov equation is

AXþ XAH þ B ¼ 0: (A1)

Define the right eigenvalue decomposition of A

V�1AV ¼ D (A2)

with the right eigenvector matrix V and the diagonal eigen-

value matrix D. Note that this leads to the left eigenvalue

decomposition of AH

VHAHV�H ¼ DH: (A3)

After pre-multiplying with V�1 and post-multiplying with

V�H, Eq. (A1) leads to a new Lyapunov equation with a

diagonal coefficient matrix

D ~X þ ~XDH þ ~B ¼ 0 (A4)

with

~B ¼ V�1BV�H and ~X ¼ V�1XV�H: (A5)

The matrix ~X can be computed element-wise by

ð~XÞij ¼
�ð~BÞij

ðDÞii þ ðDÞ
H
jj

: (A6)

The solution matrix X of the original Lyapunov equation

can be derived by the inverse of Eq. (A5), i.e., X ¼ VH ~XV.
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