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1. Form factors

1.1. OPO - oriented primitive objects

For many different geometric objects such as sphere, toroid, cone, pyramid or tetra-

hedron, analytical form factors are made available in SASfit. For analyzing anisotropic

scattering patterns from such geometries SASfit expects one-dimensional SAS profiles

in radial direction at a certain angle or in azimuthal direction.

A subclass of form factors in SASfit are oriented primitive objects. At the beginning

this group was intended for simple single phase objects like homogeneous cube, cylin-

der, ellipsoid and their affine deformed shapes. We than added some other objects like

platonic solids and super quadrics and further extended it by cones, pyramids, etc. All

of them can be either perfectly oriented in the beam or are fully randomly oriented.

For the perfect oriented version three Euler angles need to be supplied. Also many

input parameters are needed for describing the affine deformation. The most sim-

ple geometric objects are unit spheres, unit cube and unit cylinder, and their affine

deformed shapes of ellipsoid, oblique parallelepiped and oblique cylinder for which

their Q-dependent form factors F (Q) are given analytically.

Ellipsoid Parallelepiped Cylinder

Fig. 1. R: object center, a, b, c: half axes/lengths, ea, eb, ec: directions of the half axes

The scattering amplitude F (Q) of an object is given by the Fourier transform of
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the scattering length density distribution within the object

F (Q) =

∫
V

dr η(r) eıQr, (1)

where η(r) is the scattering length density distribution of the scattering object and

V the sample volume. In the following it is assumed that the particles have a homo-

geneous scattering length density ηP , embedded in a matrix of also homogeneous

scattering length density ηM = ηP − ∆η. The position, orientation and size of the

objects is uniquely defined by the center of scattering length density R, the half axes

a, b and c, as well as the direction of the half axes ea, eb and ec. The base vectors ei

are normalised |ei| = 1 but do not need to be orthogonal to each other. For the scat-

tering amplitude of an individual object the coordinate system can be changed after

a translation by −R and a following change of basis D from cartesian coordinates

Oxyz = {ex, ey, ez} into the coordinate system of the particle Oabc = {aea, beb, cec},

so that POabc = D POxyz . With that relation in mind, the scattering amplitude in

equation 1.1 can be written as:

F (Q) = e−ıQR ∆η

∫
V (0)

dr eıQ(D−1Dr) (2)

= det(D−1) e−ıQR ∆η

∫
DV (0)

dr eıQ̂r (3)

with

Q̂ = (D−1)T Q =

 a eaQ
b ebQ
c ecQ

 (4)

V (0) is the volume of the scattering object with a scattering length density center

located at the origin of the coordinate system and DV (0) is the volume of the unit

object, i.e. unit sphere, unit cube or unit cylinder. The transformation matrix D and
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its inverse D−1 are given by

D−1 =

 a eax b ebx c ecx
a eay b eby c ecy
a eaz b ebz c ecz

 = (aea, beb, cec) (5)

Q(D−1r) = ((D−1)TQ)r , (6)

det(D−1) = abc (eax eby ecz + eay ebz ecx + eaz ebx ecy

− eaz eby ecx − eay ebx ecz − eax ebz ecy) (7)

D = (D−1)−1 =
1

det(D−1)
(D−1)adj

=
1

det(D−1)
(beb × cec,−aea × cec, aea × beb) (8)

whereas det(D) det(D−1) = det(D D−1) = det(1I) = 1

To reorient or rotate the objects the direction of the base vectors ea, eb, ec needs to

be adjusted which is done easily by introducing a rotation matrix Rαβγ . The rotation

matrix can be defined via Euler angles α, β and γ. Its definition depends on the conven-

tion used. There exist twelve possible sequences of rotation axes, divided in two groups:

proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y) and Tait–Bryan angles

(x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z). The difference between the two conventions

is that Tait–Bryan angles represent rotations about three distinct axes, while proper

Euler angles use the same axis for both the first and third elemental rotations. SASfit

allows internally to use any of the 12 conventions. However, as default convention the

yaw-pitch-roll is used (also named gier-nick-roll, east-north-up, north-East-Down or

z-y-x is possible), so that

Q̂ =

 aRαβγeaQ
bRαβγebQ
cRαβγecQ

 (9)
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1.2. Randomly oriented objects

Next to the form factor of an oriented primitive object also the form factor of a

fully randomly oriented version is made available. The orientational average is done by

integrating over the full Ewald’s sphere, which is a double integration. For this orienta-

tional average SASfit provides optimized integration routines which can be configured

in the GUI shown in figure 1 of the article. Next to the multidimensional adaptive

integration routines pcubature and hcubature (Johnson, 2020) also some other rou-

tines are supplied. However, these routines are nonadaptive without an error estimate

of the integral but optimised for integrations over a sphere surface. Nevertheless,

these routines often need significant less function evaluations than conventional mul-

tidimensional integration routines. The implemented methods are 2D-GaussLegendre

integration, Lebedev (Lebedev, 1975; Lebedev, 1976; Lebedev, 1977) and Fibonacci

(Niederreiter, 1992; Marques et al., 2013) quadrature algorithm with a fixed and con-

figurable number of function evaluations and without error estimation of the integral.

1.3. Super-shapes

The most flexible geometric objects made available in SASfit are so called super-

shapes (Gielis, 2003; Arslan et al., 2009; Fougerolle et al., 2007) and rational super-

shapes (Blanc & Schlick, 1996; Fougerolle et al., 2007) which are a further general-

isation of super-quadrics (Barr, 1981) widely used in computer graphics due to the

property that their parametrisation allows a huge variety of shapes. These objects

have both a parametric and an implicit representation. The parametric representation

in two dimensions reads for super-shapes as (Gielis, 2003)

r(θ, α,m, n1, n2, n3, a, b) =

∣∣∣∣∣∣
cos

(
m(θ−α)

4

)
a

∣∣∣∣∣∣
n2

+

∣∣∣∣∣∣
sin
(
m(θ−α)

4

)
b

∣∣∣∣∣∣
n3−

1
n1

(10)
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and for rational super-shapes (Blanc & Schlick, 1996; Fougerolle et al., 2007) as

r(θ, α,m, n1, n2, n3, a, b) = 2
−1
n1

(
1

W (θ − α)n1
+ 1− 1

n1

)
(11)

with

W (θ) =
U(θ)

n2 + (1− n2)U(θ)
+

V (θ)

n3 + (1− n3)V (θ)
(12)

U(θ) =

∣∣∣∣∣∣
cos

(
mθ
4

)
a

∣∣∣∣∣∣ and V (θ) =

∣∣∣∣∣∣
sin
(
mθ
4

)
b

∣∣∣∣∣∣ (13)

The generalization to extend the 2D parametric representation into 3D is done by

a spherical product so that the parametrisation of a surface point S or within the

volume V read as

S =

 x(a1, θ, φ)
y(a2, θ, φ)
z(a3, θ, φ)

 =

 a1 r1(θ) cos(θ) r2(φ) cos(φ)
a2 r1(θ) sin(θ) r2(φ) cos(φ)
a3 r2(φ) sin(φ)

 (14)

V = τS (15)

with

r1(θ) = r(θ, α,m, n1, n2, n3, a, b) (16)

r2(φ) = r(φ, β,M,N1, N2, N3, A,B) (17)

where τ ∈ [0, 1], θ ∈ [−π, π] and φ ∈
[
−π

2 ,
π
2

]
. For integer values of the degree of

symmetries (Fougerolle et al., 2005a; Fougerolle et al., 2005b; Fougerolle et al., 2006;

Fougerolle et al., 2007) have given 2 implicit representations for the super-shapes.

1 ≥x
2 + y2 + z2r2

1(θ)

r2
1(θ)r2

2(φ)
(18)

1 ≥1− 1

r2(φ)

√
x2 + y2 + z2

cos2(φ)
(
r2

1(θ)− 1
)

+ 1
(19)

The angles θ and φ are defined by
θ = arctan

( y
x

)
φ = arctan

(
zr1(θ) sin(θ)

y

)
= arctan

(
zr1(θ) cos(θ)

x

) (20)
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The Jacobi determinant for both the super-shape as well as rational super-shape

substitution is

det J = det


∂x(τ,θ,φ)

∂τ
∂y(τ,θ,φ)

∂τ
∂z(τ,θ,φ)

∂τ
∂x(τ,θ,φ)

∂θ
∂y(τ,θ,φ)

∂θ
∂z(τ,θ,φ)

∂θ
∂x(τ,θ,φ)

∂φ
∂y(τ,θ,φ)

∂φ
∂z(τ,θ,φ)

∂φ

 = τ2 cos(φ)r2
1(θ)r3

2(φ) (21)

FSuperSh(Q) = det(D−1) e−ıQR ∆η

1∫
0

dτ

π∫
−π

dθ

π/2∫
−π/2

dφ det(J)eıQ̂r (22)

= det(D−1) e−ıQR ∆η

π∫
−π

dθ

π/2∫
−π/2

dφ cos(φ)r2
1(θ)r3

2(φ) (23)

×
(

2q̂s cos q̂s +
(
q̂2
s − 2

)
sin q̂s

q̂3
s

+ ı

(
2− q̂2

s

)
cos q̂s − 2 + 2qs sin q̂s

q̂3
s

)
q̂s = Q̂S = Q̂xx(1, θ, φ) + Q̂yy(1, θ, φ) + Q̂zz(1, θ, φ) (24)

One of the three integrations can always be performed analytically. In figure 2 a

selection of super-shapes and their scattering patterns are shown. The simulated scat-

tering curve of the first example in the first column of figure 2 and the required input

parameters are shown in figure 3.
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6m

18m
m = 5, 7
α = 0, 0.38
a = 1, 1
b = 1, 1
n1 = 30, 75
n2 = 20, 20
n3 = 20, 20
a1 = 30nm
a2 = 30nm
a3 = 30nm
γ = 0◦

m = 6, 8
α = 0, 0.4
a = 1, 1
b = 1, 1
n1 = 100, 200
n2 = 40, 40
n3 = 40, 40
a1 = 30nm
a2 = 30nm
a3 = 45nm
γ = 0◦

m = 1.5, 4
α = 0, 0
a = 1, 1
b = 1, 1
n1 = 2, 2
n2 = 12, 2
n3 = 12, 2
a1 = 30nm
a2 = 10nm
a3 = 30nm
γ = 0◦

m = 3, 4
α = 0, 0
a = 1, 1
b = 1, 1
n1 = 1, 2
n2 = 6, 2
n3 = 6, 2
a1 = 30nm
a2 = 30nm
a3 = 30nm
γ = 0◦

m = 5, 4
α = 0, 0
a = 1, 1
b = 1, 1
n1 = 1, 2
n2 = 6, 2
n3 = 6, 2
a1 = 30nm
a2 = 30nm
a3 = 30nm
γ = 0◦

m = 7.3, 4
α = 0, 0
a = 5, 6
b = 1, 2
n1 = 5, 5
n2 = 5, 5
n3 = 5, 5
a1 = 30nm
a2 = 30nm
a3 = 30nm
γ = 0◦

m = 4, 24
α = 0, 0
a = 1, 1
b = 1, 1
n1 = 2, 2
n2 = 2, 8
n3 = 2, 8
a1 = 30nm
a2 = 30nm
a3 = 30nm
γ = 0◦

m = 4, 24
α = 0, 0
a = 1, 1
b = 1, 1
n1 = 2, 2
n2 = 2, 8
n3 = 2, 8
a1 = 30nm
a2 = 30nm
a3 = 30nm
γ = 90◦

Fig. 2. Super-shapes: The scattering patterns are calculated for detector distances
of 6 m and 18 m at a wavelength of 0.6 nm. The detector size is assumed to be
96 × 96cm2. The values in the last row are the input values of eq. 10 for r1 and
r2 (eqs. 16, 17). In the last example the incident beam direction is the x-directions
instead of the z-direction.
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Fig. 3. Top: simulation plot of the first super-shape example given in figure 2 in the
first column. Bottom: corresponding model parameters in SASfit for this super-
shape example producing the plot above.
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2. Size distributions

A standard task in analysing small-angle scattering data is the determination of the

pair-distance distribution function or a size distribution of particles with a known form

factor. Also desmearing of small-angle scattering data belongs to the same family of

problems. The size distribution can be determined if the particle shape is known. For

many particle shapes the scattering intensity or form factor can be calculated via an

analytical expression. The scattering intensity is then described by integrating the

squared form factor F 2(Q, s) over a distribution function N(s), where s describes the

size of the scatterers (Pedersen, 1997):

I(Q) =

∫ ∞
0

N(s) |F (Q, s)|2 ds (25)

To solve equation 25 often the size distribution is assumed to be an analytical dis-

tribution function such as LogNormal, Gaussian, Weibull or Schulz-Zimm with few

input parameters. These parameters are then optimised by performing the numerical

integration and applying a Levenberg-Marquardt strategy to solve a nonlinear least

squares problem (Breßler et al., 2015). This however assumes a priori knowledge about

the distribution function.

2.1. MetaLog distribution

A distribution function designed to be very flexible is the metalog distribution. The

quantile function of the metalog distribution Q(y) = Mk(y) is defined as (Keelin &

Powley, 2011; Keelin, 2016; Keelin et al., 2019)

Mk(y) =



a1 + a2 ln y
1−y , k = 2

a1 + a2 ln y
1−y + a3(y − 1

2) ln y
1−y , k = 3

a1 + a2 ln y
1−y + a3(y − 1

2) ln y
1−y + a4(y − 1

2), k = 4

Mk−1(y) + ak(y − 1
2)

k−1
2 , odd k ≥ 5

Mk−1(y) + ak(y − 1
2)

k
2
−1 ln y

1−y , even k ≥ 6

(26)
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and its PDF p(x) = mk(y) with x = Mk(y) reads as

mk(y) =



y(1−y)
a2

, k = 2(
a2

y(1−y) + a3

(
y− 1

2
y(1−y) + ln y

1−y

))−1

, k = 3(
a2

y(1−y) + a3

(
y− 1

2
y(1−y) + ln y

1−y

)
+ a4

)−1

, k = 4(
1

mk−1(y) + ak
k−1

2 (y − 1
2)(k−3)/2

)−1
, odd k ≥ 5(

1
mk−1(y) + ak

(
(y− 1

2
)
k
2−1

y(1−y) + (k2 − 1)(y − 1
2)( k

2
−2) ln y

1−y

))−1

, even k ≥ 6

(27)

The metalog PDF as defined above is an unbounded distribution. In case of describ-

ing a size distribution it needs to be bounded (Logit metalog) or at least semi-

bounded (bounded below, Log metalog). This can be easily done by a transformation

of z(x) = ln (x− bl) for a distribution with a lower bound bl or z(x) = ln
(
x−bl
bu−x

)
with

a lower bound bl and an upper bound bu, where z is then metalog-distributed. The

corresponding quantile functions and PDF read as

M log
k (y) =

{
bl + eMk(y), 0 < y < 1
bl, y = 0

(28)

mlog
k (y) =

{
mk(y)e−Mk(y), 0 < y < 1
0, y = 0

(29)

M logit
k (y) =


bl+bue

Mk(y)

1+eMk(y)
, 0 < y < 1

bl, y = 0
bu, y = 1

(30)

mlogit
k (y) =


mk(y)

(1+eMk(y))
2

(bu−bl)eMk(y)
, 0 < y < 1

0, y = 0
0, y = 1

(31)

2.2. Regularization

Instead of using an analytical description of the size distribution it would be more

desirable to use a discretization of the size distribution Ni at the positions si and

determine all Ni without any further assumptions.

Mathematically, these problems are equivalent to finding a solution for a Fredholm

integral of the first kind. These tasks are ill-posed problems by their nature and an
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additional regularization technique has to be included in the analysis to obtain a

stable solution (Tikhonov, 1943; Tikhonov et al., 1995). For small-angle scattering

this technique has been introduced by (Glatter, 1977) and later on taken over by

(Svergun et al., 1988) and (Hansen & Pedersen, 1991). To find a stable solution a

penalty term in the minimization procedure had to be included which introduced the

question how to properly weight this penalty term. An early discussion about this for

small-angle scattering can be found in (Svergun, 1992). However, the proper weighting

of the penalty has been treated also in other fields and a discussion can be found for

example in (Hansen & O’Leary, 1993; Hansen, 2000). Fredholm integrals, like the one

in eq. 25, can be written as linear matrix equations Ax = b by discretization. Hereby,

A is a M ×N matrix, b is a vector of length M and x is a solution vector of length

N . Their elements are given by

xj = N(sj)s
α
j (32)

bi = I(Qi) (33)

Ai,j = ∆sj s
−α
j |F (Q, sj)|2 (34)

s−αj ‖F (Q, sj)‖2 are known functions. The terms sαj and s−αj have been introduced to

obtain either a number size distribution (α = 0), volume weighted size distribution

(α = 3), or an intensity weighted size distribution (α = 6).

The solution vector x is then obtained by a least squares optimization. If the penalty

term L can also be linearized the problem can be reduced to solving the linear least

squares problem

χ2 = ||b−Ax||2w + λ2||Lx||2 (35)

where || . . . ||2w denotes the weighted sum of squared residuals and λ the regularization

parameter weighting the penalty term. Typically the linear least squares equation has

to be solved for many λ and a criteria of finding the proper regularization parameter

IUCr macros version 2.1.15: 2021/03/05
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has to be chosen (Hansen & O’Leary, 1993). For the linear penalty term typically the

identity matrix or the first or second order derivative operator are taken (Donatelli

& Reichel, 2014). Using the entropy with a positive prior as a penalty function the

solution vector is also automatically constrained to positive values. Maximum Entropy

methods have been used for small-angle scattering analysis, for example by (Hansen

& Müller, 1996; Hansen & Pedersen, 1991). (Steenstrup & Hansen, 1994) have shown

how to use Maximum Entropy methods without the positivity constraint.

2.3. Expectation Maximization

Expectation maximization (EM) algorithm is a procedure for designing iterative

methods for likelihood maximization. This framework has been explained first by

(Dempster et al., 1977). Applied to Fredholm integrals the method is an iterative

fixed point method for non-negative real valued functions (Vardi & Lee, 1993). The

method described there is equivalent to the Lucy-Richardson method (Richardson,

1972; Lucy, 1974) which is well known and widely used in image analysis.

Recently, expectation maximization (EM) methods for inverting Fredholm integrals

in small-angle scattering have been studied for obtaining size distribution information

(Yang et al., 2013; Benvenuto et al., 2016; Benvenuto, 2017; Bakry et al., 2019).

For inverting scattering data to pair distance distribution functions the condition of

non-negativity of the involved functions does not hold anymore as both the kernel

of the Fredholm integral as well as the pair distance distribution function can take

negative values. In (Chae et al., 2018) it has been shown, how the EM algorithm can be

reformulated for non-density functions, i.e. to functions which also can take negative

IUCr macros version 2.1.15: 2021/03/05



14

values. The EM iteration scheme or Lucy-Richardson inversion method reads as

x
(k+1)
j = x

(k)
j + ∆x

(k)
j = OEM

[
x

(k)
j

]
(36)

∆x
(k)
j = x

(k)
j


M−1∑
i=0

Aij(
M−1∑
m=0

Amj

) bi
N−1∑
n=0

Ainx
(k)
n

− 1

 (37)

where OEM is the fixed point operator. It has been shown, that the convergence is

assured since the algorithm is guaranteed to increase the likelihood at each iteration.

On the other side the algorithm is known to converge quite slow.

Fig. 4. Scattering curve evolution for increasing number of iterations for a constant
seed value (left) and random seed values (right).
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Fig. 5. Size distribution evolution for increasing number of iterations for a constant
seed value (left) and random seed values (right).

In figure 4 and 5 the progress of the EM-fixed point algorithm as a function of

the number of iteration steps is shown. The starting values of the size distribution are

assumed to be a constant (left) and random (right). In both cases the EM-scheme con-

verges to the same solution finally. However, assuming constant initial values the size

distribution looks relatively smooth until the goodness-of-fit parameter approaches

its final value in contrast to random seed values for the size distribution where the

initial roughness is never smoothed out by the EM scheme. In figure 6 the goodness-

of-fit parameters are shown as a function of iterations. The following three variants

of goodness-of-fit definitions are used: the classical χ2
r of reduced weighted sums of

squared residuals, the G-test which is directly related to the Kullback-Leibler diver-

gency (Kullback & Leibler, 1951) of two probability functions and the Pearson’s χ2
P -

test, which is obtained by a second order Taylor expansion of the natural logarithm
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around 1 of the G-test.

χ2
r =

N∑
i

1

N

(
Ith(qi)− Iexp(qi)

∆Iexp(qi)

)2
weighted sum of
squared residuals

(38)

χ2
P =

∑
i

(Ith(qi)− Iexp(qi))
2

Ith(qi)
Pearson’s χ2-test (39)

G = 2
∑
i

Iexp(qi) ln

(Iexp(qi)

Ith(qi)

)
G-test (40)

with Iexp(qi) = Iexp(qi)/
∑
i Iexp(qi) and Ith(qi) = Ith(qi)/

∑
i Ith(qi). Furthermore,

the roughness of the resulting size distribution is plotted which has been described by

either the sum of the squared first or second derivatives of all radii, i.e.
∑
i |dN(Ri)/dRi|2

or
∑
i

∣∣d2N(Ri)/dR
2
i

∣∣2.

Fig. 6. Dependency of goodness-of-fit and roughness on number of iterations for a
constant seed value (left) and random seed values (right).

The roughness parameter and the goodness-of-fit parameter are then combined in

figure 7 on loglog-scale showing a similar behaviour as the L-curve in regulariza-

tion techniques solving ill-posed problems. After a certain number of iterations the

goodness-of-fit only improves infinitesimal but the roughness still continues to grow

for a quite large number of iterations before it reaches the fixed point.
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Fig. 7. L-curves showing the dependency of the roughness value over the G-test
goodness-of-fit value for a constant seed value (left) and random seed values (right).
The goodness-of-fit value (x-axis) progresses from right to left (getting smaller) with
each iteration of the fitting routine.

Even though the fixed point of the EM operator does not seem to depend on the

initialization of the starting values, it will depend on the actual noise in the data, i.e.

if the curve would be measured a second time with similar statistics, the two curves

would differ within their noise level and the EM fixed point would then be slightly dif-

ferent which is caused by the ill-posed nature of the Fredholm integral. Two strategies

for overcoming this problem have been tested. One strategy introduces a smoothing

operator into the iteration loop and a second strategy introduces a classical regulariza-

tion term (aka. penalty) in the EM scheme, which both then require a determination

of the smoothing or regularization parameter.

Smoothing Operator In SASfit the smoothing operation suggested by (Eggermont,

1999; Eggermont & LaRiccia, 1995; Byrne & Eggermont, 2011) has been implemented.

They suggest to add before or/and after each normal EM step (eq. 36) an additional
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smoothing step so that the EM algorithm takes the form.

x
(k+1/2)
j = x

(k)
j + ∆x

(k)
j (41)

x
(k+1)
j =

M−1∑
i=0

S
(h)
ij x

(k+1/2)
j (42)

with the smoothing operator

S(h) =



1− h h 0 · · · 0 0
h 1− 2h h · · · 0 0
0 h 1− 2h · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1− 2h h
0 0 0 · · · h 1− h


(43)

whereby 0 < h / 0.3. In case of a double smoothing they suggest a nonlinear smooth-

ing operator before each EM step so that a complete smoothed EM step reads as

x
(k+1/3)
j = exp

(
M−1∑
i=0

S
(h)
ij log

(
x

(k)
j

))
(44)

x
(k+2/3)
j = x

(k+1/3)
j + ∆x

(k+1/3)
j (45)

x
(k+1)
j =

M−1∑
i=0

S
(h)
ij x

(k+2/3)
j (46)
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Fig. 8. Roughness and goodness-of-fit parameters as well as the resulting volume
distribution N(R)R3 as a function of iterations for a constant seed value (top) and
random seed values (bottom) for a large smoothing parameter h = 0.3 leading to
χ2
r = 15.3.
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Fig. 9. Roughness and goodness-of-fit parameters as well as the resulting volume
distribution N(R)R3 as a function of iterations for a constant seed value (top) and
random seed values (bottom) for an optimum smoothing parameter h = 1.87×10−4

leading to χ2
r = 1.

Fig. 10. Optimum smoothing parameter h given by the corner of the L-curve.
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Fig. 11. The smoothing parameters have been obtained by the corners of the L-curves
in fig. 10 and the solution of the EM iteration scheme with double smoothing is
compared with the exact solution.

The proper choice of the parameter h arises and its selection might follow similar

strategies than for the regularization parameter in ill-posed problems. In contrast

to regularization methods, in this iteration scheme there is not directly a penalty

term involved such as measuring the roughness of the solution by summing up the

first or second derivatives of the solution vector or by measuring the entropy of the

solution vector as in maximum entropy methods. However, these quantities can easily

be calculated from the solution vector. Figure 7 shows the logarithm of a roughness

term, namely the sum of 1st and 2nd derivatives of the resulting size distribution and

the entropy against the goodness-of-fit parameter from eq. 40, namely the “G-test”

parameter. The optimum smoothing parameter has been defined via the corner of

the L-curve defined by (log(G), log(||L̂x||2)), with L̂ being the first or second-order

discrete derivative operator. for example given in (Donatelli & Reichel, 2014) and

by (log(G), log(S)) with S being the entropy defined in eq. 47. The corners were
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determined numerically as they are defined by having the maximum curvature. They

are marked in fig. 10 by a symbol. The whole analysis does not make use of the

uncertainties of the measured intensities. If the error bars are trustable and the model

for the form factor is correct the weighted sum of squared residuals should be χ2
r = 1.

This can also be used as a condition for determining the smoothing parameter h. In

the case of the present analysed data both strategies yield similar results as can be

seen in fig. 11.

Penalty function The Lucy-Richardson method (Richardson, 1972; Lucy, 1974)

has been extended for an additional penalty function, namely the entropy (Lucy,

1994). The maximum entropy penalty can be introduced in the iteration algorithm

by knowing either a fixed or assuming an adaptive prior for the solution vector. The

entropy S is given by

S =
N−1∑
j=0

−xj ln (xj/mj) + xj −mj (47)

with m being the prior estimate of x. The update scheme in eq. 36 has to be extended

as

x
(k+1)
j = x

(k)
j + ∆x

(k)
j + ∆s

(k)
j = OEM,ME,const

[
x

(k)
j

]
(48)

with

∆x
(k)
j = x

(k)
j


M−1∑
i=0

Aij(
M−1∑
m=0

Amj

) bi
N−1∑
n=0

Ainx
(k)
n

− 1

 (49)

∆s
(k)
j = λx

(k)
j

− ln
xj
mj

+
1∑N−1

j=0 x
(k)
j

N−1∑
j=0

x
(k)
j ln

x
(k)
j

mj

 (50)

in case of a known prior. If a prior is not known a constant prior can be chosen. How-

ever, even if no model for the prior is known, one can try to construct one adaptively

according to Horne (Horne, 1985) by applying for example a Gaussian point spread
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function to the actual solution and using this as a prior for the next iteration step. In

this case the update scheme changes to

x
(k+1)
j = x

(k)
j + ∆x

(k)
j + ∆s

(k)
j = OEM,ME,adaptive

[
x

(k)
j

]
(51)

∆x
(k)
j = x

(k)
j

M−1∑
i=0

Aij(∑M−1
m=0 Amj

) bi∑N−1
n=0 Ainx

(k)
n

− 1

 (52)

∆s
(k)
j = λx

(k)
j

 1∑N−1
j=0 x

(k)
j

N−1∑
j=0

x
(k)
j ln

x
(k)
j

m
(k)
j

− ln
xj

m
(k)
j

− 1 +
N−1∑
i=0

Πij
x

(k)
i

m
(k)
i

 (53)

m
(k)
i =

N−1∑
j=0

Πijx
(k)
j (54)

with a smoothing operator Πij for the prior:

Πij =
1

c
exp

(
−(i− j)2

2σ2

)
, (55)

a normalization constant c =
∑
j Πij and a σ2 typically between 1

2 and 2. For large

values of σ2 the results converge to those of a constant prior. If the values are too

small the regularization is suppressed as the prior converges to the kth iteration step.

The optimal regularization parameter λ can be determined similar to the previous

section by the corner of the L-curve. The L-curves for both a constant and adaptive

prior are shown in fig. 12 using the same data shown in fig. 4. The Lagrange parameter

optimum in the corner is marked by a symbol. The corresponding size distributions

are shown in fig. 13 together with the exact solution and for a Lagrange parameter

leading to χ2
r = 1. The L-curves in fig. 12 show that the G-test parameter for the

constant prior varies over several orders of magnitudes whereas the adaptive prior,

even with a Lagrange parameter far away from its optimal value leads to a reasonable

good result. Therefore, the L-curve shows a much smaller range on the x-axis for the

adaptive prior.
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Fig. 12. Determine the optimal smoothing parameter λ by the corner of the L-curve
which is given by the smallest radius of curvature (Menger radius). Left: constant
prior, Right: adaptive prior

Fig. 13. The smoothing parameters that were obtained by the corners of the L-curves
in fig. 12 and the solution of the EM iteration scheme using Maximum Entropy
term with constant prior (left) and adaptive prior (right) is compared with the
exact solution as well as for a Lagrange parameter leading to a weighted sum of
squared residuals with χ2

r = 1.

Finding fixed points efficiently There are several very efficient algorithms for

increasing the convergence rate of contractive fixed point operators:

Lewitts method Lewitt et al. (Lewitt & Muehllehner, 1986) have suggested to

increase the convergence rate by introducing an over-relaxation parameter in the iter-
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ation loop:

x
(k+1)
j = x

(k)
j + λ(k)∆x

(k)
j (56)

where λ(k) is the over-relaxation parameter (λ(k) > 1) whose purpose is to accelerate

the iterative process, and whose value is not so large as to violate the non-negativity

condition x
(k+1)
j > 0. To ensure that the over-relaxation of negative corrections to the

solution vector does not decrease the value of any solution vector component below

zero they suggest the following algorithm: first a pseudo-relaxation parameter µ
(k)
j is

calculated where

µ
(k)
j =


∞, if x

(k)
j ≥ 0∣∣∣∣∣ x(k)j

∆x
(k)
j

∣∣∣∣∣ , otherwise.
(57)

Then they defined a critical relaxation parameter as follows:

λ̂(k) = min
j
µ

(k)
j (58)

Finally the over-relaxation parameter λ(k) was chosen according to

λ(k) = min
[(
λ̂(k) − 1

)
/2, λmax

]
(59)

with λmax ' 4 so that 1 ≤ λ(k) ≤ λmax.

Anderson acceleration Another more efficient method to accelerate the con-

vergence rate of the EM iteration scheme is the so called Anderson acceleration

(Anderson, 1965) for solving fixed point problems [see also (Walker & Ni, 2011; Toth

& Kelley, 2015)], it has also been suggested for the EM iteration scheme (Henderson

& Varadhan, 2019). In SASfit several fixed point accelerations are supplied by making

use of the sundials library (Hindmarsh et al., 2005). However, only the Anderson accel-

eration speeds up the fixed point iterations in a reliable way whereas all the others
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such as GMRES (Saad & Schultz, 1986), FGMRES (Saad, 1993), Bi-CGStab (van der

Vorst, 1992) or TFQMR (Freund, 1993) become unstable and do not converge.

Biggs-Andrews method In (Biggs & Andrews, 1997; Biggs & Andrews, 1995;

Biggs, 1998; Wang & Miller, 2014; Jiang et al., 2017) an acceleration process has been

suggested based on vector extrapolation which does not require an extra evaluation

of the fixed point operator OEM in eq. 36. The method just needs to remember one or

two previous solution vectors for calculating either the first or additionally the second

derivative for guessing the next virtual solution vector, which is then used as an input

vector for the next step of the fixed point iteration. The algorithm is described in the

pseudo-code listing of fig. 14. The convergence behaviour of the different acceleration

schemes are compared in fig. 15. Quite good acceleration has been achieved by the

Biggs-Andrews method as well as by the Anderson acceleration, whereas other classical

methods such as GMRES, Bi-CGSab or TFQMR failed. The Picard iteration scheme

and over-relaxation method need orders of magnitudes more iterations to reach the

true fixed point solution. The preferred acceleration scheme therefore becomes the

Biggs-Andrews method.
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1: procedure update vectors(g(n−2),g(n−1),x(n+1),x(n),x(n−1),x(n−2))
2: g(n−2) ← g(n−1)

3: g(n−1) ← x(n+1) − x(n)

4: x(n−2) ← x(n−1)

5: x(n−1) ← x(n)

6: x(n) ← x(n+1)

7: end procedure
8: . Acceleration of the fixed point operator O[x] = x
9: procedure Biggs Andrews acceleration(O[], x(0), o)

10: α← 0
11: x(n) ← x(0)

12: x(n+1) ← O[x(n)]
13: update vectors(g(n−2),g(n−1),x(n+1),x(n),x(n−1),x(n−2))
14: x(n+1) ← O[x(n)]
15: update vectors(g(n−2),g(n−1),x(n+1),x(n),x(n−1),x(n−2))
16: y(n) ← x(n+1)

17: while (O[] not converged) do
18: . α needs to be updated first

19: α =
(g(n−1))

T
g(n−2)

(g(n−2))
T
g(n−2)

20: α← max(min(α, 1), 0)
21: x(n+1) ← O[y(n)]
22: . guess of next virtual step y(n) calculated up to oth-order
23: if α = 0 ∧ o = 0 then
24: y(n) ← x(n)

25: else if α > 0 ∨ o = 1 then
26: y(n) ← x(n) + α

(
x(n) − x(n−1)

)
27: else
28: y(n) ← x(n)x(n) + α

(
x(n) − x(n−1)

)
+ α2

2

(
x(n) + 2x(n−1) − x(n−2)

)
29: end if
30: . now all the other temporary vectors are updated
31: update vectors(g(n−2),g(n−1),x(n+1),x(n),x(n−1),x(n−2))
32: end while
33: end procedure

Fig. 14. Pseudo-code for Biggs-Andrews vector extrapolation acceleration of order
o = 0, 1, 2.
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Fig. 15. Convergence behaviour of selected acceleration schemes compared to the non-
accelerated Picard iteration.

3. Structure factors from solving Ornstein-Zernike equations

The central part of the SASfit algorithm to obtain a structure factor from a given pair

interaction potential performs an iterative solution of the Ornstein-Zernike equation

(Ornstein & Zernike, 1914). The theoretical background can be found in great detail

in (Nägele, 2004; Borowko et al., 2000; Hansen & McDonald, 2013; Bomont, 2008;

Caccamo, 1996; Likos, 2001). The Ornstein-Zernike equation reads

h(r12) = c(r12) +

∫
c(r13)ρ(r3)h(r32)dr3 + · · · (60)
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where h(r12) is the total correlation function, c(r12) the direct correlation function

(direct effect of particle 1 on particle 2), c(r13) the direct correlation function describ-

ing the effect of particle 1 on particle 3 which influences particle 2, and ρ the particle

number density of the colloids, molecules, or atoms that form the liquid. If the fluid

is uniform and isotropic, the Ornstein–Zernike relation becomes

h(r) = c(r) + ρ

∫
c(
∣∣r− r′

∣∣)h(r′)dr′ (61)

= c(r) + γ(r) (62)

The basic idea of this equation is that the total correlation between positions of two

particles is a combination of their direct and indirect (through neighboring particles)

interactions. The first contribution to h(r) is the direct correlation function c(r) that

represents the correlation between a particle of a pair with its closest neighbor sep-

arated by a distance r. The second contribution is the indirect correlation function

γ(r), which represents the correlation between the selected particle of the pair with

the rest of the fluid constituents.

g(r) is known as the radial or pair distribution function, which measures the prob-

ability that given a particle at the origin, another particle of the fluid can be found at

a distance r from it. When the distance separating a pair of particles tends to infinity,

the correlations vanish and g(r) tends to 1. This means that the total correlation func-

tion defined as h(r) = g(r)−1 tends to 0. The Fourier transform F{} of g(r) and h(r)

are directly related to the structure factor S(q) that is experimentally measurable by

x-ray or neutron scattering

S(q) = 1 + ρ

∫
[g(r)− 1] exp (−ıq · r) dr (63)

and
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S(q) = 1 + ρh̃(q) (64)

where h̃(q) = F {h(r)} is the Fourier transform of the total correlation function

h(r), so that

h̃(q) =

∫
h(r) exp (−ıq · r) dr (65)

Via inverse Fourier transform F−1{} of the structure factor the pair correlation

function is obtained

ρ [g(r)− 1] = F−1 {S(q)− 1} =
1

(2π)3

∫
(S(q)− 1) exp (ıq · r) dq (66)

As for g(r) also the direct correlation function c(r) can be, in principle, derived

from the experiment as

ρc(r) =
1

(2π)3

∫ (
1− 1

S(q)

)
exp (ıq · r) dq (67)

or

S(q) =
1

1− ρc̃(q)
(68)

By Fourier transformation of eq. 61, one obtains

h̃(q) =
c̃(q)

1− ρc̃(q)
(69)

where c̃(q) = F {c(r)} is the Fourier Transform of c(r). In order to determine the

two correlation functions h(r) and c(r) for a given pair potential u(r), eq. 61 must be
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supplemented by an auxiliary closure relation. Furthermore the Fourier transform of

eq. 62 in combination with eq. 69 allows to write the Fourier transform of the indirect

correlation function as

F {γ(r)} = γ̃(q) = h̃(q)− c̃(q) =
ρc̃2(q)

1− ρc̃(q)
(70)

The closure is not complete as long the bridge function is unknown. Even though the

bridge function is exactly defined the function is an unknown function of inter-particle

distance and only approximations can be given. The direct correlation function can

be written in terms of the indirect correlation function, the interaction potential and

the bridge function as

c(r) = exp [−βu(r) + γ(r) +B(r)]− γ(r)− 1 (71)

= g(r)− γ(r)− 1

and h(r) + 1 = g(r) = exp [−βu(r) + γ(r) +B(r)] (72)

where u(r) is the pair interaction potential, β = 1/(kBT ) the inverse temperature,

with kB being Boltzmann’s constant, T is the absolute temperature, γ(r) being the

indirect correlation function and ρ is the number density of the molecules or atoms

that form the liquid. B(r) is the bridge function. The analytic expression of B(r)

is, in general, unknown. Unfortunately, the bridge function has to be approximated

in practice. Though a number of theoretical and simulation procedures have been

derived in recent years in order to get an approximate estimate of B(r) for different

fluid models, the exact bridge function is not known for any system.

The easiest algorithm for solving the Ornstein Zernike (OZ) equation 61 together

with the closure equation 71 is direct iteration using fast Fourier transformation [see

e.g. (Homeier et al., 1995)]. The solution of the OZ equations can be treated either
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as a fixed point problem for the unknown function γ(r), so that TOZ
f (γ) = γ or as a

multidimensional root finding problem FOZ
r (γ) = TOZ

f (γ)− γ = 0. In SASfit the fixed

point problem TOZ
f (γ) = γ is implemented as:

1. Set a starting value for γ(r), e.q. set γ(r) ≡ 0

2. Calculate a bridge function. Many different theories how to calculate the bridge

function have been published, where the HNC, PY, RMSA, HMSA, RY are

the most used ones. The bridge function is often expressed in terms of the

known potential u(r) and the indirect correlation function γ(r) which needs to

be determined.

3. Calculate the direct correlation function according to eq. 71.

4. Calculate the Fourier transform c̃(q) of the direct correlation function.

5. Use eq. 70 to get γ̃(q).

6. Calculate the inverse Fourier transform of γ̃(q) to get the new guess for γ(r).

This algorithm for solving the Ornstein-Zernike equation iteratively has to perform

two Fourier transforms:

c(r)
F{}−−→ c̃(q) (in step 4) (73)

γ̃(q)
F−1{}−−−−→ γ(r) (in step 6) (74)

As we assume that the system is isotropic, i.e. c(r) and γ(r) are only functions of

the modulus of |r| = r, the Fourier transforms can be written as

c̃(q) =

∫
c(r) exp (−ıq · r) dr =

∫ ∞
0

4πr2c(r)
sin(qr)

qr
dr (75)

γ(r) =
1

(2π)3

∫
γ̃(q) exp (ıq · r) dq =

1

(2π)3

∫ ∞
0

4πq2γ̃(q)
sin(qr)

qr
dq (76)
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To calculate these transforms numerically on a discrete grid of points, the integration

has to be substituted by a summation. Hereby,
∫∞

0 dr is replaced by
∑Np−1
j=0 ∆r, rj =

(j+ 1)∆r, qj = (j+ 1)∆q, and
∫∞

0 dq is replaced by
∑Np−1
j=0 ∆q. The step width ∆r in

real space has to be defined by the user as well as the number of grid points Np. The

step width in reciprocal space is than obtained by ∆q = π
(Np+1)∆r . It is important to

mention that the values of the first elements of the arrays ri and ki equal ∆r and ∆q,

respectively (r0 = ∆r, q0 = ∆q):

c̃i =
4π∆r2

(i+ 1)∆q

Np−1∑
j=0

cj(j + 1) sin

(
π(j + 1)(i+ 1)

Np + 1

)
(77)

γi =
1

(2π)3

4π∆q2

(i+ 1)∆r

Np−1∑
j=0

γ̃j(j + 1) sin

(
π(j + 1)(i+ 1)

Np + 1

)
(78)

For calculating the Fourier transformation the library FFTW for fast Fourier trans-

formation (Frigo & Johnson, 2005; Frigo & Johnson, 1997) has been used (source code

available at http://www.fftw.org). The library supplies a discrete sin-transformation

(type-I DST) named FFTW_RODFT00 which is doing the transformation:

Yk = 2

Np−1∑
j=0

Xj sin

(
π(j + 1)(k + 1)

Np + 1

)
(79)

The unnormalized inverse of FFTW_RODFT00 is FFTW_RODFT00 itself. The same routine can

be used for both transformations.

For the fixed point problem TOZ
f (γ) = γ several iteration schemes are implemented.

Tests have shown, that no prediction can be made which one converges fastest or

in case of e.g. very high volume or strong attraction, converges at all. Next to some

simple iteration schemes also a the very efficient Anderson Acceleration for fixed-

point iteration (Anderson, 1965; Walker & Ni, 2011; Toth & Kelley, 2015) has been

implemented. Besides these algorithms also several very efficient nonlinear system
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solvers based on Newton-Krylov solver technology, like GMRES (Generalized Min-

imal RESidual) (Saad & Schultz, 1986; Kelley, 2003), FGMRES (Flexible General-

ized Minimal RESidual) (Saad, 1993), Bi-CGStab (Bi-Conjugate Gradient Stabilized)

(van der Vorst, 1992; Kelley, 2003), and TFQMR (Transpose-Free Quasi-Minimal

Residual) (Freund, 1993; Kelley, 2003) are supplied. These nonlinear system solvers

are made available through the ’kinsol’ library which is part of the SUNDIALS pack-

age (Hindmarsh et al., 2005) available at https://computing.llnl.gov/projects/

sundials. Test have shown that either the Anderson acceleration, GMRES or FGM-

RES seems to be the most efficient algorithm to solve the Ornstein-Zernike equations

with a minimum number of calls to the procedure evaluating the self consistent opera-

tor FOZ
r (γ) or TOZ

f (γ). The best choice for the iteration method depends often on the

problem, i.e. the type of closure and the potential and also on the volume fraction.

Therefore, all methods mentioned above are still available in the program which might

change after getting some more experience with them.

4. Parameters of numerical algorithms

Many numerical algorithms and their parameters in SASfit can be adjusted in detail

if the particular application requires it. For example, the more efficient and flexible

routine sasfit cubature for numerical integrations in multiple dimensions and a

routine for optimized spherical averages (sasfit orient avg) was implemented. For

both routines, an algorithm can be chosen by the user in a dedicated menu shown

in figure 16 along with the respective parameters. Each integration strategy is also

supplied as a multiple integration routine. Several of them are just nested calls and

only few are designed for multidimensional integration. Because the menu interface

should reflect this better, its revision is planned for the future.
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Fig. 16. A dedicated menu for choosing a numerical integration routine with its respec-
tive parameters especially for multi-dimensional integrations (sasfit cubature

routine) and spherical averages (sasfit orient avg routine). This menu can be
found in the fit or simulation window menu bar under ’Options’ → ’Customize’.
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