Electronic Supplementary Material

for

Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis of RILEM TC 281-CCC

Gregor J. G. Gluth^{1,*}, Xinyuan Ke², Anya Vollpracht³, Lia Weiler³, Susan A. Bernal⁴, Martin Cyr⁵, Katja Dombrowski-Daube⁶, Dan Geddes⁷, Cyrill Grengg⁸, Cassandre Le Galliard⁷, Marija Nedeljkovic⁹, John L. Provis⁷, Luca Valentini¹⁰, Brant Walkley¹¹

¹Division 7.4 Technology of Construction Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

² Department of Architecture and Civil Engineering, The University of Bath, Bath, United Kingdom

³ Institute of Building Materials Research, RWTH Aachen University, Aachen, Germany

⁴ School of Civil Engineering, The University of Leeds, Leeds, United Kingdom

⁵ Laboratoire Matériaux et Durabilité des Constructions (LMDC), Université de Toulouse, Toulouse, France

⁶ Institut für Bergbau und Spezialtiefbau, Technische Universität Bergakademie Freiberg, Freiberg, Germany

⁷ Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom

⁸ Institute of Applied Geosciences, Graz University of Technology, Graz, Austria

⁹ Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

¹⁰ Department of Geosciences, University of Padua, Padua, Italy

¹¹ Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom

* Corresponding author; e-mail: gregor.gluth@bam.de

This PDF file includes:

Supplementary Figures S1-S24

Supplementary Figure S1. Carbonation coefficients obtained under conditions approximating natural carbonation (indoor/sheltered) *versus w*/CaO ratio, including the data point for the MK-based AAC. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S2. Carbonation coefficients obtained under conditions approximating natural carbonation (indoor/sheltered) *versus w/*(CaO + MgO_{eq}) ratio. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S3. Carbonation coefficients of the GGBS-based AAC obtained under conditions approximating natural carbonation (indoor/sheltered) *versus w/*(CaO + MgO_{eq}) ratio. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S4. Carbonation coefficients of the BCC obtained under conditions approximating natural carbonation (indoor/sheltered) *versus w/*(CaO + MgO_{eq}) ratio.

Supplementary Figure S5. Carbonation coefficients of the BCC obtained under conditions approximating natural carbonation (indoor/sheltered) versus w/(CaO + MgO_{eq} + Na₂O_{eq} + K₂O_{eq}) ratio.

Supplementary Figure S6. Carbonation coefficients of the BCC obtained under conditions approximating natural carbonation (indoor/sheltered) *versus w/b* ratio.

Supplementary Figure S7. Carbonation coefficients obtained under conditions approximating natural carbonation (indoor/sheltered) *versus w/b* ratio. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S8. Carbonation coefficients obtained under conditions approximating natural carbonation (indoor/sheltered) *versus* binder content. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S9. Carbonation coefficients obtained under conditions approximating natural carbonation (indoor/sheltered) *versus* paste content. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S10. Carbonation coefficients of the AAC obtained under conditions approximating natural carbonation (indoor/ sheltered) *versus* activator content. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S11. Carbonation coefficients of the AAC obtained under conditions approximating natural carbonation (indoor/ sheltered) *versus* activator modulus (molar SiO₂/M₂O ratio). *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S12. Carbonation coefficients of the BCC obtained under conditions approximating natural carbonation (indoor/sheltered) *versus* Portland clinker content.

Supplementary Figure S13. Carbonation coefficients obtained with a CO₂ concentration of 1 % (accelerated conditions) *versus w*/CaO ratio. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S14. Carbonation coefficients obtained with a CO_2 concentration in the range 3–5 % (accelerated conditions) *versus w*/CaO ratio.

Supplementary Figure S15. Carbonation coefficients obtained with a CO₂ concentration in the range 10–100 % (accelerated conditions) *versus w*/CaO ratio.

Supplementary Figure S16. Carbonation coefficients obtained with a CO_2 concentration of 1 % (accelerated conditions) *versus w/*(CaO + MgO_{eq}) ratio. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S17. Carbonation coefficients obtained with a CO_2 concentration in the range 3–5 % (accelerated conditions) *versus w/*(CaO + MgO_{eq}) ratio.

Supplementary Figure S18. Carbonation coefficients obtained with a CO_2 concentration in the range 10–100 % (accelerated conditions) *versus w/*(CaO + MgO_{eq}) ratio.

Supplementary Figure S19. Carbonation coefficients obtained with a CO₂ concentration of 1 % (accelerated conditions) *versus w/b* ratio. *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S20. Carbonation coefficients obtained with a CO_2 concentration in the range 3–5 % (accelerated conditions) *versus w/b* ratio.

Supplementary Figure S21. Carbonation coefficients obtained with a CO_2 concentration in the range 10–100 % (accelerated conditions) *versus w/b* ratio.

Supplementary Figure S22. Carbonation coefficients obtained with a CO₂ concentration of 1 % (accelerated conditions) *versus* activator modulus (molar SiO₂/M₂O ratio). *Error bars* represent the estimated standard deviations of the results obtained in the round robin testing programme by RILEM TC 247-DTA.

Supplementary Figure S23. Carbonation coefficients obtained with a CO_2 concentration in the range 3–5 % (accelerated conditions) *versus* activator modulus (molar SiO₂/M₂O ratio).

Supplementary Figure S24. Carbonation coefficients obtained with a CO_2 concentration in the range 10–100 % (accelerated conditions) *versus* activator modulus (molar SiO₂/M₂O ratio).