
Vol.:(0123456789)

Journal of Mathematical Chemistry (2021) 59:575–596
https://doi.org/10.1007/s10910-020-01201-7

1 3

ORIGINAL PAPER

Analyzing Raman spectral data without separabiliy 
assumption

Konstantin Fackeldey1,2   · Jonas Röhm2 · Amir Niknejad3 · Surahit Chewle1,4 · 
Marcus Weber1

Received: 2 April 2020 / Accepted: 30 November 2020 / Published online: 23 January 2021 
© The Author(s) 2021

Abstract
Raman spectroscopy is a well established tool for the analysis of vibration spec-
tra, which then allow for the determination of individual substances in a chemical 
sample, or for their phase transitions. In the time-resolved-Raman-sprectroscopy the 
vibration spectra of a chemical sample are recorded sequentially over a time inter-
val, such that conclusions for intermediate products (transients) can be drawn within 
a chemical process. The observed data-matrix M from a Raman spectroscopy can 
be regarded as a matrix product of two unknown matrices W and H, where the first 
is representing the contribution of the spectra and the latter represents the chemi-
cal spectra. One approach for obtaining W and H is the non-negative matrix fac-
torization. We propose a novel approach, which does not need the commonly used 
separability assumption. The performance of this approach is shown on a real world 
chemical example.

Keywords  Non-negative matrix factorization · NMF · Raman spectra · Separability 
condition · PCCA+

1  Introduction

In Raman spectroscopy vibrational spectra can be detected. Analysis of those spec-
tra provides comprehension about chemical and physical properties of molecular 
structures, which is important in different research areas in biology, medicine and 
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industry [1–3]. Nowadays, Raman spectrometers are capable of generating spectral 
recordings down to the femto second time scale. Such time-resolved Raman spec-
troscopy allows—besides spectral recordings of stable substances—for monitoring 
of events like intra molecular rearrangements and chemical reactions [4]. We thereby 
obtain measured Raman spectra as a function of time, which depicts both main 
characteristics of an observed process: On the one hand, each measured spectrum 
is a fingerprint of compounds and therefore represents the intrinsic spectra of the 
individual species or molecular states involved in the reaction. On the other hand, 
the relative contributions of the involved spectra to each measured spectrum reflect 
the momentary composition of the sample at the corresponding time. Through the 
full series of generated spectra we hence draw conclusions about the kinetics of 
the underlying reaction process. Consequently, the central task about time-resolved 
Raman data analysis is deciphering the series of measured spectra with respect to 
the individual component spectra and their temporal evolution.

This article is organized as follows. In Sect.  2, we give an overview of NMF 
approaches and algorithms known so far. In particular we present the separable NMF 
method, which found application in the approach for spectral analysis in [5]. Our 
new NMF approach, as well as the algorithmic details of the corresponding compu-
tational method, are introduced in Sect. 3. In Sect. 4, we present numerical results 
of our novel method. On the one hand, we thereby discuss recovery results for syn-
thetic measurement data with increasing interference of the component spectra and 
presence of measurement noise. On the other hand, we verify the influence of the 
single components of our adaptable objective function through recovery results for 
certain choices of weighting coefficients.

2 � Non‑negative matrix factorization (NMF)

From a mathematical point of view the non-negative measurement matrix M, which 
contains the discretized time-resolved Raman spectra, can be expressed as

where the columns of W represent the component spectra and H the course of the 
relative concentrations. A factorization of M into the two matrices W and H is, from 
the chemical point of view interesting: the matrix W gives us the substances being 
involved in the reaction and the matrix H allows inference on the speed of the reac-
tion. Note, that this is not possible by considering only one row or column of the 
matrix M. Summing up, time-resolved Raman spectral data can be modeled as the 
product of two non-negative matrices representing the single component spectra and 
the underlying reaction kinetics (Fig. 1).

Recovering these factorization matrices, only given the measured time-resolved 
spectra, requires non-negative matrix factorization (NMF). In general, NMF is an 
utile tool for the analysis of high-dimensional data and therefore a relevant topic in 
present-day research in many scientific fields [6–8]. Besides detecting a compressed 

(1)M = WH W ∈ ℝ
n×r
+

,H ∈ ℝ
r×m
+

,
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representation, NMF delivers insights into structure and features of the given data 
by extracting easily interpretable factors.

The goal of nonegative matrix factorization (NMF) (see e.g. [8, 9] and the refer-
ences therein) of a data matrix M as input, is to solve an optimization problem in 
order to find matrices W and H with non-negative entries such that the product WH 
is the best possible approximation of our non-negative input data matrix M. NMF is 
a linear dimension reduction technique for a non-negative data set, which means that 
the corresponding matrix of data points is approximated by a linear combination of 
the columns of matrix W.

Mathematical background The columns of W form a basis for the column space 
of matrix M and the columns of matrix H are the weights to approximate the data 
points. The NMF problem is NP-hard [10], due to the non-negative constraints on 
W and H. Moreover the solution of an NMF Problem is generally not unique. To see 
this, assume that W > 0 , H > 0 , and that there exists a matrix D such that WD > 0 
and D−1H > 0 then M = (WD)(D−1H) which shows that the NMF is not unique.

In the absence of the positivity constraints, the problem could be solved effi-
ciently by using methods such as truncated singular value decomposition (TSVD) 
[11]. One of the common approaches for solving the NMF problem is the alternat-
ing least squares approach [12, 13]. In this approach, one of the two matrices is 
fixed, for example H, and then we find the corresponding optimal solution for W, 
which is a convex optimization problem with non-negativity constraints. Then alter-
nate between W and H. If the matrix M satisfies a separability condition, then we can 
solve the NMF problem efficiently. By definition a matrix M is r-separable if there 
exists a non-negative factorization (exact factorization) of rank r, where each col-
umn of W is equal to a column of M. Meaning that each column of W, being a basis 
for the column space of M, appears somewhere in the data matrix M as its column.

Geometrically, the columns of W are the vertices of the convex hull of the 
columns of M. The separability condition means that all columns of M can be 

Fig. 1   Interpolated visualization of the measurement data matrix M. The matrix H represents the “nor-
med” intensity which we term relative concentration. The matrix W represents the wavenumber
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reconstructed by using a convex combination of r columns of W [14, 15]. This is 
only possible if the columns of M form a simplex which is spanned by r columns of 
M. This is not necessarily the case.

NMF in the context of measurement data Given a component-wise non-negative 
matrix M of dimension n × m and an integer r > 0 , NMF determines likewise com-
ponent-wise non-negative matrices W and H of dimensions n × r and r × m , respec-
tively, such that M = WH . Generally, integer r is denoted as rank of the factoriza-
tion. Assuming M to represent  m measurements of  n non-negative variables, we 
interpret the NMF task as follows: we aim to identify r ingredients which allow for 
recovery of all m measurements by composition according to respective contribu-
tions. The ingredients then are reflected by the columns of factorization matrix W, 
while the columns of H contain the corresponding mixing coefficients.

In practice, considering measured data, and therefore allowing noise or other 
forms of data uncertainty, generally rules out the existence of an exact NMF in 
terms of M = WH . Thus, from now on, we want to compute component-wise non-
negative matrices W and H such that WH is an approximation of M.

In the context of Raman data spectral analysis, focusing on the non-negativity of 
involved matrices becomes reasonable through the model for time-resolved Raman 
spectral data of Luce et al. [5]. They introduce an approach to express a series of 
spectral recordings of a chemical reaction (matrix M) as the matrix product of the 
component spectra (matrix W) and the evolution of relative concentrations of these 
reaction components (matrix H). Based on this model and synthetic spectral data, 
which satisfy the recently much-cited separability assumption, the authors of [5] 
furthermore present an algorithm to detect a factorization WH = M using separable 
NMF methods.

Inspired by their results, we propose a novel method, which does not rely on the 
separability assumption, since in the context of a spectral analysis this assumption 
is very restrictive. The separability assumption means that the convex hull of the 
columns of M is given by the column vectors of W. This is not necessarily given in 
real-world data. In other words, this assumption means, that the convex hull of M is 
a simplex. Of course it is true that we are searching for a simplex that includes all 
columns vectors of M, but the convex hull of M needs not be a simplex. Thus, we 
will exploit additional chemical or physical model aspects in order to find the opti-
mal simplex including the columns of M without separability assumption. The pur-
pose of this new approach is using adaptable objective function, taking into account 
only the common structural properties of the sought-for, process defining matrices 
W and H.

3 � Solving an optimization problem for NMF

In the following we pick up the concepts of both previous chapters as we introduce a 
new NMF approach which is specialized on analysis of time-resolved Raman spec-
tral data. Recall from (1) that the recovered non-negative matrices represent the 
component spectra of the involved species (W) and the reaction kinetics in terms of 
the evolution of relative concentrations (H). Our novel NMF approach differs from 
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the methods discussed so far as it is mainly based on minimization of an objective 
function which directly incorporates all known structural properties of the sought-
for matrices W and H. Furthermore, our approach is unaffected by the restrictive 
separability assumption. In contrast to Luce et al. [5], we apply our method even to 
non-separable measurement data. Additional flexibility and adaptability of the novel 
approach will be depicted in the numerical results in Sect. 4. Here we present the 
leading ideas of this approach as well as the details of the corresponding computa-
tional method.

3.1 � Optimization criteria for NMF

In the following we propose a novel approach which is based on an objetive function 
which includes the needed structural properties of the sought-after matrices W and 
M.

Claims on the matrices W and H In the following we assume that the compo-
nent spectra are positive, such that W is a positive matrix. The componentwise non-
negativity of the kinetics H is also reasonable, since relative concentrations are, in 
general, non-negative. Furthermore, because of representing relative concentrations, 
each column of H is a priori supposed to sum up to 1.

For each of the s chemical species the relative concentration is given by the rela-
tive concentration function hs:

describing the relative concentration of species s at time t ∈ [0, T] of the considered 
reaction.

Since the concentrations hs(t) are relative we have

By using m time steps for discretization of the concentration functions hs(t) we 
obtain the column stochastic matrix

The sequential Raman-measurements cannot be modelled as a “random picking of 
spectra”. The temporal order of measurements is important. Let the columns of H be 
given by h(ti), i = 0,… ,m − 1 , i.e.

Given the initial “concentrations” h(ti−1) there is a kinetics (or some Markov pro-
cess) providing the concentrations of the next time-step h(ti) . This can be modelled 
by assuming a transition matrix P for the autonomous Markov process, if the time 

hs ∶ [0, T] → [0, 1], s = 1,… , r.

r∑
s=1

hs(t) = 1 for each t ∈ [0, T].

H =

⎡⎢⎢⎢⎣

h1(t0) … … h1(tm−1)

h2(t0) … … h2(tm−1)

⋮ … … ⋮

hr(t0) … … hr(tm−1)

⎤⎥⎥⎥⎦
.

H = [h(t0)|…… |h(tm−1)], h(ti) ∈ ℝ
r, i = 0,… ,m − 1.
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intervals are always constant. Thus, we claim that there exists a (row) stochastic 
matrix P ∈ ℝ

r×r such that

In other words, the change of the relative concentration between the time steps 
can be interpreted as a Markov process. The construction of this matrix P will be 
explained later.

Summing up the objective function in our approach has the following penalty 
terms 

(i)	 W is component-wise non-negative,
(ii)	 H is component-wise non-negative,
(iii)	 H is column stochastic,
(iv)	 P is component-wise non-negative, and
(v)	 P is row stochastic.

Summing up, we arrive at the following objective function

It has to be mentioned here, that the constraint (iv) is not necessarily valid. The 
matrix P has to be row-stochastic, however, the entries of P can be negative. A 
Galerkin projection of a Markov Process on the basis of microstates to a small set of 
macrostates can lead to negative entries in the projected matrix P. In the real-world 
example in Sect. 4.3, we will show a crystallization process with a non-exponential 
decay of one species, which leads to a matrix P with one negative entry.

Robust Perron cluster analysis (PCCA+) In the computational method of our 
novel NMF approach, we apply the Robust Perron Cluster Analysis (PCCA+) [16] 
to generate an initialization of the kinetics in matrix H. We thus briefly introduce 
intention and operating principles of PCCA+ and reveal its utility for our context.

PCCA+ belongs to the family of algorithms for characterizing objects of simi-
lar behaviour to combine them into a certain number of clusters. In several areas of 
computational life science this kind of task plays a versatile role. PCCA+ arises from 
investigation of molecular conformation dynamics and identification of metastable con-
formations [17, 18]. There, metastable conformations are clusters for which the large 
scale geometric structure of the observed ensemble is conserved under the influence 
of a spatial transition operator [19]. Translating this approach into terms we consider 
a stochastic matrix T ∈ ℝ

N×N (representing the discretized version of the spatial tran-
sition operator) and we search for a non-negative matrix Y ∈ ℝ

N×NC , which column-
wise contains the clusters  yi, i = 1,… ,NC , and thus satisfies three requirements: Y 
is non-negative and row stochastic, in order to meet the partition-of-unity constraint. 

(2)(h(ti−1))
T
⋅ P = (h(ti))

T , i = 0,… ,m − 1.

Ψ =�

(
min
i,j

Wij

)
+ �

(
min
i,j

Hij

)
+ �

(
max

j
|

r∑
i=1

Hij − 1|
)

+ �

(
min
i,j

Pij

)
+ �

(
max

i
|

r∑
j=1

Pij − 1|
)
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Thirdly the vectors yi build an eigenvalue cluster near 1.0 of T. This means for each 
i = 1,… ,NC we have

The main idea of PCCA+ is to generate Y as a linear transformation of the matrix 
X ∈ ℝ

N×NC , where X columnwise contains the NC first eigenvectors of T with respect 
to eigenvalues close to �1 = 1 . PCCA+ therefore computes a non-singular transfor-
mation matrix A ∈ ℝ

NC×NC in order to gain the non-negative, row stochastic matrix 
Y via

Above, in paragraph matrix properties, we claimed that the sought-for matrix H of 
reaction kinetics needs to be non-negative and column stochastic. Both requirements 
are satisfied if we consider (4) and choose H = YT as an initial guess of the kinetics. 
Thus, in the computational method of our novel NMF approach, the preprocessing 
prepares the application of PCCA+ in order to generate a promising initialization of 
H.

Solving for A (4), we may find several feasible solutions A ∈ ℝ
NC×NC providing an 

appropriate matrix Y. PCCA+ tackles this issue by computing A through solving an 
optimization problem with respect to a certain objective function. Given that the sto-
chastic matrix T is the discretization of a transition operator (consider e.g. molecular 
conformation dynamics), maximization of this objective function is equivalent to the 
maximization of metastability between the generated clusters. In other contexts (con-
sider e.g. geometrical cluster problems) the interpretation of the objective functional 
may be different while still meaningful. See [17, 20, 21] for exemplary applications and 
illustrations of PCCA+ in several research areas.

3.2 � Computational method

The main work stages in the computational method of our novel NMF approach are 
summarized in Algorithm  1. Note that we distinguish between the finally recovered 
matrices (denoted as Wrec and Hrec ) and their corresponding interim results (denoted as 
W̃ and H̃ ). Furthermore, we use matlab method pinv to calculate pseudoinverses of sin-
gular or even non-square matrices. We then label the pseudoinverse of a matrix A as A† . 
Furthermore, with A+ we denote the matrix which is constructed out of A by deleting 
the first row and A− is the corresponding matrix constructed out of A by deleting the 
last row.

(3)Tyi ≈ yi.

(4)Y = XA.
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•	 Step 1: Preprocessing             In the preprocessing we consider MT . By subtrac-
tion of a reference point we transfer the columns of MT into a linear space. 
Afterwards we perform singular value decomposition (SVD) such that we gain 
MT = UΣVT . In order to initialize H̃ we want to apply PCCA+ to the leading 
r − 1 columns of U. Thus we build a matrix U , which takes the role of X in (4), 
as follows: The first column of U is equal to e = [1,… , 1]T ∈ ℝ

m , which is a 
requirement of PCCA+. We then stock up with columns 1,… , r − 1 of U until 
U ∈ ℝ

m×r . Subsequently, for efficiency reasons of PCCA+, we ensure orthogo-
nality among the columns of U [16].

•	 Step 2: Initializing H̃ , W̃ , and P̃       We apply PCCA+ to U . According to (4), 
we obtain a non-negative, column stochastic matrix H̃ setting 

 whereby A ∈ ℝ
r×r is the computed PCCA+ transformation matrix. H̃ is our ini-

tial guess of the kinetics of relative concentrations. Accordingly, we gain an ini-
tialization of the component spectra W̃ through the relation 

 In (2), we can see that the matrix P̃ is given by 

 Regarding (5), (6), and (7) we express the initial guesses of the sought-for matri-
ces only in terms of the given and processed data (M, U ) and the PCCA+ trans-
formation matrix ( A).

•	 Step 3: Minimizing objective function            The objective function of our novel 
NMF approach only incorporates structural properties of the sought-for matrices, 
as discussed above in paragraph matrix properties. With respect to each property 
we estimate a penalty value as stated in the following expressions: 

(5)H̃ = (UA)T ∈ ℝ
r×m,

(6)
M = W̃H̃

⇔ W̃ = MH̃† = M
(
A

T
U
T
)†

∈ ℝ
n×r.

(7)
P̃ = ((H̃−)

T )†(H̃+)
T

= A
−1
(
U
†

−
U+

)
A.
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 In regard to non-negativity of light intensities and relative concentrations, penal-
ties 1, 2, and 4 determine the smallest entries in matrices W̃ , H̃ , and P̃ . As the 
sum of penalty values is supposed to increase if these smallest entries appear to 
be negative, weighting coefficients � , � , and � are generally chosen negative, too. 
For H̃ to be column stochastic, the maximal deviation from its correct column 
sum is penalized in Penalty 3. Whereas, the requirement on P̃ to be row stochas-
tic is regarded by computing the maximal deviation of a column sum from being 
equal to 1.0 in Penalty 5.

	   Consider Ψ to represent the sum of penalty values. As we choose the rela-
tions (5) and (6) for initialization, the input arguments for the objective func-
tion are the matrices M, U  and A . Since we perform optimization with respect 
to parameter A , the minimization problem can be written in the form 

 Minimizing Ψ2 hence numerically adjusts matrices W̃ and  H̃ according to the 
claimed structural properties. For computation we apply matlab method fmin-
search, which uses the simplex search method of Lagarias et al. [22].

•	 Step 4: Recovering Wrec , Hrec , and Prec       The minimization in Step 3 finally 
returns a transformation matrix Aopt . We then recover the resulting kinetics 
Prec of relative concentrations Hrec and the component spectra Wrec according 
to (5)–(7) as 

In regard to NMF in the context of Raman data spectral analysis, our novel 
approach offers two main advancements: Firstly, in contrast to the method of Luce 
et al. [5], our novel NMF approach is unaffected by the separability assumption. 

(8)

Penalty 1: �

�
min
i,j

W̃ij

�

Penalty 2: �

�
min
i,j

H̃ij

�

Penalty 3: �

�
max

j
�

r�
i=1

H̃ij − 1�
�

Penalty 4: �

�
min
i,j

P̃ij

�

Penalty 5: �

�
max

j
�

r�
j=1

P̃ij − 1�
�

⎫
⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

min
A∈ℝr×r

Ψ2.

Hrec =
(
UAopt

)T
= A

T
opt
U
T ∈ ℝ

r×m,

Wrec = MH†
rec

= M
(
A

T
opt
U
T
)†

∈ ℝ
n×r,

Prec = Aopt
−1
(
U
†

−
U+

)
Aopt ∈ ℝ

r×r.
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Since we only consider the general properties of the sought-for matrices with-
out further demands on the input data, we may apply the novel approach to the 
broader range of even non-separable spectral data. Secondly, note the possibility 
to manipulate the decicive objective function in Step 3 by the choice of weighting 
coefficients �, �, � , � and � or by addition of further penalty terms. This flexibility 
and adaptability of our method allows, for special focus on certain data proper-
ties or even extension of the recovery objectives. We remark that the approach 
of optimizing Prec has already been suggested in [23] and recently (7) has been 
appiled in [24].

The next section presents some numerical experiments.

4 � Numerical results

In this section we present the level of performance of our novel NMF approach 
by applying it to a sequence of artificial time-resolved Raman spectral data. After 
describing the reaction data generation in Sect.  4.1, we prove that the component 
spectra are recovered to a high quality and that we even reach meaningful approx-
imations of the underlying reaction kinetics. As well in Sect.  4.2, we present the 
effectiveness of our method in the case of increased overlap among the individual 
component spectra and the occurrence of measurement noise. In Sect. 4.3, we pre-
sent real-word data from Raman spectroscopy measured during a crystallization 
process of paracetamol in ethanol. We show that our method can help to identify and 
characterize intermediate states (and their life-times) of a chemical process.

4.1 � Description of the reaction data generation

As in Sect. 2, for the model of time-resolved Raman spectral data, we here again fol-
low the framework of Luce et al. [5].

Regarding the generation of artificial time-resolved Raman spectral data we con-
sider a reaction scheme with five involved species A, B, C, D and E which are inter-
related by first-order reactions. These first-order reactions are characterized by a rate 
matrix of transition coefficients as follows:

The rows i = 1,… , 5 of K reflect the transition behaviour of the corresponding spe-
cies in the course of the observed reaction. So K12 says that 53% of the amount 
of species A merge into species B per arbitrary unit of reciprocal time. The diag-
onal entries of K represent the sum of relative loss of each species per time unit. 
Thus we already notice species D to be the only product of this modeled reac-
tion as just this species exclusively absorbs rates. Here, we let species A be the 

K =

⎡
⎢⎢⎢⎢⎣

− 0.53 0.53 0 0 0

0.02 − 0.66 0.43 0.21 0

0 0.25 − 0.36 0 0.11

0 0 0 0 0

0 0 0.1 0 − 0.1

⎤⎥⎥⎥⎥⎦
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only educt of the reaction and therefore denote the initial concentration vector as 
h0 ∶= h(t0) = [1, 0, 0, 0, 0]T . With h0 and rate matrix K we obtain the reaction kinet-
ics as a function of time by

where hi(t) denotes the relative concentration of species i at time t. The result-
ing kinetics are displayed in Fig.  2 (right). We gain the corresponding matrix  H 
of kinetics by discretization of h(t) at equidistant time steps t0,… , tm−1 such that 
H =

[
h(t0),… , h(tm−1)

]
.

The single component spectra are built up as arbitrary sums of Lorentzians, 
which we illustrate in Fig.  2 (left). The five columns of matrix W accordingly 
contain the discretized intensity-by-wavenumber signals.

The spectral overlap among the single component spectra is adjustable. This 
means we may increase the level of spectral interference by moving all base 
points x0 of the generated Lorentzians towards certain focal points. The level of 
spectral interference decides the level of separability of the measurement data. 
While the results in [5] are based on near-separability because of low spectral 
interference, we prove the effectiveness of our method even in the case of high 
interference among the component spectra.

The resulting measurement data matrix M is obtained as the product of matrix 
W of component spectra and matrix H of the underlying reaction kinetics as 
M = WH . See Fig. 3 (top) for an interpolated visualizatoin of M.

h(t)T =
[
h1(t),… , h5(t)

]
= hT

0
eKt,

Fig. 2   Illustration of artificially generated component spectra (left) and kinetics of first-order reactions 
(right) including five species A to E. The assignment of color to species holds for both panels. The 
resulting time-resolved measurement data are displayed in Fig. 3 (top)
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4.2 � Recovery results

Considering the measurement data, according to the artificial reaction scheme as 
introduced in the previous Sect. 4.1, our goal is now to recover the single compo-
nent spectra as well as the reaction kinetics only given matrix M. In other words, 
we compute matrices Wrec and Hrec by applying our novel NMF approach to M. 
We thereby are especially interested in the reconstruction of the true component 
spectra W in order to provide a powerful tool for compound identification in real-
life Raman spectral analysis. Recall that the objective function in our approach 
is based on adding up the penalty terms in (8), which represent the structural 
properties of the sought-for matrices and which are weighted by choice of the 
coefficients �, � and � . In this section we present the results of our method for the 
predefinitions

Recall additionally that we applied singular value decomposition in the preprocess-
ing of our computational method. That is why the order of species in the recovered 
matrices Wrec and Hrec may be permuted in comparison to the order in the exact 
matrices W and H. For comparative visualization of our recovery results, we thus 
compute the correlation coefficients between the columns ( ∼ species) of Wrec and W 
and associate the spectra as well as the reaction kinetics according to the maximal 
correlation values.

Exemplary recovery results of our novel method for the noiseless case with low 
spectral interference are displayed in Fig. 4. Especially the recovery of components 
A, B and D is nearly exact: the coordinates as well as the heights of peaks, can 
hardly be distinguished visually from the original data. In the bottom right panel we 
also present the recovery result for the matrix H of reaction kinetics.

As in all upcoming illustrations of the reconstructed kinetics, the dotted lines 
are assigned to their species through the corresponding color in the spectral pan-
els. For comparison, the exact kinetics (black lines) represent the kinetics from 
Fig. 2 (right). Indeed our reconstructed kinetics in Fig. 4 reflect the general trends 
of the exact kinetics as in particular species A is recognized to be the only educt, 
and species D to be the exclusive product of the generated reaction scheme.

As the first extension of the data setting, we now investigate the effectiveness 
of our method in the case of increased spectral interference. As mentioned in 
Sect. 4.1, we generate increased spectral interference among the component spec-
tra in W by moving the base points x0 in all species towards three focal points. We 
then obtain component spectra as displayed in Fig. 5.

In Fig. 6 we present the results of our novel approach being applied to very inter-
ference-rich measurement data. Besides the remaining high quality in the recov-
ery of components A, B and D, the reconstruction of species C and E apparently 
improved compared to the results in Fig. 4. In this interference-rich case our method 
computes the coordinates of the peaks in all component spectra quite satisfacto-
rily. Concerning the recovery of the reaction kinetics, displayed in the bottom right 
panel, we again precisely identify the educt and the product of the reaction.

(9)� = −0.0001, � = −1 and � = 1.
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As the second extension of our data setting we regard the recovery results of our 
routine additionally considering contamination of measurement noise. In any practical 
setting Raman spectral analysis needs to deal with this issue since, for instance, signal 
shot noise or background noise appear in any real experimental data. Here we assume 
the noise from all different sources to be adequately represented by additive Gaussian 
white noise, which disturbs the measurement matrix M according to

The entries of N thereby are generated by the normal distribution N(0, 1) and � = 0.5 
is the relative noise level. See Fig. 3 (bottom) for an interpolated visualization of 
the interference-rich and noisy measurement matrix M̃ . Applying our novel NMF 

M̃ = M + 𝛿 abs(N).

Fig. 3   Interpolated visualization of the measurement data matrix M: on top, the case of well separation 
of the component spectra and no measurement noise. Below, a variant of increased spectral interference 
and noise contamination
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approach with the predefinitions in (9) to M̃ , the illustrations of results in Fig.  7 
prove that the component spectra still show a reasonable agreement with the exact 

Fig. 4   Reconstructed component spectra of the single species and reaction kinetics (bottom right) for 
noiseless Raman data. The spectra of compounds A, B and D are recovered nearly exactly. Inaccuracies 
in the lower wavenumber regions occur for compounds C and E. Furthermore, our computed kinetics 
reflect the rough behaviour of the real kinetics
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spectra. Furthermore, the main traits of the true reaction kinetics are recognizable in 
the recovered kinetics as well.

4.3 � Example: paracetamol in ethanol

We took experimental time-resolved Raman spectroscopy data of paracetamol as an 
example to demonstrate application and usability of our NMF algorithm. Paraceta-
mol crystallizes in different forms (paracetamol is a polymorph). The forms have 
different properties when processing the drugs in their final tablet formulation. The 
bioavailability of the drug can also be different according to a particular form [25]. 
Control over crystallization is, thus, required in an attempt to manufacture suitable 
tablets. It is important to study crystallization in an empirical manner with different 
solvents, cooling rate, etc. One important aspect is the choice of solvents. Differ-
ent solvent choices yield different polymorphs of paracetamol [26]. Crystallization 
studies from liquid solutions were performed in a custom-made acoustic levitator 
[27], i.e., the droplet of the solution can be fixed in a stable and undisturbed posi-
tion by means of an ultrasonic field. The acoustic levitator allows executing contact-
free crystallization studies and in situ measurements. The environment around the 
sample can be controlled regarding the surface, temperature, and humidity by pass-
ing a cool/hot stream of nitrogen. During the experiment the solvent evaporates and 
leads to a gradual increase of the concentration of the droplet which finally crystal-
lizes (Fig. 8). Time-resolved Raman spectroscopy is performed with the resolution 
of 3 s during this crystallization process. Various pathways from solution phase of 
the drug molecules to final crystallized phase have been suggested. An intermediate 
metastable polyamorphic state has been reported wherein the paracetamol molecules 
existing in transient disorganised cluster undergoes ordering to fetch final crystal 

Fig. 5   Component spectra for 
modest spectral interference. 
In comparison to the spectra in 
Fig. 2 (left), notice how the base 
points of the Lorentzians have 
been moved closer to each other
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Fig. 6   Reconstructed component spectra of the single species and reaction kinetics (bottom right) for the 
case of high spectral interference. Note the improvements in the recovery of species C and E in compari-
son to Fig. 4. In addition, the educt and the product of the reaction are clearly recognizable in the recov-
ery of reaction kinetics
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Fig. 7   Reconstructed component spectra of the single species and reaction kinetics (bottom right) for 
interference-rich and noisy measurement data. The spectral recoveries still show a reasonable agreement 
with the true spectra. The main traits of the reaction kinetics are recognizable as well
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structure of high order [28]. With our method, we were able to not only understand 
the kinetics of the intermediate phase, but were also able to calculate the spectra of 
the intermediate state. This data is crucial in understanding and thus controlling the 
crystallization of a drug substance. The measurements are shown in Fig. 9.

The following settings are used for the optimization function: 
� = 0.00001, � = 100, � = 100, � = 1,� = 1 . With these settings it is focused on 
feasible concentrations. This means, we focus on providing a matrix Hrec with non-
negative entries and column sum 1, such that Fig. 11 shows mathematically feasi-
ble concentration curves. � is set to a very low value, because the intensities of the 
spectra are orders of magnitude higher than the entries in Hrec or Prec . After using 
the optimization approach Algorithm  1, especially the matrices Hrec and Wrec are 
important experimental findings. They show the spectra of intermediate steps and 
of the final crystal form of paracetamol (Fig. 10) and they show the kinetics of the 
crystallization process (Fig. 11). The matrix Prec is:

This matrix represents the approximated Galerkin projection (3 states) of a transi-
tion process in a continuous space (micorscopic 3D arrangement of the atoms in 
the droplet). The third row of Prec represents the initial state. The second row is the 
intermediate state. There is a zero probability for going back from this state to the 
initial state. The first row represents the stable final crystal. The upper right part of 
Prec is zero. This is because the crystallization process is directed. Figure 11 shows a 
decay of the initial state which is nearly linear. In reaction kinetics we usually expect 
exponential decay. The matrix is just the optimal fit to a presumed kinetics according 

Prec =

⎛
⎜⎜⎝

1.00 0.00 0.00

0.02 0.98 0.00

− 0.01 0.02 0.99

⎞
⎟⎟⎠
.

Fig. 8   Paracetamol polymorph type I crystallizing in acoustically levitated droplet of its supersaturated 
solution in ethanol
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to the chosen objective function. Depending on the optimization criterion, one can 
obtain different results from NMF of the given raw Raman spectroscopy data. These 
results can be checked using a cross-validation method to confirm the mathemati-
cal interpretation of the chemical process. We compared the results of NMF with 
simultaneous time-lapse photography of the droplet, the first of its kind to be used as 
a watchdog for comparing results obtained from NMF that correspond to the experi-
mental results. Besides comparing time-step of phase change point observed in con-
centration curves with the experimental time-steps, another factor that validates the 
results are the peaks reported for metastable intermediate amorphous state closely 
matches with our calculated spectra. The peaks in red curve, for measured interme-
diate state, 1236 cm−1,1326 cm−1,1618 cm−1 to refer to few of many, match with 
calculated peaks at 1235 cm−1, 1327 cm−1,1619 cm−1 [28]. Naturally, the peaks for 

Fig. 9   In real-world applications, sequential measurements of Raman spectra lead to input data for NMF. 
The intensity of different wavenumbers is measured at different timesteps

Fig. 10   During the crystallization, solvated paracetamol (black spectrum) passes through an intermediate 
amorphous state (red spectrum) which then immediately turns into a crystal structure (green spectrum). 
The three component spectra of this process are extracted by using NMF (Color figure online)
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final moieties can also be verified and are in accordance with reported experimental 
data. Structural changes, which are predicted with NMF are verified on the basis of 
this recording.

5 � Conclusion

Summarizing, our novel NMF approach returns remarkable and robust results in 
the recovery of component spectra and reaction kinetics while the method is mainly 
based on the general structural properties of the sought-for matrices. The recovery 
results of our approach even indicate that the quality of the recovered component 
spectra improves as the spectral overlap among the component spectra increases. 
Our approach can therefore be considered as a complement to the method of Luce 
et al. [5] since the success of their method especially depends on low spectral inter-
ference (near-separability of M).
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