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This paper presents a method for processing acceleration data registered on a

train and determining the health condition of a subway’s substructure. The

acceleration data was converted into a dynamic deformation by applying a

transfer function defined using the Empirical Mode Decomposition Method.

The transfer function was constructed using data produced on an experimental

rig, and it was scaled to an existing subway system. The equivalent deformation

improved the analysis of the dynamic loads that affect the substructure of the

subway tracks because it is considered the primary load that acts on the track

and substructure. The acceleration data and the estimated deformations were

analyzed with the Continues Wavelet Transform. The equivalent deformation

data facilitated the application of a health monitoring system and simplified the

development of predictive maintenance programs for the subway or railroad

operators. This method better identified cracks in the substructure than using

the acceleration data.
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Introduction

The railroad substructure absorbs the majority of the dynamic loads. Although there

are different ambiance dynamic loads (either wind loads or seismic loads), the main load

is caused by the train’s traffic. There are two types of substructure: on the ground and

elevated structures or bridges. The dynamic response of each one is different, and in the

case of bridge structures, it depends on the structural design. Recently there have been a

few bridge failures, but many of the railroad systems in the world were built a long time

ago. Therefore, it is mandatory to predict the bridges’ remaining life. Smith (Smith, 2005)

described the different fatigue failures in railroads. Although fatigue analysis in railroads

is well-known (more than 200 years of research), dramatic accidents still occur. Smith

described the various fatigue failures in the wheel-rail interfaces: The failures related to the

interface appear in the wheels, the rails, and the rail welds.

The dynamic behavior of the railcar depends on the wheel-rail interfaces. The failures

related to the dynamic forces produced by the rotating systems and train velocity appear

in the bearings, axles, gearboxes, bogies, suspension, breaks, rail fastenings, track
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foundation, and substructure. This classification avoids the

inclusion of environmental cases.

The dynamic loads on the wheel-rail interaction are complex

due to the stresses present in the contact area and the dynamic

parameters. The dynamic loads are incremented by

discontinuities and flexibility changes in the rail, damping of

the ballast, and deformations on the base structure. Also, spalling

on the rails and polygonising of the wheels are other sources of

high-frequency dynamic loads. Koc et al. (2018) (Koç et al., 2021;

Koç & Esen, 2017) modeled the vehicle-structure-road coupled

interaction considering structural flexibility, vehicle parameters

and road roughness.

Smith emphasized the need for more measurement

technology and analysis technics to evaluate the dynamic

loads’ evolution in the wheel-rail interaction.

Ngamkhanong et al. (2018) presented a review of the

descriptions of the wheel-track interactions. They explained

that the train dynamics and the elastic response of the

substructure have complex behavior. Fermér & Nielsen, 1995

presented an experimental and analytical work. They considered

the wheel’s deformations and estimated the track parameters

based on frequency analyses. The most accepted model assumes

that the rail behaves as a beam and the sleepers as individual

springs. Farmer and Nielsen represented the rail profile as an

external excitation. Ciotlaus et al. (2019) described the wheel-

track interaction considering that the contact occurs at a line, and

they developed a model based on the rolling contact, fatigue,

and wear.

Another dynamic source is the phenomenon known as

hunting. Hunting is a swaying motion (lateral direction) of

the train caused by the coning action. Zhai & Wang, 2010

incorporated the time history to model critical hunting speed.

According to their work, most models only consider rigid elastic

track, but they claimed that the track has a viscoelastic behavior.

An experimental rig was developed by Naeimi et al. (2014). The

wheel-track contact was represented as parabolic, and they

assured that the scale model had the same pressure stresses as

the original system. Similarly, other researchers have analyzed

the dynamic interaction to determine predicting models for

different operating conditions (Shi et al., 2021).

The measurements of wheel-track interaction are only

possible with a complex instrumentation setup and

sophisticated data analysis. Several publications reported

modeling the structure, determining the wheel-track forces,

specific test rigs, and data analysis. Quirke et al. presented a

method for detecting bridges’ damages by sensing the traffic flow

(Quirke et al., 2017).Weston et al. (2015). defined a procedure for

observing track degradations that can be used for maintenance

decisions. Chen & Fang, 2019 presented a method for predicting

the train-track interaction; they made a numerical model of the

interaction and found that the track deformation showed a

similar waveform as the experimental results described in the

following sections.

Usman, Burrow, and Ghataora (Usman et al., 2015) describe

the failure mechanism in the subgrade. The failures are induced

by climate changes that soften the subgrade. They developed a

fault tree analysis. The substructure stiffness depends on the

flexibility of the steel structure and the trackbed layers. They

described that the failure in the sub-structure is related to the

dynamic loads induced by the train and the modifications on the

sub-structure by environmental changes (degradation of the

trackbed layers, displacements on the bridge structure due to

seismic loads). The ballast suffers from attrition due to the train’s

dynamic load. Liu et al., 2020 described a method for detecting

failures in welded joints on railway systems. They developed a

detector that identifies defects on the welded joints through

image processing and an intelligent algorithm. Inspection is

either visual or instrumented, and it needs expert technicians

and extended periods. Instrumented inspection utilizes cameras

and ultrasonic sensors. Their method is based on a deep learning

algorithm.

Hoang et al., 2020 presented the development of a wireless

sensor for monitoring railroad bridges. Some of the problems

with tracking bridges’ dynamic loads are recording a large

amount of data and the ability of the wireless system to

transmit them. They used appropriate algorithms, especially

for the duration of the train on the bridge and data recovery

and transmitting processed data to the operator. Thompson

(Thompson, 2014) presented work on noise and vibration on

the railroad. He described the vibration sources (rail cracks, track

settlement, hanging sleepers, wear, and hunting) and the effect of

the wheel’s circular frequency.

Other studies characterized the effect of vehicle traffic on the

health of bridges. Different analysis techniques were applied for

determining the relationship between the vehicle accelerations

and the bridge strains. Such as the measurement of dynamic

strains and accelerations on the foundation (Davis & Sanayei,

2020). Other studies were based on modeling the vehicle

interaction with the bridges structure and substructure (Esen,

2011; Mizrak & Esen, 2015; Pehlivan et al., 2018) (Daniel &

Kortiš, 2017),. Malekjafarian et al. (2019) and (Malekjafarian &

OBrien, 2017) applied accelerometers and GPS for monitoring

track conditions. Several works described the correlation between

track’s profile and train’s acceleration (Dumitriu & Gheţi, 2019),

(Molodova et al., 2016), (Entezami & Shariatmadar, 2019),

(Cantero et al., 2019), and (Chang et al., 2019). These models

included the local deformation (Hertz deformation), friction, and

the dynamic loads produced by the vehicle over the track.

The health monitoring systems are the source for the

maintenance of railroad programs. Among the primary

methods for maintaining the railway infrastructure are

monitoring the assets and the track condition monitoring

(Turner et al., 2016). The subway operators require intelligent

systems to predict and prognosis railway failures. These

intelligent systems must include data acquisition systems,

models for predicting the health condition based on the
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evolution of the data acquired, prognostic information, online

reports of the health condition, and an alarm system to anticipate

possible failures.

The interaction train-track depends on the vehicle dynamics and

the friction force between the wheel and the track. Jaschinski et al.

(1999) described the dynamic interaction analysis with scaledmodels

because the dynamic response depends on the system and its

influence on the measurements. They recommended scaling the

system, considering that the original and scaledmodels have the same

natural frequencies. Another important aspect is the number of

degrees of freedom; they recommended that the scaled and original

models have the same number of degrees of freedom. The primary

consideration was that the scaled model represented similarity with

the parameters that are being studied. Akutagawa & Wakao, 2018

defined vehicle scaling by relating the torque and the tracking force.

There is a critical relationship that determines the slipping conditions

at the wheel. Other researchers have analyzed the effect of scaling the

dynamic behavior of vehicles; there are different factors and criteria to

scale the model; some criteria are based on Buckingham’s theorem.

Although the dynamic wheel-track interaction is being

widely studied, finding the location of possible failures along

the track is very cumbersome. On the other hand, the easiest way

of determining the train’s dynamic behavior is by measuring the

accelerations along an entire track; nevertheless, the analysis and

interpretation of the data are problematic. This paper presents a

procedure for converting acceleration data into track

deformations (loads). The procedure consists of finding a

transfer function between the acceleration data and

deformations (strains) measured at different locations on the

track. With this procedure, the acceleration data obtained during

the train’s operation can be converted into local deformations on

the entire track. The deformation data give better information on

the actual loading than the acceleration data; thus, it better

reflects the damage evolution on the track and substructures.

The transfer function was developed using an experimental rig,

and afterward, it was applied to an existing Subway system.

The following section describes a transfer function that

relates the strains on the track with the accelerations of a

railcar. The following section describes the application of the

transfer function to a subway system.

Force estimation

Experimental procedure

A particular scaled-down experimental facility was

constructed to measure a railcar’s dynamic effect over the

track (the scale ratio is 1/10). The testing facility had a flat

table supporting the track and a mechanism for changing the

inclination of the table. The railcar ran freely on the track, while

the inclination angle determined the railcar’s acceleration and

maximum speed, with normal forces exerted on the track. The

vehicle speed depended on the friction coefficient (Romero

FIGURE 1
Sketch representing the track and the support structure.

TABLE 1 Railcar’s natural frequencies (Hz).

Acceleration
orthogonal directions

1st 2nd 3rd

Ax 22.73 76.49 135.6

Ay 28.19 103.35 138.08

Az 25.46 75.89 127.65
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Navarrete & Otremba, 2020). The railcar imposed forces in three

orthogonal directions, the straight section accelerated the railcar

(forward), and the lateral force was increased with a 180° curve.

The speed was measured with an optical sensor mounted on

the railcar. The acceleration was measured with six degrees of

freedom MEMS accelerometers (three orthogonal accelerations

and three gyroscopes). The gravity component on the vertical

was eliminated, and it was insignificant in the other two

directions (lateral and longitudinal). The sample rate was

1,594 Hz. The railcar had a spring suspension, and the

wheelbase was 150 mm. The track deformation was measured

with strain gauges along the track; the strain gauges were aligned

perpendicular to the wheel’s cone surface (Figure 1). The rail gap

was the trigger for synchronizing the deformations and

acceleration measurements. The strain gauge resistance was

120 ohms with a quarter-bridge connection, and the sample

rate was 2,400 Hz.

The data contained all the acceleration and force

measurements from the beginning of the railcar motion until

it stopped. Two tests were conducted; the first type consisted of

impact tests to determine the railcar’s and track natural

frequencies. The second type was the running test. It

consisted of letting the train run freely and simultaneously

recording the train’s accelerations and track deformations.

Results

The data analysis began with identifying the natural

frequencies of the railcar mounted on the track (impact

test). The railcar was hit with a hammer, and the

accelerometers recorded the dynamic response. This paper

only includes the orthogonal accelerations’ response since

they are the basis for estimating the transfer function between

the railcar and track dynamic deformation. Table 1 lists the

three main natural frequencies. The X-direction corresponds

to the direction of motion, the Y-direction to the lateral

movement, and the Z-direction to the vertical motion. The

track deformation depends on the dynamic loads along with

the three directions. Therefore, the transfer function

considers the contribution of the three components,

especially along a curve. These values were used for the

Empirical Mode Decomposition (EMD) analysis.

The running test consisted of realizing the railcar at the

highest point and stopping at the curve’s end (Figure 1). The data

were recorded during the entire railcar’s path. The results from

the running test were analyzed with the EMD to determine the

transfer function, and they were segmented along the track with

intervals equivalent to the sleeper’s span.

Empirical mode decomposition

The recorded signals were non-periodic and non-harmonic time

series (non-stationary). Therefore, the most common signal analysis

methods cannot describe them accurately. It is thus necessary to

characterize both signals (accelerations and deformations) by

creating a function representing the effect of the vehicle dynamics

on the track. This function is the basis for defining a predictive

procedure, and it will reduce the number of physical inspections

required for estimating the remaining life of the railways. Many

analytical models are used for predicting the dynamic behavior of a

railcar traveling on the track or railway, but the validation of these

models is limited to specific operating conditions. Since measuring

vibrations on the railcar is relatively inexpensive, it can be applied as a

predictive procedure every time a railcar travels along a track. The

transfer function between the vehicle’s dynamic response and the

actual deformation on the track has a characteristic pattern that can

be scaled to the Subway system (Esveld, 2014). The transfer function

was determined by dividing the data into a set of time series

characterizing the train’s dynamic behavior and the track’s

deformations. The setting combined several series studied

separately to identify similarities between the acceleration signals

and the deformation data. (The natural concept is an equivalent

mass, but it has a “shape” function since both signals are

independent). The first attempt was to find the magnitude-square

coherence, but this function could predict the force if the input-

output relationship (acceleration-force) would have a linear behavior.

The real-function (magnitude-square coherence) is calculated as:

FIGURE 2
Flow chart of the EMD process.
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Cxy �
∣∣∣∣Gxy(f)

∣∣∣∣2

Gxx(f)Gyy(f)
(1)

where Gxy(f) is the cross-spectral density between the force and

the acceleration and Gxx(f) is the autospectral density of the

acceleration signal, and Gyy(f) is the auto spectral density of the
force signal. In practice, the measurements are nonlinear and

unsteady. Consequently, it is impossible to determine the

frequency spectrum and to apply the coherence concept.

This situation leads to applying the Empirical Mode

Decomposition (EMD). Although it has some limitations, the

EMD is an analysis method that adapts the time-space domain to

process non-stationary or nonlinear time series, such as the data

recorded in our experiments. The procedure separates the time

series into “modes” with specific characteristics. These modes are

computed with the Intrinsic Mode Functions using Hilbert’s

transform. Thus the data is approximated as follows:

a(t) � ∑
n

1
IMFi(t) + r(t) (2)

Where a(t) is the original time series, t is recorded at constant

time intervals, r(t) contains all the residuals and IMFi(t) are
Intrinsic Mode Functions (Cheng et al., 2008).

The first step for determining each IMF is finding the local

maxima of the time series (signal); then, all the maxima

points are connected with a cubic spline. The same

FIGURE 3
Comparison of the non-periodic and periodic intrinsic modes for the strain measured at the experimental rig.

TABLE 2 Dominant frequencies for each periodic mode (Hz).

Direction Intrinsic Mode

1 2 3 4 5 6 7 8 9 10

Strain 0.81 1.81 3.60 8.40 9.41 29.15 84.17 349.17 Noise

Ax 0.87 0.89 2.12 3.91 11.82 20.88 30.08 89.00 192.46 Noise

Ay 0.82 0.78 4.29 7.64 14.41 30.40 109.11 153.38 Noise

Az 0.88 0.82 2.53 4.3 10.97 13.71 23.65 88.03 196.67 Noise

The bold values are frequencies with the highest peaks.
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procedure is also done with the local minima. These two

curves envelopes the entire data, and the mean value of the

upper and lower envelopes is the first component or first

intrinsic mode. The mean value is subtracted from the

original data, and the remaining values are the first

residuals. The procedure is repeated on each residual until

the process converges to a minimum difference (Figure 2).

The IMF modes represent smooth oscillatory time series

instead of a simple harmonic function with a constant amplitude

and frequency. Each mode can have different frequencies and

amplitudes, and they can also have a single frequency with

varying amplitudes, and some modes can have a harmonic

response. The first step consisted of finding the IMF modes

for the four signals (three accelerations and one deformation);

then, the IMF was grouped into modes defining the rigid body

motion and the vibration motion modes. The next step consisted

of determining the relationship between the amplitudes of the

acceleration and deformation amplitudes. This function was built

only with the modes describing the rigid body motion.

All the strain gauge signals have a similar waveform, and the

variations depend on the gauge’s position at the track.

The similarity among the data suggested that a single strain

gauge could determine the deformation shape on the track. The

following section showed the modes of the signals when the

strain signal had high values. The data corresponds to the instant

when the railcar is near the strain gauge.

Empirical mode decomposition results

Since the strain gauges were located in fixed positions, the

strain measurement was significant when the railcar ran over

FIGURE 4
(Continued).
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them. Therefore, the correlation between the accelerometer and

the strain gauge data could be valid at the data intervals before

and after the maximum peak (equivalent to the sleeper’s spam). If

there were a defect on the track away from the measuring device,

the acceleration would have recorded a high peak at a different

position; therefore, the strain gauge would never register that

dynamic condition. Figure 3 presents the non-periodic and

periodic modes for the strain gauge. The non-periodic modes

are the first three Intrinsic Modes (IM), whereas the periodic

modes are the remaining IM.

Transfer function

The time series obtained during measurements are, in nature,

non-periodic. Therefore, the transfer function cannot be

obtained directly (De Santiago & San Andrés, 2007). Thus,

both signals were decomposed into modes using the Empirical

Mode Decomposition. Since the number of modes and the

frequencies associated with each mode was different between

the two signals, the assumption was that:

�f � [H]�aT (3)

Where �f is the deformation data, and its dimension depends on

the number of points registered during the strain measurements.

In this case, the sleeper-to-sleeper time was 1.25 s. All the strain

gauges produced similar data, and the “Strain gauge 2” recorded

the deformations caused by accelerations in the three directions.
�a is the acceleration data, and it is formed with RMS values of the

non-periodic modes, and [H] is the function transfer matrix. In

this case, the dimensions of �f is 1,000 × 1 and for �a is 1 × 9.

The modes that best defined the transfer function were

determined by comparing the signals. Each mode had one or

FIGURE 4
Spectrogram Comparison. (A) Deformations in strain gauge 2, non-periodic modes. (B) Acceleration in the vertical direction, non-periodic
modes. (C) Deformations in strain gauge 2, mode 5. (D) Accelerations in the vertical direction, mode 5.
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more characteristic frequencies, and its amplitude varied with

time; therefore, a spectrogram (time-frequency map) showed the

frequency and time interval for the highest peak. Then, the

transfer function was built with those modes that had

similarities in frequency and time intervals (spectrograms).

The first three modes correspond to the rigid body motion,

which also caused the highest loads. These modes were the basis

for defining the transfer function. Table 2 shows the frequency

for the highest peak for each signal and each mode.

Interestingly, similar frequencies appear in the first three

modes and mode 5. The highlighted frequencies at mode five

were closed to the wheel’s rotation frequency. The difference

among the frequencies from mode five could be caused by the

friction or the wheel’s slip.

Figure 4 compares the spectrograms (time-frequency maps)

of the sum of modes 1, 2, 3 (rigid body motion modes) and a

comparison of mode 5 (wheels velocity); the spectrograms

corresponded to the strain gauge identified as “Strain gauge 2”

and the acceleration in the vertical direction. The comparison

was made with all directions, but only the longitudinal direction

was included. Not only are the frequencies similar, but the time

intervals are equivalent in both maps. In this case, the sleeper-to-

sleeper time was 1.25 s.

After analyzing the similarities between the signals, it was

decided to build the transfer function only with the first three

modes which corresponded to the rigid body motion. The fifth

mode reflects the effect of the wheel’s angular speed, and its

contribution to the overall amplitude is minimum. Besides this

contribution, the wheel effect is related to other failure conditions

that will be analyzed in future works.

Since [H] is rectangular, it is necessary to find the

pseudoinverse, and the only solution that avoids singularities

is the Singular Value Decomposition (SVD) (Vega & Clainche,

2021). This procedure calculates the pseudoinverse of the matrix

that relates the deformation data to the acceleration data. A

simplified version of this procedure is:

[H] � �f[M]T (4)

Where �f contains the strain gauge data.

[M] � [V][S][U] (5)

[V] is a matrix with the eigenvectors of [B], and [B] is

determined from the acceleration data as:

FIGURE 6
Contour map of the transfer matrix elements.

FIGURE 5
Flow chart for computing the transfer function H.
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[B] � �aT�a (6)
Where �a is a 1 × 9 horizontal vector

�a � [ ax ay az ] (7)
And

ax � [ |ax1| |ax2| |ax3| ]
ay � [

∣∣∣∣ay1
∣∣∣∣

∣∣∣∣ay2
∣∣∣∣

∣∣∣∣ay3
∣∣∣∣ ]

az � [ |az1| |az2| |ak3| ]
(8)

Thus, the vector �a contains the amplitude of the first three

modes in each motion direction. aki corresponds to modes 1,

2, and 3 for each direction k For this case, the dimension of

the vector a is nine. This condition ensures that the

measurements along the trajectory on the track include all

the dynamic behavior’s contributions. The dimension of B

is 9 × 9.

Following the SVD method, [S] is a diagonal matrix

containing the eigenvalues of [B] (Eq. 6), and
[V] � eig([B]) � [ v1 . . . vn ] (9)

And the elements of [U] are:

ui � �aTvi
sii

(10)

and sii are the elements of [S]
In this case [V] is a 9 × 9 matrix, [S] is a 9 × 9 matrix, and [U]

is a 9 × 1 matrix. Thus, [M] is a 9 × 1 vector.

Once the matrix [M] is determined, the calculation of the

transfer function [H] is straight-forward (Eq. (4))

Figure 5 describes the flow chart for the construction of the

transfer function H.

The application of this method to the data presented in previous

sections produces a graphicalmatrix (Figure 6). This figure represents

a contour plot of the matrix values, indicating the maxima’s location.

The values correspond to matrix H coefficients. In this case, there

FIGURE 8
Sensor’s location in the bogie.

FIGURE 7
Base function for the deformation vector �f .
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were three non-periodic modes (modes 1,2, and 3); thus, the

dimension of �a is nine, and the dimension of �f is the length of

the intrinsic mode vector. This graph identifies each accelerometer’s

relative contribution, and it is noticeable that the longitudinal

acceleration has a higher effect.

The matrix H is considered a signature or pattern of the local

behavior along the track. This matrix is used as a shape basis for

predicting the track deformation in the interaction wheel-track.

Figure 7 shows the basis for predicting this deformation which is

similar to the transfer function described by Esveld (Esveld, 2014),

(Esveld et al., 1988). Esveld considered that the function is symmetric

with respect to the application of the load, whereas, in this work, it

was found that the shape is not symmetric due to the friction forces.

The procedure is as follows:

− The accelerometers register the vibrations during the railcar

traveling in the three directions (x, y, and z).

− The railcar’s speed determines the relationship between the time

vector and the position vector. It is recorded during the

railcar trip.

− The acceleration data is segmented in time intervals equivalent

to the track’s deformation zone. (Figure 7). The data represent

time windows with the length of the sleeper’s span; the time

length may vary according to the railcar’s speed.

FIGURE 9
Track diagram in the area where the failure occurred (Point E).

FIGURE 10
Velocity profile for the first run.
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− For each acceleration vector �am, an equivalent RMS value

determines the individual contribution to the track

deformations fe.

− Since the only measurements are the railcar accelerations,

the estimated deformations are determined by applying the

transfer function H (Eq. 3) to the acceleration

measurements recorded in the Subway:

fe � [H]�am

− The full track deformation results from the superposition of

each segmented vector along with the total data.

The transfer function considered the effect of the

orthogonal vibration measurements (x,y, and z); the input

FIGURE 11
Spectrogram of the acceleration in the vertical direction (z). First run.

FIGURE 12
Estimated track deformations between stations A and B
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function was the RMS acceleration amplitude estimated

during a specific time interval. The railcar speed

determines the time interval, and it is equivalent to the

length of the rail’s deformed distance (the sleeper’s

separation).

The transfer function can be applied to any acceleration

measurements without measuring the track deformations.

The following section describes the application of the

transfer function for identifying a severe failure in a

subway system.

Case study

This section presents the application of the transfer

function for identifying the health condition of a

substructure in a subway system. This study was the

outcome of analyzing a failure that appeared in one of the

structure inspections. The substructure was part of an

elevated track that presented severe damage and caused a

dramatic accident. Before the accident, the monitoring

system only recorded vibration signals from a set of

FIGURE 13
Spectrogram of the estimated deformations (First run).

FIGURE 14
Spectrogram of the estimated deformations (Second run).
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accelerometers mounted on the train, and the acceleration

data complemented the regular maintenance procedure.

Unfortunately, the acceleration data was dispersing, and it

was not easy to correlate it with the actual dynamic loading on

the substructure.

After a routine inspection, it was detected that the

substructure of an elevated section of the track presented

premature cracks. It was assumed that the crack was due to an

earthquake. Therefore, it was decided to measure the dynamic

effect of the train on the track. The health monitoring system

consisted of accelerometers mounted on the train and the

analysis algorithm. Measuring the track deformations was too

expensive, and it required very complicated data acquisition

equipment. Thus, the monitoring system relay on the

acceleration measurements. The accelerometers were

mounted underneath a bogie of one railcar (Figure 8). The

train ran continuously, and in this paper, we present three

runs recorded on different dates. The data corresponds to the

train traveling along track B (Figure 9).

The cracks on the substructure were located at the bridge

near one of the subway stations. It was marked (Point E) on a

track diagram described in Figure 9. The visual inspection

identified that the sleepers were hanging (soft support), and

the ballast had a different damping coefficient. It was estimated

that 1 million railcars passed over the structure at the inspection

time. This information confirmed that the failure was due to low

cycle fatigue.

The first analysis developed the acceleration data’s

spectrograms (time-frequency maps) using a similar procedure

(Cho & Park, 2021). The spectrograms were produced with the

Continuous Wavelet Transform and the Morlet function as the

mother wavelet.

The data were recorded during the whole trajectory; the

analysis was limited to the track section between the adjacent

stations of the damaged area (Stations A and B in Figure 9). It

is essential to point out that the section has only four clear

external excitations, the switch tracks located at points A, B,

C, and D.

For each run, the accelerations in the vertical direction (z), lateral

direction (y), and motion direction 10 (×) were recorded with three

MEM’s accelerometers. The gyroscopes’ data were not considered

because the transfer function depends only on the accelerations. In

this paper, only the results for one run are included.

The train’s speed is very similar in the three runs. Figure 10

shows the velocity profile when the train runs from Station A to

Station B. The average speed was 12 m/s, and although there is a

slight change in the average speed, the increment in the dynamic

load is hardly observed in the acceleration data.

Figure 11 shows the spectrogram of the acceleration in the

vertical direction. This figure contains the most significant

dynamic load. The dominant frequencies are 5 Hz, 65 Hz, and

100 Hz. The 5 Hz frequency corresponds to the wheel’s rotation

speed, and the other two are some of the train’s natural

frequencies. The first and second runs show the highest peaks

at 15 s and 65 Hz, whereas in the third run, the highest peak is at

35 s and 100 Hz.

For a monitoring process, these variations on the acceleration

spectrograms complicate the definition of failure criteria

(Jauregui-Correa & Lozano-Guzmán, 2020). A more reliable

analysis included the application of the transfer function (Eq. 3)

FIGURE 15
Spectrogram of the estimated deformation (Third run).
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Application of the transfer function

The transfer function transforms the dynamic loads

(accelerations) into the tracks deformations. This

transformation combines the effects of the three acceleration

components into an equivalent track deformation. This

deformation transmitted forces to the substructure through

the sleepers and ballast.

The deformation data (Figure 3) was scaled using the

train’s weight. The scale factor was determined by dividing

the railcar weight into the number of wheels. Figure 12 shows

the estimated deformation for the first runs. The pattern

reflects the dynamic load changes and the location of the

highest amplitudes.

Figures 13–15 show the spectrogram of the estimated track

deformations. The three diagrams show similar patterns, with

three dominating frequencies, one at low frequency, which

corresponds to the weight, and the other two are passing

sleepers frequency (15 Hz) and its harmonics (30 Hz). The

highest amplitudes correspond to the points where the

substructure had the highest fatigue loads.

The health monitoring system measures the accelerations

with accelerometers mounted underneath the bogie, estimating

the equivalent dynamic force on the track and substructure and

identifying the highest deformations. The estimated deformation

is obtained with the transfer function developed in an

experimental rig, and it was determined with the Empirical

Mode Decomposition Method.

These figures show the frequency variations as the train

moves from station A to station B. The first and third data

runs show the highest peak at point E and the passing sleepers

frequency (15 Hz). The second run shows the highest peat at

the switchgear (point A in Figure 9). The data from the three

runs show a high peak at point E at the lowest frequency.

Comparing Figures 13–15 with the spectrogram of the

acceleration data (Figure 11), it is clear that the effect of

the soft sleeper (point E) is less significant in the acceleration

data than in the deformation spectrograms. Therefore, the

acceleration data is less confident in predicting the dynamic

effect of a passing train, and it could mislead the

identification of failures in the track or the substructure.

Stations A and B track is almost straight, with two rail

switchgear. In this case study, the measurements were

recorded on track B. There was two switchgear located at

points D and A (according to the direction of motion). The

switchgear creates impacts that are always present in every

measurement. The switchgear at point D produces three

peaks at 15, 16, and 18 s (Figure 13). The switchgear A

makes another three peaks at 48, 52, and 58 s. If the track

were healthy, the only significant peaks were the switchgear,

but in this case, there is another peak located at point E.

Before analyzing the data, it is essential to identify the

installed elements that produce higher vibrations, such as

switchgear or instruments, since the spectrograms will

display those impacts as high peaks. Peaks that appear

elsewhere are related to defects or failures in the track or

substructure, and these points must be inspected regularly.

After a visual inspection of the tracks, it was found that

point E corresponded to a soft sleeper. It was also found that

the ballast had a low damping property than the ballast

specified in the design. The increment in the dynamic load

and the low damping coefficient incremented the fatigue load

that started the crack in the substructure.

Conclusion

Monitoring is focused on finding faults and predicting

degradation on the tracks. The method presented in this

paper transforms train acceleration measurements into

track loads. With this approach, the train’s motion is

utilized to identify variations in the track’s deformations

without installing instruments. It was found that this

method was able to locate the dynamic impacts produced

by well-located track elements, such as switchgear or

instrumentations, and to identify vibration sources that

have no relation to any specific part. Before analyzing the

data, it is essential to identify the installed factors that

produce higher vibrations, such as switchgear or

instruments, since the spectrograms will display those

impacts as high peaks. Peaks that appear elsewhere are

related to defects or failures in the track or substructure,

and these points must be inspected regularly.

The transfer function was characterized as a linear

transformation, and the transformation base was the

matrix H. This matrix worked as a filter and separated the

dynamic loads associated with the train’s translation from the

vibration loads related to the wheel’s rotation or other

vibration sources. The EMD was the method that allowed

the separation of the non-periodic and periodic elements that

formed the original data.

This method allowed the identification of failures in a

Subway system, and it was more accessible to local crack

initiations on the substructure. Traditional methods cannot

identify large deformations because they measure track

deformations without the actual train’s load.

The transfer function transformed the acceleration data into

track deformations. The deformation pattern obtained

experimentally is similar to a theoretical model, and the waveform

depends on the sleepers’ stiffness. This fact confirmed its applicability

to field data. Although there is a need formore experimental data, the

transfer function can be applied to acceleration data recorded from

subways systems with metal wheels. A new test rig is under

construction to validate the results presented in this paper.

Future work will define a predicting program by storing the

acceleration data from trains running on the track, transforming
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the acceleration data into track deformations, and analyzing the

evolution of the higher peaks as a function of train runs.
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