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Isotope ratio applications are on the increase and a major part of which are delta measurements, because they are easier
to perform than the determination of absolute isotope ratios while offering lower measurement uncertainties. Delta
measurements use artefact-based scales and therefore scale conversions are required due to the lack of the scale defining
standards. Such scale conversions often form the basis for comparing data being generated in numerous projects and
therefore need to be as accurate as possible. In practice, users are tempted to apply linear approximations, which are not
sufficiently exact, because delta values are defined by nonlinear relationships. The bias of such approximations often is
beyond typical measurement uncertainties and its extent can hardly be predicted. Therefore, exact calculations are
advised. Here, the exact equations and the bias of the approximations are presented, and calculations are illustrated by
real-world examples. Measurement uncertainty is indispensable in this context and therefore, its calculation is described
as well for determining delta values but also for scale conversions. Approaches for obtaining a single delta measurement
and for repeated measurements are presented. For the latter case, a new approach for calculating the measurement
uncertainty is presented, which considers covariances between the isotope ratios.

Keywords: delta isotope standard, delta scale, in-house calibration solution, isotope ratios, isotope reference material,
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Isotope ratios are increasingly used in all disciplines of
science ranging from archaeology to zoology for providing
insights into natural processes, the provenance of a spec-
imen or the residence history and migration paths of animals
and human beings (Font et al. 2007, Vautour et al. 2015,
He et al. 2019, Vogl et al. 2019). Absolute isotope ratios or
isotope amount ratios would be the perfect tool for these
investigations. However, the measurement of absolute
isotope ratios is hindered, because the required reference
materials offering sufficiently small measurement uncertain-
ties for resolving natural isotopic variations are barely
available (Vogl and Pritzkow 2010). Absolute isotope ratio
measurements without suitable reference materials are
extremely demanding. Therefore, delta scale measurements
were introduced in the past and have been used predom-
inantly since then. The major advantage here is that the
measured sample isotope ratio is compared with the
measured standard isotope ratio by calculating the relative

difference of both. Usually, it is expressed in ‰ (= 10-3). This
way, factors correcting for instrumental isotope fractionation
cancel and therefore will not affect the result(s). When
symmetric standard-sample bracketing additionally is
applied, drifts are minimised. Typically, matrix and intensity
matching are applied as well as adjusting the acid
concentration and the signal intensity of the matrix sepa-
rated sample and the standard to �10% or better. Then, the
impact of the matrix and of an incomplete background
correction are minimised. When properly applied, this
approach can lead to a precision of better than 0.01‰
and expanded measurement uncertainties in the range of
0.05‰ to 0.1‰ (Vogl et al. 2020). Important here is the
definition of a delta scale and the availability of an
internationally agreed-upon delta isotope standard, which
anchors the delta scale. The preferred anchor point of delta
scales by analysts is the origin, because then calculations are
straightforward. When the anchor point is not the origin, or
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when a second isotope standard with δ ≠ 0 is applied, it
can be regarded as a virtual, second delta scale and the
measured delta value has to be transferred to the origin, the
primary delta scale. This is the case, for example when an in-
house isotope standard (calibration solution) is used for the
standard-sample bracketing. With the increase of isotope
ratio applications and the expansion to elements that have
not been focussed upon before, frequently individual delta
scales are set up in parallel by independent research
groups. To allow the comparison of delta values obtained on
different scales, both standards need to be measured
against one another and the delta values obtained on the
samples need to be converted. As delta scales are relative
scales, no simple addition or subtraction of delta values
yields the correct result and is allowed in this context. To
improve comparability in delta measurements, especially for
metal isotopes and those elements typically measured by
ICP-MS, and to foster the use of in-house isotope standards
(calibration solutions), thus allowing an availability for longer
or infinite periods, the necessary equations will be deduced
and presented in this work.

Measurement uncertainty has the same level of impor-
tance as the correct scale conversion, because measurement
results can only be compared when they are traceable to
the same source/reference/unit. Traceability in turn requires
a measurement uncertainty for each calibration within the
analytical procedure. Precision data, especially repeatability,
are not sufficient to enable comparability, as they underes-
timate or even neglect contributions from other sources such
as the calibration standard, the sample dissolution, the
matrix separation or incomplete correction of instrumental
isotope fractionation especially in laser ablation applica-
tions. All these contributions are considered when setting up
a complete uncertainty budget. Admittedly, this might seem
complicated when realising it for the first time, but with
continuous application it will become routine.

In isotope delta measurements of H, C, N, O and S
guidelines and applications for obtaining measurement
uncertainties according to current international guidelines
(JCGM 2008) are already available (Gröning 2011, Chen
et al. 2013, Dunn et al. 2015, 2019, Meija and Char-
trand 2018). In the certification of metal and metalloid
isotope delta reference materials this is the case as well
(Vogl and Rosner 2012, Vogl et al. 2020). In isotope delta
measurements of metal isotopes and other elements being
accessible by ICP-MS, however, measurement uncertainty
according to current international guidelines often is lacking.
To support the users in setting up corresponding uncertainty
budgets, we present two models for calculating the
measurement uncertainty in delta measurements. The first

model focuses on a single measurement and includes all
possible sources of uncertainty contributions. It is an
enhancement of a previously published approach (Rosner
et al. 2011). The second model is a completely new
approach that focuses on the repeated measurement of a
sample within one measurement sequence, and which
considers correlations between the parameters. This model is
mainly intended for calibrating in-house isotope standards,
but it may as well be applied to repeated sample
measurements, provided uncertainty contributions for sample
preparation and matrix separation are added.

Scale conversion

As pointed out above (isotope) delta values are relative
isotope ratios, which are related to an internationally
accepted isotope delta standard, preferably an isotope
reference material. The delta scale itself is defined by its
origin, which predominantly is realised by the isotope
standard. A delta value is defined as the difference of a
measured isotope ratio of a sample smp, r i=jsmp, and the
measured isotope ratio of the reference ref, r i=jref , divided by the
measured isotope ratio of the reference, r i=jref (Equation (1)):

δi=jsmp=ref Eð Þ ¼ r i=jsmp-r
i=j
ref

r i=jref
¼ r i=jsmp

r i=jref
-1 (1)

The measured isotope ratio ri/j denotes actually the ratio of
the measured intensities (e. g. ion current I in A, counting rate
dN/dt in s-1 or voltage U in V) observed on the masses of the
two isotopes iE and jE of the element E, with typically
Mi > Mj. For example (in case of currents):

r26=24smp ¼
Ismp

26Mg
� �

Ismp
24Mg

� �^ r26=24ref

¼
Iref

26Mg
� �

Iref
24Mg

� �^δ26=24smp=ref Mgð Þ ¼
Ismp

26Mgð Þ
Ismp

24Mgð Þ
Iref

26Mgð Þ
Iref

24Mgð Þ
-1 (2)

For all equations and all calculations throughout this paper it
has to be noted that delta values are used according to
Equation (1). This means 0.001 is used instead of 1‰. After
all calculations are performed, the delta value is expressed
in ‰, % etc. Consequently, all delta values provided in ‰

have to be divided by 1000 before performing the
calculations (or any other corresponding factor in case
another unit was applied).

Based on Equation (1) the delta scale is defined as well.
The reference represents the origin, δ = 0, of the scale and
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any other point is defined by Equation (1). In some cases, a
second anchor point is defined for the delta scale. This is the
case when the original reference that defines the scale is
exhausted, or when a virtual origin has been defined. In fact,
in both cases a second scale has been defined, because
Equation (1) clearly states, that whatever reference is being
applied it defines the origin, δ = 0, of the currently applied
delta scale. In such cases a scale conversion is required,
when the delta values shall be expressed on the original
delta scale. The same applies when an in-house isotope
standard is being applied as a bracketing standard to save
the original isotope standard (reference). In total we
differentiate between three different cases, which will be
explained in the following paragraphs on real world
examples. The underlying measurements have been per-
formed by MC-ICP-MS by applying the standard-sample
bracketing (SSB) approach, within which each sample is
bracketed by a preceding and a succeeding standard
measurement. As delta scales are not linear, an equa-
tion system for the transformations needs to be set up. In this
equation system, the sample is labelled with the index x,
while the first (original) isotope standard is labelled y and the
second isotope standard is labelled z. The deduction of the
equation system is presented in the online supporting
information.

Inversion of sample and standard

A sample x is measured in SSB against the second
isotope standard z, which is used as bracketing standard,
and the corresponding delta value δx/z is calculated
according to Equation (1). Now, the delta value needs to
be expressed as isotope standard z measured against
sample x, δz/x. Most frequently this occurs when sample x is
being replaced by the isotope standard y, which is measured
against isotope standard z yielding the delta value δy/z. This
value needs to be converted into the delta value of isotope
standard z against isotope standard y, δz/y. In other words the
delta value of isotope standard y on the scale z is transferred
into the delta value of z on the scale y. This conversion can be
calculated by applying Equation (3):

δz=y ¼
-δy=z

δy=z þ 1
(3)

A practical example is the measurement of DSM3, the
isotope standard anchoring the magnesium delta scale, i.e.,
the scale for δ25/24(Mg) and δ 26/24(Mg), against the new
certified isotopic reference material (iCRM) ERM-AE143 (see
Figure 1). For simplicity we consider only δ26/24(Mg) in this
context (because δ25/24(Mg) calculations are analogous).

DSM3 represents the original isotope standard y, which
anchors the delta scale for magnesium, while ERM-AE143
represents the second isotope standard z, which is the new
iCRM for magnesium. The delta value δ26/24(Mg) of DSM3
measured against ERM-AE143, δy/z, is 3.295‰ with a
combined uncertainty of uc = 0.013‰ (Vogl et al. 2020).
After applying Equation (3) we obtain the delta value
δ26/24(Mg) of ERM-AE143 measured against DSM3, δz/y,
which is -3.284‰, again with a combined uncertainty of
uc = 0.013‰. This demonstrates that simply inverting the
algebraic sign would lead to a delta value that, in this case,
is wrong by -0.011‰. This deviation is of the same
magnitude as the combined uncertainty and therefore
cannot be neglected.

Second scale anchor

The delta scale is established with δy/y = 0. In case the
original isotope standard y is exhausted, or it has been
defined as a virtual origin without representation by any
isotope standard, the user requires a (second) standard z
with δz/y ≠ 0, assigned by measurement or by definition. The
sample x is measured against isotope standard z by
applying the SSB approach. The so obtained delta value,
δx/z, needs to be converted to the delta value of sample x
against isotope standard y, δx/y, to enable comparability
with other delta values obtained on the scale y. This
conversion is realised by Equation (4) (also see
Coplen 1994):

δx=y ¼ δx=z � δz=y þ δx=z þ δz=y (4)

A practical examplewouldbe themeasurement of the sample
IRMM-009 against the new certified isotopic reference
material (iCRM) ERM-AE143 (see Figure 2). For simplicity we
consider only δ26/24(Mg) in this context (because δ25/24(Mg)
calculations are analogous). DSM3 represents the original
isotope standard y, which anchors the delta scale for
magnesium and might be exhausted, while ERM-AE143
represents the second anchor z or rather the replacement of
the original anchor. The delta value δ26/24(Mg) of IRMM-009
measured against ERM-AE143, δx/z, is -1.656‰ with a
combined uncertainty of uc = 0.014‰ (Vogl et al. 2020).
After applying Equation (4) using the knowledge of δz/y =
-3.284‰ (with a combined uncertainty of uc = 0.013‰) of
the second or replacement anchor z, we obtain the delta
value δ26/24(Mg) of IRMM-009 against DSM3, δx/y, which is
-4.934‰ with a combined uncertainty of uc = 0.020‰.
When the simplification following Equation (7) is used a
deviation of -0.0054‰ results, which is already more than a
quarter of the combined uncertainty.

7 7 5© 2022 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Ltd on behalf of the
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Conversion to another delta scale

In case two or more delta scales with different origins exist
for one isotope ratio, a conversion of delta values to any of the
delta scales might be necessary to enable comparability of
measurement results. Let us assume the delta value of sample x
was measured against isotope standard z, yielding δx/z and it
should be converted to the delta value of sample x against
isotope standard y, δx/y. In the same sequence isotope
standard y was measured against standard z, yielding δy/z.
Then δx/y can be calculated according to Equation (5)
(obtained by inserting Equation (3) into Equation (4):

δx=y ¼
δx=z þ 1
δy=z þ 1

-1 (5)

A special variation of delta scale conversion is the application
of an in-house isotope standard, which is a pure solution of
the element of interest and it is applied as the bracketing
standard to save the running short or (nearly) exhausted first
(original) isotope standard. The in-house isotope standard
simply represents isotope standard z and the link to isotope
standard y is obtained by the measurement of δy/z (y against
isotope standard z). In Figure 3 the scale conversion for
applying an in-house isotope standard is illustrated for the
magnesium delta scale. The applied in-house isotope
standard used for the SSB approach was ERM-AE143 and
the sample IRMM-009 was measured against this in-house
isotope standard. The delta value of DSM3 measured
against ERM-AE143, i.e., δ26=24DSM3=ERM-AE143 Mgð Þ ¼ δy=z is
known and published (Vogl et al. 2020). With both data
the delta value of IRMM-009 against DSM3 (-4.934‰ with
a combined uncertainty of uc = 0.020‰) can be calculated
by applying Equation (5). When the simplification following
Equation (8) is used a deviation of -0.016‰ results, which is
already more than three quarters of the combined uncer-
tainty and therefore cannot be neglected.

Simplification/linear approximation of
Equations (3) – (5)

Simple linear operations lead to a bias for the cases
presented above. To illustrate the extent of the bias and its
dependency on the magnitude of the corresponding delta
value(s) we simulated several scenarios using Equations (3)
– (5) to be able to compare the correct calculation, the
wrongly approximated linear calculation and the bias of the
latter for a range of delta values between -100‰ and +
100‰. All of the above described three cases, namely the
interchanging of sample and isotope standard, the use of a
secondary scale anchor and the scale conversion are

covered. The following linear approximations (that are
frequently applied in delta calculations) have been used
(e.g., Wolfsberg et al. 2010, Bao et al. 2020):

Approximation for ’inversion’ (section "Inversion of sam-
ple and isotope standard")

-1≪ δy=z ≪1 ) -δy=z
δy=z þ 1

≈-δy=z ) δz=y≈-δy=z

(6)

Approximation for ’sum’ (section "Second scale anchor")

-1 ≪ δx=z � δz=y ≪1 ) δx=z � δz=y þ δx=z þ δz=y
≈ δx=z þ δz=y ) δx=y≈δx=z þ δz=y

(7)

Approximation for ’difference’ (section "Conversion to
another delta scale")

-1≪ δy=z ≪1 ) δx=z þ 1
δy=z þ 1

-1≈δx=z-δy=z

) δx=y≈δx=z-δy=z (8)

In all cases, the absolute deviation Δδ of the approximated
result δappsmp=ref from the exact result δsmp=ref in ‰ and the
relative deviation Δrelδsmp=ref ¼ δappsmp=ref -δ

exc
smp=ref

� �
=δsmp=ref in

% were calculated. The calculations are summarised in an
Excel® file in the online supporting information. The results
are depicted in Figures S1–S9 in Appendix S2 (online
supporting information). The results show that the linear
approximations can – in rare, but hardly predictable,
circumstances – lead to results with a bias smaller than the
uncertainty of the exact result. But in the majority of cases the
deviations are much larger than uncertainties of the exact
results (sometimes even as much as several ‰). Therefore, it
always seems to be a wise decision to prefer the exact
solutions (Equations 3–5) to the above approximations to be
on the safe side. In the age of spreadsheet calculation
software this seems to be an acceptable inconvenience. In
Table 1 some exemplary comparisons between the exact
and simplified solutions are compiled demonstrating the
necessity to use the exact equations.

Measurement uncertainty associated with
delta values

Measurement uncertainty is a "Non-negative parameter
characterising the dispersion of the quantity values being
attributed to a measurand, based on the information used"
(JCGM 2012). In other words, the measurement uncertainty
sets the limits within which a result is regarded as accurate,

7 7 6 © 2022 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Ltd on behalf of the
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i.e. precise and true. In contrast, a precision value only
provides the user with a measure of reproducibility, which is
a certain probability, mostly 95%, for a succeeding
measurement to fall into the same specified interval.
Therefore, measurement uncertainties are mandatory for all
delta measurements to enable traceability to the specified
delta scale and its scale anchor and to enable compara-
bility among all delta measurements. Although measurement
uncertainty meanwhile has been widely accepted and is
prescribed in international standards for testing laboratories
(ISO 2017) and reference material producers (ISO 2016), it
is hardly realised in isotope ratio measurements. Disregard-
ing the manifold reasons for this, a major obstacle is the lack
of information and of suitable approaches. To solve this, we
provide two approaches for calculating measurement
uncertainty in delta measurements together with calculation
tools.

Measurement uncertainty for a single
measurement

In research projects within which isotope ratio measure-
ments are applied, samples typically are processed and
measured only once. For sets of several tens or hundreds of
samples and a sample processing time of several days, the
expenditure of time would be too high, if repeated sample
processing is applied. Hence, we need an approach for
calculating the measurement uncertainty for single delta
measurements. The basic approach was developed by
Rosner et al. (2011) for thermal ionisation mass spectrometry
(TIMS) measurements and has been improved and modified
for MC-ICP-MS by Geilert et al. (2015). The equation for the
delta value is expanded by "adding" factors, κi, for
individual uncertainty contributions, leading to the equa-
tion we use for the uncertainty calculation (Equation (9).

-3.284

3.2950

0

internationally recognised
delta scale

in-house isotope standard
delta scale

Measurement

Inversion

Calculation

E
R

M
-A

E
14

3

E
R

M
-A

E
14

3
D

S
M

3

D
S

M
3

δz/z δy/z

δz/y δy/y

Figure 1. Inversion of sample and isotope standard. Conversion of the measured δy/z (scale anchor z ) to δz/y (scale

anchor y) i llustrated for the magnesium delta scale and the application of an in-house isotope standard (z, here

ERM-AE143) and the internationally recognised scale anchor (y , here DSM3).
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These factors, κi, have the value one (in order to leave the
actual value untouched) and a specific uncertainty contri-
bution. Additionally, the measured isotope ratio of the
isotope standard is replaced by the mean of the isotope
ratios of the preceding and succeeding isotope standard,
thus reflecting the real measurement procedure.

δi=jsmp=ref Eð Þ ¼ r i=jsmp � κ1 � κ2 � κ3 � κ6 � κ7

0:5� r i=jref,1 þ r i=jref,2
� �

� κ4
� κ5

2
4

3
5-1

(9)

In Equation (9) we added up to seven factors κi represent-
ing uncertainty contributions from (1) the sample digestion,
(2) the analyte-matrix separation, (3) incompletely corrected
mass spectrometric background, (4) the heterogeneity of the

bracketing standard, (5) the mass bias drift incompletely
compensated for by the bracketing approach, (6) the offset
in mass bias due to incomplete matrix matching, and (7)
residual interferences. It has to be noted here, that these
seven uncertainty contributions do not necessarily apply to
all measurement procedures, and in some cases further
factors κI need to be added, but in most cases these seven
factors κI reflect the reality of delta measurements carried
out by MC-ICP-MS. The associated uncertainties of the
factors κi are either obtained from data extracted from the
measurement sequence, from measurements carried out
during method development and/or validation or from
expert judgement. Examples on how to obtain these
uncertainties are provided in the references (Rosner
et al. 2011, Geilert et al. 2015, Tatzel et al. 2019, Vogl
et al. 2020).

internationally recognised
delta scale

in-house isotope standard
delta scale

Measurement

E
R

M
-A

E
14

3

IR
M

M
-0

09

δz/zδx/z

Calculation

Knowledge

IR
M

M
-0

09

δx/y

E
R

M
-A

E
14

3

δz/y

D
S

M
3

δy/y

-1.656 0

-3.284 0-4.934

Figure 2. Delta scale with anchor points at δy/y = 0 and δz/y ≠ 0. Conversion of the measured δx/z (scale anchor z) to

δx/y (scale anchor y), because the original scale anchor y might be exhausted, illustrated for the magnesium delta

scale and the application of an in-house isotope standard (z, here ERM-AE143) and the internationally recognised

scale anchor (y , here DSM3) using the knowledge of the δz/y ≠ 0 acquired prior to the exhaustion of y .
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The combined standard uncertainty of the delta value
can then be calculated either by applying special software
such as the GUM Workbench (Metrodata GmbH, Braun-
schweig, Germany), by using the Kragten approach
(Kragten 1994), the NIST uncertainty machine (NIST 2021),
or by using the square sum approach via Equation (10):

u δi=jsmp=ref Eð Þ
� �

¼ δi=jsmp=ref Eð Þ þ 1
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

�
r i=jsmp

�

r i=jsmp

0
@

1
A

2

þ
u r i=j

ref,1

� �

r i=j
ref,1

þr i=j
ref,2

0
@

1
A

2

þ
u r i=j

ref,2

� �

r i=j
ref,1

þr i=j
ref,2

0
@

1
A

2

þ ∑
7

l¼1

u κlð Þ
κl

� �2

vuuuuuuuut
(10)

Here it has to be noted that numerical differentiation, which
is applied in the Kragten approach and in the "GUM
Workbench", can lead to slight biases when applied to non-
linear relationships. The Monte-Carlo method considers non-
linear relationships and leads to correct results. Therefore, it
can be used for validating the application of numerical
differentiation, which is the reason why the "GUM Work-
bench" also contains a Monte-Carlo module.

An Excel template for calculating the measurement
uncertainty according to Equation (10) is provided in the
online supporting information (see tab MU Single measure-
ment). Note: Measured isotope ratios and their associated
uncertainties have to be entered as absolute values. This
applies also for the factors κi. The value of κI is one and for
an associated standard uncertainty of 1‰ (assumed value)
the value 0.001 has to be entered. The standard uncertainty
of a measured isotope ratio typically is the standard
deviation of the mean.

The expanded measurement uncertainty can be
obtained from the combined standard uncertainty (Equa-
tion (10) by multiplying it with the coverage factor k, which in
most cases is 2 provided the distribution is normal and the
degrees of freedom is high (sufficiently large number of
measurement points).

A practical example is the measurement of the
δ7=6smp=LSVEC in a cathode material of a Li battery and its
associated measurement uncertainty (Winckelmann et
al. 2021). The 7Li/6Li isotope ratio measurements were
carried out in SSB mode by applying MC-ICP-MS as
described in Winckelmann et al. (2021). The measured

Table 1.
Compilation of examples for the absolute and relative deviations (Δδsmp/ref and Δrel δsmp/ref, resp.) of the
simplified solutions (calculated using Equations 6–8) from the exact solutions (according to Equations 3–5)

Inversion of sample x and reference z (section Inversion of sample and isotope standard)

Exact solution Approximation Abs. bias Rel. bias

Eqn. 3 Eqn. 6
δy/z (‰) δz/y (‰) δz/y (‰) Δδz/y (‰) Δrel δz/y (%)
-80.00 86.96 80.00 -6.96 -8.0
3.295 -3.284 -3.295 -0.011 0.33
100.0 -90.9 -100.0 -9.1 10
Second scale anchor (section Second scale anchor)

Exact solution Approximation Abs. bias Rel. bias
Eqn. 4 Eqn. 7

δx/z (‰) δz/y (‰) δx/y (‰) δx/y (‰) Δδx/y (‰) Δrel δx/y (%)
3.400 -3.284 0.105 0.116 0.011 11
-1.656 -3.284 -4.935 -4.940 -0.005 0.11
-100 -10.0 -109 -110 -1.0 0.92
Conversion to another delta scale (section Conversion to another delta scale)

Exact solution Approximation Abs. bias Rel. bias
Eqn. 5 Eqn. 8

δx/z (‰) δy/z (‰) δx/y (‰) δx/y (‰) Δδx/y (‰) Δrel δx/y (%)
-100.00 3.295 -102.96 -103.30 -0.34 0.33
-1.656 3.295 -4.935 -4.951 -0.016 0.33
100.00 10.0 89.11 90.00 0.89 1.0

See the paragraph above. In some cases, the relative deviation is likely to reach 11%, which is by far more than the uncertainty associated with the actual result,
underpinning the importance of the use of the exact equations. See also the tables in the online supporting information.
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7Li/6Li isotope ratios for measurement 1 of sample A1 and
the preceding and the succeeding isotope reference
material LSVEC1 and LSVEC2 are listed in Table 2 with
their associated standard uncertainties expressed as the
standard deviation of the mean of each measurement. The
individual uncertainty contributions κi are listed in Table 2
as well, and were obtained as follows. The uncertainty
contribution for sample digestion κ1 was estimated as
0.1‰ (corresponds to 0.0001) based on expert judge-
ment, e.g., here the reproducibility of individually digested
samples can be applied. Those for the analyte-matrix
separation was assessed as half of the maximum differ-
ence between the delta values of a Li ICP standard and of
the same Li ICP standard after separation. The separated Li
ICP standard was mixed with a simulated matrix prior to
the separation. As a combined measure for κ1 and κ2 half
of the difference between the measured delta value and
the reference or assigned delta value of a suitable
reference material or sample can be used. The instrumental
blank measured in 2% nitric acid was subtracted from
each measurement. Due to fluctuations in the instrumental
blank, however, an uncertainty contribution occurs. This
contribution κ3 was assessed as the standard deviation of
the mean of all blank measurements in the measurement
sequence divided by the average signal intensity of all
samples. The heterogeneity of the bracketing standard
NIST RM 8545 (LSVEC), represented by κ4, was estimated
as 0.1‰ (corresponding to 0.0001) based on expert
judgement, e.g., here the typical repeatability of isotope
standard measurements can be applied. Even better would
be the spread of individually dissolved or diluted aliquots
of the bracketing standard. Although a drift in mass bias is
compensated by the SSB approach as explained above, a
residual uncertainty contribution κ5 remains. This is calcu-
lated as the average of the individual drifts between two

succeeding standard measurements divided by two. The
influence of unmatched matrix between sample and
standard, represented by κ6, was estimated as 0.15‰
(corresponding to 0.00015) based on expert judgement.
More detailed investigations can determine the difference
in delta values for an acid mismatch or for an incom-
pletely separated matrix. Contributions due to mass spec-
trometric interferences (optionally κ7) do not apply. By
combining the individual uncertainty contributions listed in
Table 2 by applying Equation (10) yields a combined
standard uncertainty of 0.324‰. The final result for the
delta value δ7=6A1=LSVEC in sample A1 is 14.78‰ with an
associated expanded measurement uncertainty of 0.65‰
(k = 2). This is the value and its associated measurement
uncertainty of measurement 1. Combining this with mea-
surements 2 and 3 yields the final delta value of
δ7=6A1=LSVEC ¼ 14:52‰ with an associated expanded mea-
surement uncertainty of 0.70‰ (k = 2) as published in
Winckelmann et al. (2021).

Measurement uncertainty for repeated
measurements

In some applications, however, more reliable data are
required for reference measurements or for linking an in-
house isotope standard to a delta scale. ‘More reliable
data’, however, is a qualitative statement, which can hardly
be used in real world applications. Turning it into a
quantitative statement results in ‘smaller measurement
uncertainties’. Most typically, these are obtained by increas-
ing the number of measurements. In the case of delta
measurements this means we measure the respective
sample N times in a measurement sequence by applying
the SSB approach. This gives us N isotope ratios for the
sample and N + 1 isotope ratios for the standard. All

Table 2.
Measured quantity values and their associated standard uncertainties and determined and assessed
uncertainty contributions for measurement 1 of δ7=6A1=LSVEC in sample A1 (Winckelmann et al . 2021)

Symbol Quantity Unit Value u

r7=6A1 Measured ratio 7Li/6Li in sample A1 V/V 15.41055 0.00020
r7=6LSVEC1 Measured ratio 7Li/6Li in standard LSVEC1 V/V 15.18897 0.00023
r7=6LSVEC2 Measured ratio 7Li/6Li in standard LSVEC2 V/V 15.18323 0.00023
κ1 Uncertainty contribution for sample digestion 1 1 0.00010
κ2 Uncertainty contribution for analyte-matrix separation 1 1 0.000088
κ3 Uncertainty contribution for blank 1 1 0.00022
κ4 Uncertainty contribution for standard inhomogeneity 1 1 0.00010
κ5 Uncertainty contribution for mass bias drift 1 1 0.000047
κ6 Uncertainty contribution for matrix effects on the mass bias 1 1 0.00015
δ7=6smp=LSVEC Lið Þ Isotope delta value for the ratio 7Li/6Li in sample A1 vs. LSVEC ‰ 14.78 0.32
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measured isotope ratios are correlated via the mass
spectrometer, its mass bias and the drift thereof. When for
example the mass bias drifts, standard and sample isotope
ratios are affected the same way. Now, standard and
sample are not measured at the same time, which
complicates the assessment of the correlation. However,
when calculating the average of the preceding and the
succeeding standard of each sample measurement, a
standard isotope ratio is obtained which in first approxima-
tion corresponds to the time of the sample measurement
(Figure 4), provided the drift in the corresponding time
interval is continuous and approximately homogenous.

This results in N pairs of isotope ratios, one of which is the
sample isotope ratio and the other one is the averaged
standard isotope ratio. When listing these N pairs of isotope
ratios in the order of their measurement time, the empirical
covariance u(xi,xj) for the sample and the standard isotope

ratios is calculated according to Equation (11), and the
empirical correlation coefficient rcor according to Equa-
tion (12) (JCGM 2008):

u xi , xj
� � ¼

∑
N

l¼1
xi ,l -xi
� �� xj,l -xj

� �h i

N � N-1ð Þ (11)

r cor xi , xj
� � ¼ u xi , xj

� �
u xið Þ � u xj

� � with -1 ≤ r cor ≤ þ 1 (12)

With r i=jsmp and r i=jref , the averaged isotope ratios of the
sample and the averaged standards, the delta value is
calculated according to Equation (1). The associated
combined uncertainty is calculated either by applying
special software such as the GUM Workbench (Metrodata
GmbH, Braunschweig, Germany), by using the Kragten
approach (Kragten 1994), the NIST uncertainty machine

internationally recognised
delta scale

in-house isotope standard
delta scale
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Knowledge
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Figure 3. Scale conversion from δx/z (scale anchor z) to δx/y (scale anchor y) i llustrated for the magnesium delta scale

and the application of an in-house isotope standard (z, here ERM-AE143) and the internationally recognised scale

anchor (y , here DSM3).
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(NIST 2021), or by using the square sum approach via
Equation (13).

u δi=jsmp=ref Eð Þ
� �

¼ δi=jsmp=ref Eð Þ þ 1
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u r i=jsmp

� �

r i=jsmp

0
@

1
A

2

þ
u r i=jref
� �

r i=jref

0
@

1
A

2

-2
u r i=jsmp, r

i=j
ref

� �

r i=jsmpr
i=j
ref

vuuut

(13)

In case a processed sample was analysed several times, the
corresponding uncertainty contributions κi must be added
analogue to Equation (10). Section S.4 demonstrates how
Equation (13) was derived.

Here it has to be noted as well that numerical
differentiation, which is applied in the Kragten approach
and in GUM Workbench, can lead to slight biases when
applied to non-linear relationships. The Monte-Carlo
method considers non-linear relationships and leads to
correct results. Therefore, it can be used for validating the
application of numerical differentiation, which is the reason
why GUM workbench also contains a Monte-Carlo module.

Application of an in-house isotope
standard

Often the first (original) delta standards, those represent-
ing the origin of the delta scale (δ = 0), are in short supply or

even not available. In this case it is reasonable to apply a
second standard or an in-house isotope standard. In-house
isotope standards, provided they are present in solution form,
have the advantage that they are relatively cheap, and their
supply most commonly is not limited. The disadvantages are
that in-house isotope standards need to be calibrated
against the first or second standard and that this calibration
adds an additional uncertainty component. The uncertainty
related to the calibration, however, can be significantly
reduced by performing a sufficiently large number of
measurements (N > 10).

Examples and required measurements

As an example we choose those from Figure 3 where
the δ26/24(Mg) value of sample x, represented by ERM-
AE144 is measured by using an in-house isotope standard y
as bracketing standard, here represented by ERM-AE143.
After measurements are completed, the measured delta
value δ26=24ERM-AE144=ERM-AE143 Mgð Þ needs to be converted to
δ26=24ERM-AE144=DSM3 Mgð Þ with DSM3 (index z) representing the
origin of the Mg delta scale. For this we need two measure-
ments/measurement series. First, the measurement
of δ26=24ERM-AE144=ERM-AE143 Mgð Þ and second the measurement
of δ26=24DSM3=ERM-AE143 Mgð Þ. Concerning δ26=24ERM-AE144=ERM-AE143

Mgð Þ we distinguish in the following calculation example
two cases: (a) one individual measurement of
δ26=24ERM-AE144=ERM-AE143 Mgð Þ (see above) and (b) repeated
measurements of δ26=24ERM-AE144=ERM-AE143 Mgð Þ within one
measurement sequence (see chapter Measurement

1 2 3
0.470270
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0.470285
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Figure 4. Bracketing of the measurement of an unknown sample (rsmp) by one measurement each of a standard

before rref(t1) and after rref(t3) the sample measurement, as displayed in a diagram of isotope ratios r versus time t .

The arithmetic mean rref = [r ref(t1) + rref(t3)]/2 of the measurement values represents the linear interpolation to the

time t2 of the sample measurement. The difference rsmp – rref is used to calculate the delta value.
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uncertainty for repeated measurements). The intercalibration
of the ERM-AE143 and the DSM3 delta scale has already
been carried out and we can take δ26=24DSM3=ERM-AE143 Mgð Þ
from the literature (Vogl et al. 2020). In case the standard
used as in-house isotope standard has not yet been
calibrated vs. the primary delta standard these measure-
ments need to be carried out in the readers laboratory (for
uncertainty calculation see chapter Measurement uncertainty
for repeated measurements and Repeated measurements
of δ26=24ERM-AE144=ERM-AE143 Mgð Þ) or via an intercomparison as
described in Vogl et al. (2020).

Single measurement of δ26=24ERM-AE144=ERM-AE143 Mgð Þ

A single Mg isotope ratio measurement of ERM-AE144
was carried out by MC-ICP-MS as described in Vogl
et al. (2020) by applying ERM-AE143 as bracketing stan-
dard. The measurement results, the associated standard
uncertainties, and additional uncertainty contributions κI are
listed in Table 3. Additional uncertainty contributions for
sample digestion, κ1, analyte-matrix separation, κ2, matrix
effects on the mass bias, κ6, and mass spectrometric
interferences, κ7, do not apply here, because the sample is
a pure Mg solution. Consequentially the uncertainties of κ1,
κ2, κ6, and κ7 were set to zero. The uncertainty contribution
for blank, κ3, was obtained as set out in the section
Measurement uncertainty for a single measurement, the
uncertainty contribution for standard inhomogeneity, κ4, was
obtained from the certification report (ubb, Vogl et al. 2018)
and the uncertainty contribution for mass bias drift, κ5, was
obtained by dividing the overall drift within the SSB
measurement sequence by the number of measured
samples. By applying Equation (1) and Equation (10), the

δ26=24ERM-AE144=ERM-AE143 Mgð Þ value and its associated combined
uncertainty were calculated.

With δ26=24ERM-AE144=ERM-AE143 Mgð Þ, its associated combined
standard uncertainty from Table 3 and δ26=24ERM-AE143=DSM3

Mgð Þ ¼ -3:284‰ and its associated combined standard
uncertainty of uc δ26=24ERM-AE143=DSM3 Mgð Þ ¼ 0:013‰

� �
from

Vogl et al. (2020) the final result can be calculated
as δ26=24ERM-AE144=DMS3 Mgð Þ ¼ -4:928‰ with its associated
combined standard uncertainty uc δ26=24ERM-AE144=DMS3 Mgð Þ

� �

¼ 0:028‰.

Repeated measurements of δ26=24ERM-AE144=ERM-AE143
Mgð Þ

A series of twelve Mg isotope ratios in ERM-AE144 was
measured at PTB by MC-ICP-MS as described in Vogl
et al. (2020) by applying ERM-AE143 as the bracketing
standard. The twelve measurements were carried out in
groups of four within three independent sequences (on three
different days). Each of the twelve measurements as well as
the necessary bracketing measurements consisted of eigh-
teen cycles with 8 s integration time per cycle. The signal
intensities of all ratios were corrected for blanks prior to any
calculations. The final delta value and its associated
combined standard uncertainty were calculated according
to Equation (13) from the section Measurement uncertainty
for repeated measurements.

A final result of δ26=24ERM-AE144=ERM-AE143 Mgð Þ ¼
-1:643� 0:042ð Þ‰ with k = 1 was obtained. The calcu-
lation is shown in detail in the Excel file of the online
supporting information on the tab "MU Repeated

Table 3.
Measured quantity values and their associated standard uncertainties and determined and assessed
uncertainty contributions the δ26=24ERM-AE144=ERM-AE143 Mgð Þ

Symbol Quantity Unit Value u

r26=24ERM-AE144 Measured ratio 26Mg/24Mg in sample ERM-AE144 V/V 0.1596742 0.0000020

r26=24ERM-AE143_1 Measured ratio 26Mg/24Mg in standard ERM-AE143_1 V/V 0.1599442 0.0000016

r26=24ERM-AE143_2 Measured ratio 26Mg/24Mg in standard ERM-AE143_2 V/V 0.1599317 0.0000019

κ1 Uncertainty contribution for sample digestion 1 1 0
κ2 Uncertainty contribution for analyte-matrix separation 1 1 0
κ3 Uncertainty contribution for blank 1 1 0.0000077
κ4 Uncertainty contribution for standard inhomogeneity 1 1 0.000010
κ5 Uncertainty contribution for mass bias drift 1 1 0.0000079
κ6 Uncertainty contribution for matrix effects on the mass bias 1 1 0
κ7 Uncertainty contribution for mass spectrometric interferences 1 1 0
δ26=24ERM-AE144=ERM-AE143 Mgð Þ Isotope delta value for the ratio 26Mg/24Mg in sample ERM-AE144 vs.

ERM-AE143
‰ -1.649 0.025
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sample x (IRMM-009) against the in-house isotope standard z, enables finally the calculation of δx/y linked to the

first (original) delta scale via a second scale anchor w and the in-house isotope standard z .
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measurements". Since it mainly uses the three mean values
of the three sequences, to a certain degree the day-to-day
variance is already accounted for.

Special case: in-house isotope standard vs.
secondary isotope standard vs. primary isotope
standard

Where δy/z has not been published and the first
(original) delta standard y is not available, the in-house
isotope standard z has to be calibrated vs. a second
delta isotope standard w. This requires the application of
Equation (5) a second time and in between the use of
Equation (3): firstly, for linking the in-house isotope stan-
dard z to the first (original) standard by measuring z
against w (δz/w) while knowing y against w (δy/w). Since
applying Equation (5) yields δz/y it has to be inverted to
δy/z using Equation (3), resulting in Equation (14). Then,
Equation (5) is applied a second time, for linking the
measured delta value δx/z of the sample x against the in-
house isotope standard z to the first isotope standard y,
which leads to Equation (15). Equation (15) provides the
link of sample x via the in-house isotope standard z and
the second isotope standard w to the first (original)
isotope standard y.

δy=z ¼
δy=w þ 1
δz=w þ 1

-1 (14)

δx=y ¼
δx=z þ 1
� �� δz=w þ 1

� �
δy=w þ 1

-1 (15)

A practical example is the use of an in-house isotope
standard for δ26=24 Mgð Þ measurements while the first
(original) standard DSM3 is not available. Then, the in-
house isotope standard can be linked to ERM-AE143, which
for the link to DSM3 is established (Vogl et al. 2020).
Figure 5 illustrates for the above example the links between
the known and measured values as well as the steps in
which Equation (5) and Equation (3) are applied. Another
example is the use of an in-house isotope standard for
δ34=32 Sð Þ measurements which needs to be linked to IAEA-
S1, the delta standard for sulfur, which itself needs to be
linked to the virtual VPDB scale.

The calculation is shown in detail in the Excel file of the
online supporting information on the tab "Example Special
case".

Conclusions

The exact equations are provided for converting any
delta value of a specific isotope ratio measured on a specific

delta scale to a delta value of the same isotope ratio but on
another scale. The equations are set up for the three cases,
namely the interchanging of sample and standard, the use
of a secondary scale anchor and the scale conversion. Real-
world examples explain and illustrate the application of the
provided equations. Additionally, these calculations are
carried out for a wide range of numerical delta values
and are compared with the linear approximations. The bias
of the linear approximation amounts to values of up to
several ‰, depending on the numerical values of the
involved delta values. This clearly demonstrates that the
linear approximation is a very rough estimate and may not
be used for exact calculations.

The exact calculation or conversion of the delta value
to a specific delta scale / scale anchor is one prerequisite
for realising comparability of delta values obtained in
different studies and laboratories. The second main
prerequisite is the measurement uncertainty associated with
the delta value to be compared. Therefore, two alternatives
for obtaining measurement uncertainties associated with
delta values are presented. The first alternative is based on
the approach developed by Rosner et al. (2011) and
focuses on a single measurement (or very few SSB
measurements). It considers the contributions by sample
preparation and matrix separation in a pragmatic way by
inserting factors κI, which have the value one and an
uncertainty that represents the individual contribution. The
second approach focuses on delta measurements, which
are carried out more often to obtain smaller uncertainties.
The higher number of measurements is mainly applied for
reference measurements, such as the certification of a
reference material or the assessment of an in-house isotope
standard. This uncertainty approach considers correlations
between standard and sample measurements, thus leading
to reduced measurement uncertainties. This second
approach can be expanded as well to processed samples
by adding the individual contributions for sample prepara-
tion and matrix separation.

Finally, the application of in-house isotope standards is
explained in a step-by-step procedure and the calculation of
the measurement uncertainty associated with the sample
measurement is described. For the application of an in-house
isotope standard, as well as for all calculations within this
work, an Excel file is provided in the online supporting
information that offers spreadsheets for the individual calcu-
lations. With the equations presented here and the Excel
spreadsheets provided, it is manageable for every analyst to
estimate reliable and reasonable measurement uncertainties
for the measured delta values. This will improve the
comparability and lead to higher reliability of delta values.
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Gröning M. (2011)
Improved water δ2H and δ18O calibration and calculation
of measurement uncertainty using a simple software tool.

Rapid Communications in Mass Spectrometry, 25, 2711–
2720.

ISO (2016)
General requirements for the competence of testing and
calibration laboratories (ISO 17025:2017). International
Organization for Standardization (Geneva).

ISO (2017)
General requirements for the competence of reference
material producers (ISO 17034:2016). International
Organization for Standardization (Geneva).

JCGM (2008)
Evaluation of measurement data – Guide to the expression
of uncertainty in measurement. (JCGM 100:2008). https://
www.bipm.org/en/publications/guides

JCGM (2012)
International vocabulary of metrology – Basic and general
concepts and associated terms (3rd edition). VIM, JCGM
200:2012. https://www.bipm.org/en/publications/guides

Kragten J. (1994)
Tutorial Review. Calculating standard deviations and
confidence intervals with a universally applicable
spreadsheet technique. Analyst, 119, 2161–2165.

He Y. and Bao H. (2019)
Predicting high-dimensional isotope relationships from
diagnostic fractionation factors in systems with diffusional
mass transfer. ACS Earth and Space Chemistry, 3, 120–128.

Meija J. and Chartrand M.M.G. (2018)
Uncertainty evaluation in normalization of isotope delta
measurement results against international reference
materials. Analytical and Bioanalytical Chemistry, 410,
1061–1069.

NIST (2021)
NIST uncertainty machine. https://uncertainty.nist.gov/

Rosner M., Pritzkow W., Vogl J. and Voerkelius S. (2011)
Development and validation of a method to determine the
boron isotopic composition of crop plants. Analytical
Chemistry, 83, 2562–2568.

Tatzel M., Vogl J., Rosner M., Henehan M. J. and Tütken
T. (2019)
Triple isotope fractionation exponents of elements
measured by MC-ICP-MS – An example of Mg. Analytical
Chemistry, 91, 14314–14322.

Vautour G., Poirier A. and Widory D. (2015)
Tracking mobility using human hair: What can we learn
from lead and strontium isotopes? Science and Justice, 55,
63–71.

Vogl J. and Pritzkow W. (2010)
Isotope reference materials for present and future isotope
research. Journal of Analytical Atomic Spectrometry, 25,
923–932.

Vogl J. and Rosner M. (2012)
Production and certification of a unique set of isotope and
delta reference materials for boron isotope determination in
geochemical, environmental and industrial materials.
Geostandards and Geoanalytical Research, 36, 161–175.

7 8 6 © 2022 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Ltd on behalf of the
International Association of Geoanalysts.

 1751908x, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ggr.12450 by Fak - B

am
 B

erlin, W
iley O

nline L
ibrary on [15/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.bipm.org/en/publications/guides
https://www.bipm.org/en/publications/guides
https://www.bipm.org/en/publications/guides
https://uncertainty.nist.gov/


Vogl J., Brandt B., Rienitz O., Noordmann J. and
Malinovskiy D. (2018)
Certification report for the isotope reference materials
ERM®-AE143, ERM®-AE144 and ERM®-AE145 – A set of
three primary isotope reference materials certified for their
magnesium isotope amount ratios, with ERM®-AE143
additionally serving as the new δ = 0 standard for
magnesium. Bundesanstalt für Materialforschung und -
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