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Abstract
Numericalmodels built as virtual-twins of a real structure (digital-twins) are considered the future ofmonitoring systems. Their
setup requires the estimation of unknown parameters, which are not directly measurable. Stochastic model identification is
then essential, which can be computationally costly and even unfeasible when it comes to real applications. Efficient surrogate
models, such as reduced-order method, can be used to overcome this limitation and provide real time model identification.
Since their numerical accuracy influences the identification process, the optimal surrogate not only has to be computationally
efficient, but also accurate with respect to the identified parameters. This work aims at automatically controlling the Proper
GeneralizedDecomposition (PGD) surrogate’s numerical accuracy for parameter identification. For this purpose, a sequence of
Bayesian model identification problems, in which the surrogate’s accuracy is iteratively increased, is solved with a variational
Bayesian inference procedure. The effect of the numerical accuracy on the resulting posteriors probability density functions
is analyzed through two metrics, the Bayes Factor (BF) and a criterion based on the Kullback-Leibler (KL) divergence. The
approach is demonstrated by a simple test example and by two structural problems. The latter aims to identify spatially
distributed damage, modeled with a PGD surrogate extended for log-normal random fields, in two different structures: a truss
with synthetic data and a small, reinforced bridge with real measurement data. For all examples, the evolution of the KL-based
and BF criteria for increased accuracy is shown and their convergence indicates when model refinement no longer affects the
identification results.

Keywords Variational inference · Proper Generalized Decomposition · Goal-oriented · Digital twin · Random field

1 Introduction

Establishing a monitoring system for a transportation
infra structure is essential in order to obtain information about
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its current state and, therefore, ensure its safety. Changes in
material properties is one of the consequences of deteriora-
tion of a structure, affecting its response to static and dynamic
loads, as well as its reliability. Although these changes might
not be directly measurable, they can be inferred from moni-
toring data, given a model that represents the physics of the
system. The latest trend in monitoring systems are the so
called digital twins: virtual models of a real structure which
reflect the structure’s current state based (directly or indi-
rectly) on measurement data and can be used for predictive
purposes. Setting up these systems usually requires a model
identification process to calculate the unknown parameters
of interest. The model identification problem is a computa-
tionally costly inverse optimization process, which can be
unfeasible for real applications. In order to circumvent this
problem, the underlying numerical model can be replaced by
a surrogate model which can be evaluated more efficiently.
There aremany approaches constructing a suitable surrogate,
from reduced-order models to machine learning methods. In
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each case, the surrogate’s accuracy has an influence on the
identification results. The numerical error of the model is
often assumed to be much smaller than the measurement
error and, therefore, it is considered to have a minor influ-
ence.

In contrast, the focus of this paper is to explicitly investi-
gate the influence of the surrogate’s accuracy on the model
identification results. A new goal-oriented inference proce-
dure is introduced, consisting of adaptively building models
with increased accuracy, running Bayesian inference with
them and checking the changes in the results (due to the
difference in models) through two proposed metrics: the
Bayes Factor (BF) and theKullback-Leibler divergence (KL)
between the predictive posteriors. Once these criteria reach
convergence, a sufficiently accurate model is found. For this
work, a computationally efficient surrogate model is used,
obtained with the Proper Generalized Decomposition (PGD)
[1,2]. The inference method of choice is the variational
Bayesian approach after [3], allowing a very efficient calcu-
lation of the two convergence criteria. Although the proposed
procedure makes use of these two methods [4], it is certainly
not limited to them. The problem of selecting a sufficiently
accurate reduced-order model is presented in the context of
identifying a spatially-varying Young’s modulus field which
can account for variations in stiffness, e.g. caused by damage
or manufacturing imperfections. For that purpose, the PGD
approach is additionally extended to log-normal randomfield
parameters.

The paper is structured as follows: Sect. 1.1 provides a
general definition for model identification problems as well
as different approaches to solve them,while Sect. 1.2 gives an
introduction to thePGDmethod. Then inSect. 2, the coupling
of variational Bayesian inference with a PGD forward model
is derived and in Sect. 3 possible convergence criteria regard-
ing the model’s accuracy are discussed. Section 4 presents
a simple demonstration example, to show how these criteria
can be applied to define a sufficiently accurate model. Subse-
quently, the general PGD forward model for linear elasticity
with a Young’s modulus modeled by a log-normal random
field is derived (Sect. 5.1). Finally, the proposed convergence
procedure with a PGD forward model is applied to identify
spatially distributed stiffness fields in a truss example with
synthetic data (Sect. 5.2) and a small, reinforced bridge with
real measurement data (Sect. 5.3).

1.1 Model identification

Model identification problems are, in general terms, defined
as inverse problems. They aim at inferring some unknown
parameters θ of a certain model M, given some measure-
ments y related to the model outputs g(θ) depending on

the model parameters. Under the assumption of an additive
observation noise e, with noise parameters �, this results in:

y = g(θ)
︸︷︷︸

ModelM
+ e(�). (1)

In the present paper, the additive noise is assumed to beGaus-
sianly distributed (e ∼ N (0,�−1 I)), with unknown noise
precision matrix � to be inferred.

In deterministic methods for parameter identification, the
solution is obtained by minimizing the difference between
measurement data y and the model output g(θ):

k(θ) = y − g(θ). (2)

by e.g., least-squares, L p norm or weighted least-squares
ansatz [5]. These approaches use optimization methods to
return the best estimate for the parameters of interest. Note,
that the solutions are point-estimates of the parameters,
i.e. the results carry no information about how reliable or
probable they are. Probabilistic inference methods, on the
other hand, provide a probabilistic description of informa-
tion and beliefs, allowing for uncertainties. This is done
through Bayes’ theorem considering all unknown parame-
ters as � = [θ ,�]

P(� | y,M)
︸ ︷︷ ︸

posterior

=
likelihood

︷ ︸︸ ︷

P( y | �,M)

prior
︷ ︸︸ ︷

P(� | M)
∫

P( y | �,M)P(� | M)d�
︸ ︷︷ ︸

evidenceP( y|M)

, (3)

where the prior probability density function (pdf ) reflects
the prior knowledge on the parameters �, the likelihood
defines the probability that the measurements y are observed
given parameters �. The normalization term P( y | M)

describes the evidence for the data y considering the model
M. Note, the unknown parameters � include model θ as
well as noise parameters�. Theposterior is apdf that reflects
the updated knowledge about the parameters after observa-
tion of the data [6]. Its computation however, is cumbersome
when dim(�) >> 1, which requires approximations.

There are two main categories of approximate Bayesian
inference methods: sampling-based (e.g., Markov Chain
Monte Carlo (MCMC)) and optimization-based (e.g., varia-
tional inference). In the former category, some of the most
famousmethods are theMetropolis-Hastings [7,8], Gibbs [9]
andHamiltonianMonteCarlo [10] algorithms.MCMCmeth-
ods are powerful tools for approximate Bayesian Inference,
as they are asymptotically unbiased. Another advantage is
their nonparametric nature [11], i.e., they do not require
assumptions on the functional form of the posterior. How-
ever, there are also limitations associated with MCMC,
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namely the high cost of sample generation and the very
larger number of samples needed. Variational inference,
on the other hand, is often computationally more efficient,
being more appropriate for high-dimensional problems with
computationally involved forward models. It provides an
approximation to probability density functions that are diffi-
cult to compute (intractable integrals) through optimization
[12,13], details are given in Sect. 2. In the works of [14]
and [15], it was also used to infer material properties.
Among the limitations of the method is the fact that, unlike
MCMC, the inference results canbebiased and their accuracy
strongly depends on the family of approximating distri-
butions employed. In this paper, the variational Bayesian
inference algorithm proposed by [3] for nonlinear forward
models is coupled with a PGD forward model. In this way,
the efficient forward model directly increases the compu-
tational efficiency of the inference process even more and
allows an efficient computation of the proposed convergence
criteria.

1.2 Proper generalized decomposition (PGD)

PGD is a reduced-order modeling approach. The key idea of
PGD is the a-priori computation of abacuses, like numerical
tables,withwhich aparameter dependent solutionof a system
is given, for a defined parameter space. An overview of the
PGD approach can be found e.g., in [1] as well as in [2],
concerning their use for digital twins. The unknown solution
field (e.g., a displacement field u) depending on space x and
model parameters θ is approximated in a separable form

u ≈ un(x, θ j ) =
n

∑

i=1

Fi
0(x)

d
∏

j=1

Fi
j (θ j ) (4)

with n mode sets. Each set consists of lower dimensional
PGD modes Fi

j depending only on a single PGD coordi-
nate θ j , the model parameters, and the space x. In some
cases, even the space could be further separated in its compo-
nents. The PGDmodes are computed by solving the classical
weak form of the given problem’s partial differential equa-
tion (PDE), e.g., the balance of linear momentum, now over
the D = dx + dθ -dimensional space. The multi-dimensional
integral can also be separated into single lower dimensional
integrals resulting from the chosen separated form of un in
Eq. (4). As a result, the exponential scaling of the compu-
tational effort in multidimensional problems is reduced to
a linear scaling and the curse of dimensionality is bypassed.
The approach resembles the canonical tensor decomposition,
which is known as the most data sparse representation of a
tensor. For more information about tensor approximations,
the reader is referred to the works of [16] and [17] and their
citations. In the last two decades, the PGD method has been

developed for a variety of applications, among these, surgery
simulations [18], design optimization [19,20], data-driven
applications [21], viscoelastic [20], elastoplastic [22], con-
tact problems [23] as well as stochastic Galerkin methods
[24,25]. The PGD approach for stochastic problems was
applied to linear structural dynamics in [26]. The applica-
tion of PGD models to reduce the computational effort of
sampling-based approaches, can be found in the context of
reliability analysis in [27,28] and for process calibration of
additive manufacturing in [29]. Furthermore, Rubio et al.
[30] used a PGD forward model for real-time identification
and model updating based on Monte Carlo sampling as well
as based on a transport map sampling [31]. Djatouti et al.
[32] proposed a goal-oriented inverse method, coupling a
PGDmodel and a variant of themodified constitutive relation
error approach, which automatically identifies and updates
only themodel parameterswith the highest influence. A PGD
derivation for a Young’s modulus normal, random field was
given in [33], which is here extended for a log-normal field.

2 Variational bayesian inference

For most problems, the analytical computation of the poste-
rior distribution given in Eq. (3), for the specific (surrogate)
model Mn (n refers to the numerical accuracy degree, e.g.
number of modes in Eq. (4)) and the unknown parame-
ters � is not feasible and approximations have to be made
instead. In the variational Bayesian approach, this is done
by choosing a simpler distribution q(� | Mn) from a
selected family of distributions to approximate the posterior
[3,13]. This approximation should be as close as possible to
the true posterior, so a measure of “closeness” between the
two distributions is used, namely the Kullback-Leibler (KL)
divergence defined as

K L(q‖P) =
∫

q(�)
︸ ︷︷ ︸

approx. posterior

log
q(�)

P(� | y)
︸ ︷︷ ︸

true posterior

d�. (5)

The optimal q is the one that minimizes the KL-divergence
in Eq. (5). Notice that the reference to the model Mn was
dropped in Eq. (5) for convenience, so, unless stated other-
wise, it should be assumed that the pdfs are conditioned on
the same model. The KL computation in Eq. (5) depends
on the exact posterior, i.e., the term that should be approxi-
mated, so Eq. (5) must be rewritten in more tractable terms
[3] (derivation can be found in appendix A) to obtain

K L(q‖P)
︸ ︷︷ ︸

KL divergence
(minimize)

+
∫

q(�)log
P( y,�)

q(�)
d�

︸ ︷︷ ︸

free energy F/Lower bound
(maximize)

= log P( y)
︸ ︷︷ ︸

log evidence
(fixed)

, (6)
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where P( y,�) = P( y | �)P(�) and the second term is
called free energy. Since the log evidence is independent of
the parameters �, minimizing the KL is equivalent to max-
imizing the free energy F , which will then be the objective
of the optimization. The free energy can be seen as a lower
bound on the evidence of the measurements and, therefore,
is also known as Evidence Lower BOund (ELBO).

Several algorithms fall into the variational inference
family, e.g., Automatic Differentiation Variational Inference
[34], Stochastic Variational Inference [35] and Coordinate-
ascentVariational Inference [13]. The latter is the one applied
in this paper, following the work of Chappell et al. [3]. In this
approach, some assumptions are made to make the integrals
in Eq. (6) tractable, namely: the linearization of the model,
the mean field approximation and the conjugate-exponential
restriction. When g(θ) is nonlinear, the formulation in [3]
proposes a first-order Taylor series

g(θ) ≈ g(m) + J(m) (θ − m), (7)

where J is the Jacobian matrix evaluated at the expansion
point m.

The second assumption states that the joint posterior dis-
tribution can be factorized into independent partitions, as

q(�1,�2, ...,�m) =
m

∏

i=1

q(�i ), (8)

where �i corresponds to a group of parameters, each group
with its own separate posterior distribution. The last assump-
tion imposes the use of priors that are conjugate to the
likelihood (i.e., which have the same parametric form of the
posterior) and that come from the exponential family. Then,
by substituting Eq. (8) into Eq. (6) and applying calculus
of variations, the approximate pdfs q(�i ) that maximize the
objective function Eq. (6) are given as

q∗(�i ) = argmax
q(�i )

F(q, y)

logq∗(�i ) ∝
∫

q(�−i )log(P( y | �)P(�))d�−i ,

(9)

where �−i represents all parameters different from �i .
Here, the set of latent (unknown) variables (referenced in

Eq. (8) and Eq. (9)) consist of the two already mentioned
groups: � = [θ,�] considering model and noise parame-
ters. In the following, it is assumed that only one noise term
exists, with a single noise precision parameter φ.

In the context of this paper, the forward model g(θ) is
given as a computationally efficient PGDmodel in separated
form like Eq. (4) as an explicit function of the identification
parameters θ

g(θ) := uns (θ) =
n

∑

i=1

Fi
0(xs)

d
∏

j=1

Fi
j (θ j ). (10)

In the latter, it is assumed that displacement measurements
at known sensor positions xs are used for the inference pro-
cess. Otherwise, the required output (e.g., strains) has to be
computed based on the PGD sensor displacement field uns in
an additional step leading to a similar form with strain PGD
modes. The PGD forward model in Eq. (10) is additionally
approximated by the linearization (Eq. (7)). Since, the PGD
mode functions Fi

j are standard polynomial shape functions
for the interpolation and thus their evaluation as well as dif-
ferentiation is computationally very efficient, the required
Jacobian matrix in Eq. (7) can be computed very efficiently.

The prior for the model parameters is defined as a
Multivariate Normal (P(θ) ∼ MVN (θ;m0,�

−1
0 )), with

parameters m0 as the mean vector and �0 as the preci-
sion matrix. For the noise parameter, a Gamma distribution
(P(φ) ∼ Ga(φ; s0, c0)) is used for its prior, where s0 and c0
are the scale and shape parameters, respectively. For conju-
gacy, the corresponding posteriors are of the same type, i.e.,
q(θ) ∼ MVN (θ;m,�−1) and q(φ) ∼ Ga(φ; s, c) (their
definitions can be found in the appendix B).

Algorithm 1 Variational Bayesian algorithm with PGD for-
ward model

Inputs:
measurement data y
PGD forward model g(θ) with J(θ)

Initialize:
prior parameters {m0,�0, s0, c0}

1: function vB( y, g, {m0,�0, s0, c0})
2: compute k and J
3: for i in range(1, i termax ) do
4: update m and � (Eq. (11a),Eq. (11b))
5: compute k and J
6: update s and c (Eq. (11c),Eq. (11d))
7: compute free energy F (Eq. (12))
8: if F converges then
9: return m,�, s and c
10: end if
11: end for
12: end function

The goal is then finding the optimal values of the
parameters that define the posteriors. These are obtained
through the following update equations given in [3]:

� =sc JT J + �0 (11a)

�mnew =sc JT (k + Jmold) + �0m0 (11b)

c =N

2
+ c0 (11c)

1

s
= 1

s0
+ 1

2
kT k + 1

2
Tr(�−1 JT J), (11d)
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where k = y − g(m), mnew and mold are the values of m
for the current and previous iteration of the update scheme.
As summarized in algorithm 1, Eq. (11a)-Eq. (11d) are iter-
atively used to update the posterior parameters until the
convergence of the free energy is reached, i.e. until the infer-
ence procedure has converged, as described in [3].

The free energy is expressed as

F =
(

N

2
+ c0 − 1

)

(log[s] + ψ(c))

− 1

2
sc(kTmkm + tr(�−1 JT

k Jk))

− 1

2
((m − m0)

T�0(m − m0)

+ tr(�−1�0)) − sc

s0

− 1

2
log[det�] + log[�(c)] + c log[s]

+ c − (c − 1)(log[s] + ψ(c))

− N

2
log[2π ] + 1

2
log[det�0] − log[�(c0)]

− c0 log[s0] + 1

2
tr[�−1�],

(12)

where N denotes the number of observations, �(c) is
the gamma function and 	(c) the di-gamma function, as
defined in [3]. It results from substituting the log likelihood
log(P( y,�)) and the posterior q(�) expressions into the
free energy definition in Eq. (6) and gives an estimate for
the log evidence log(P( y)). Note, the expression in Eq. (12)
slightly differs from the one that appeared in [3], but it is in
line with the latest implementations from the same authors
available at [36]. A detailed derivation and an implementa-
tion as a python package can also be found at [37].

3 Convergence criteria of PGD variational
inference problem

Generally, the forwardmodel in an inference problem should
correspond to the simplest, yet sufficiently accurate, repre-
sentation of the real experimental conditions. For prediction
tasks, it is important to reduce the effect of model’s accuracy,
especially due to numerical error sources, onto the identifi-
cation results. Although it is possible to fit an inexact model
to measurement data, predictions with such a model in new
settings (e.g. new load case) would be erroneous.

The use of surrogate models lead to additional numeri-
cal error sources (number of modes/terms/degrees/training
data/mesh resolution), resulting in a deviation of the surro-
gate model w.r.t. the reference (full order) model and making
it extremely important to take into account the influence of
these on the identification process. The focus of this paper is

to explicitly measure the influence of the model’s numerical
accuracy and derive a new iterative identification procedure
which automatically identifies a sufficiently accurate model.
The proposed method carries out inference successively on
surrogate models of increasing numerical accuracy. In each
step, the variations in the identification results are measured
with nearly no extra cost by a Bayes factor Sect. 3.1 and the
Kullback-Leibler divergence between the posterior predic-
tive pdfs Sect. 3.2 is monitored. The proposed new adaptive
inference procedure is described in Sect. 3.3.

3.1 Bayes Factor (BF) and free energy

A metric that is commonly used for model selection is the
Bayes Factor (BF). In [38], the BF is also used to compare
finite element models differing in terms of mesh resolution
in the context of statistical FEM. The BF is based on a ratio
of model evidences of two competing models, which natu-
rally penalizes complexity as they integrate over the entire
parameter space [39]. Considering the scenario where the
two modelsMn andMn−1 are available for selection (here
differing in the numerical accuracy degree n), the BF is the
“relative probability of the observed data under each of the
two competing hypotheses” [40]. Assuming both models are
equally likely, the BF can be written as

BF = P( y | Mn)

P( y | Mn−1)
=

∫

P( y | θ,Mn) P(θ | Mn) dθ
∫

P( y | θ,Mn−1) P(θ | Mn−1) dθ
.

(13)

The higher theBF value, themore “evidence” there is in favor
of the model in the numerator.

The major advantage of choosing the BF for model selec-
tion when performing the proposed variational Bayesian
inference [3] is that the free energy Eq. (12) can be directly
used as an approximation of the log-evidence. Under the
assumption of a vanishing KL divergence (i.e. approximate
posterior q and exact one P are identical), the free energy is
equal to the log evidence (see Eq. (6)), allowing the BF to be
approximated as

BF = eF
Mn

eFMn−1 = eF
Mn−FMn−1

. (14)

Since the variational Bayesian approach evaluates the free
energy for every iteration, it is straightforward to compute the
BF criterion. In case of sampling based inference approaches
(e.g.MarkovChainMonteCarlo), theBF computationwould
require additional sampling.Another interesting aspect of the
BF is that many authors have proposed qualitative ways to
interpret the results. For instance, [41] interprets BF values
between 1 and 3 as “not worth a bare mention”, while values
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> 150 indicate a “very strong” evidence against the model
in the denominator.

In this paper, the BF is not used in the conventional
model selection sense, but instead it is used as a conver-
gence criterion when successively comparing two models
with increased numerical accuracy n ∈ [1, N ]. For this rea-
son, the focus is not finding the highest or lowest BF (i.e.
having an indication of which model to favor), but on find-
ing the point at which it converges to 1. The closest the
BF is to one, the more similar the models being compared
are, meaning that their differences in numerical accuracy are
insignificant in terms of “evidence” in favor of one of the
models. In this work, the convention adopted is to set the
model in the numeratorMn as the one with the higher accu-
racy compared toMn−1.

3.2 KL-basedmetric

The second proposed metric to evaluate the effect of the
model’s numerical accuracy is based on theKullback-Leibler
(KL) divergence between the posterior predictive pdfs P ypred
of two candidate models Mn (differing in the accuracy
degree n):

K L = K L(P (Mn−1)
ypred

‖P (Mn)
ypred

) (15)

By definition, the posterior predictive for a given model
Mn is the distribution describing possibly unseen data ypred ,
conditioned on the previous observations y used to run infer-
ence. Given the posterior distribution P(� | y), predicting
new data can be obtained by integrating out the parameters
� in

P( ypred | y) =
∫

�

P( ypred | �, y)P(� | y)d�. (16)

Although the typical application for the posterior predic-
tive is to predict data for experimental setups not present in
the training data, here it is used to reproduce the original
observations y. This posterior predictive is then applied in
the computation of the KL-based convergence criterion as
a way to evaluate the difference in predictions when using
models with increasing numerical accuracy n ∈ [1, N ]. The
closer to zero the KL divergence in Eq. (15) is, the more
likely it is that the models being compared produce almost
identical results.

In the context of the variational inference introduced in
Sect. 2, the unknown variable � consists of model and noise
parameters (θ and φ) and the posterior P( y | �) is approx-
imated by the multiplication (see Eq. (8)) of a multivariate
normal pdf for θ and a gamma pdf for φ

P( ypred | y) =
∫

φ

∫

θ

P( ypred | �, y)q(θ)dθ

︸ ︷︷ ︸

MVN ( ypred |φ;μ,�)

q(φ)dφ.

(17)

Solving the inner integral for a fixed φ, the resulting poste-
rior predictive pdf is again a multivariate normal (MVN )
distribution, according to the conjugate properties of the dis-
tributions in the exponential family and the linearisation of
the model Eq. (7). The KL divergence between two MVN
distributionsMVN n andMVN n−1 for the twomodelsMn

and Mn−1, respectively, can be analytically expressed by
[42]:

K L(MVN n−1‖MVN n)

= 1

2

(

log
det �n

det �n−1
− Nd + tr(�−1

n �n−1

)

+(μn − μn−1)
T�−1

n (μn − μn−1)). (18)

In the latter {μn,μn−1} denotes the means, {�n,�n−1} the
covariance matrices of the two distributions with dimension
Nd . The means and covariance matrices of the posterior
predictive with a fixed noise precision in Eq. (17) can be
expressed as ([43,44])

μi = gi (mi )

�i = J i (mi )�−1
i J i (mi )

T + φi
−1 1, (19)

where gi indicates the current linearised model Mi with
the Jacobian J i . mi , �i and φi = si ci are the posterior pdf
parameters resulting from the inference with modelMi with
i ∈ [n − 1, n].

A different approach than the one used here (i.e. of setting
a fixed φ) would be to solve for the complete posterior pre-
dictive. For that, the outer integral could be approximated by
a weighted sum regarding the posterior pdf q(φ), resulting in
a Gaussian mixture model (for each fixed φ a corresponding
normal distribution is obtained). However, in many cases,
and in particular when the posterior of the noise precision
φ is rather narrow, an approximation using only its mean is
already an accurate approximation. In this way, the KL com-
putation from a variational Bayesian inference result is very
efficient. Again, using a sampling based inference approach
would lead to additional computations to sample the predic-
tive posterior and compute the KL criteria.

3.3 Iterative inference algorithm

As main contribution, the iterative process summarized in
algorithm 2 is proposed for the automatic identification of
a sufficiently accurate surrogate. It consists of sequentially
performing variational Bayesian (VB) inference, each time
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Algorithm 2 Iterative variational inference with automatic
control of the model accuracy influence

Inputs:
measurement data y; model with lowest accuracyM0

Initialize:
priors

1: function iter_vB( y, M0, prior)
2: for n in range(1, N ) do
3: increase model accuracy Mn

4: run VB for Mn (algorithm 1)

5: compute K L(P(Mn−1)
ypred ‖P(Mn)

ypred )

6: compute BF = e(FMn −FMn−1
)

7: if K L ≤ tol1 and |BF − 1| ≤ tol2 then
8: choose model Mn

9: stop
10: end if
11: end for
12: return posteriors q(θ | y), q(φ | y) for Mn

13: end function

with a surrogate model of increased accuracyMn (e.g. based
on n PGD modes). After each VB run, the KL divergence as
well as the Bayes Factor (BF) are computed with respect to
the previous model Mn−1 with lower accuracy (e.g. based
on n − 1 PGD modes). If the KL-divergence in Eq. (15)
approaches 0 (up to some tolerance tol1) and/or the BF in
Eq. (14) approaches 1 (up to some tolerance tol2), the itera-
tions are terminated. Sufficient tolerance values for tol1 and
tol2 are discussed in the example sections in detail. For the
applications presented here, one value for tol1 and one for
tol2 were chosen to be used in all examples. Whether they
are problem independent and can be used seamlessly in other
contexts has yet to be investigated. Note, the focus is finding
a sufficiently accurate model regarding numerical accuracy.
Therefore, it is assumed that the model and its surrogate
physically represents the problem. In order to improve the
identification (e.g. avoiding the linearization at the MAP and
prescribing a family of distributions for the posterior), a stan-
dard sampling approach (e.g. MCMC) can be run afterwards
using the sufficiently accurate PGD forwardmodel identified
in algorithm 2.

The proposed inference process and the PGD forward
models are implemented in Python, using FEniCS [45] as
the finite element solver. The variational Bayesian imple-
mentation is available at [37].

4 Demonstration example

The hypothesis that the numericalmodel accuracy influences
the inference results is demonstrated in a simple model iden-
tification problem. When the proposed procedure is applied
withmodels of increased accuracy, theKLdivergence andBF
between the different runs converge to zero and one, respec-

tively. The example also demonstrates how the influence of
the model accuracy depends on the accuracy of the measure-
ment data itself.

For the demonstration, the true model is described by the
exponential function

ftrue(x) = eθ x (20)

for x ∈ [−0.5, 0.5] with the model parameter θ = 1.
Synthetic measurement data at 10 x-values in the interval
[−0.5, 0.5] are generated by adding a random measurement
noise, described by N (0, 0.012), to the true model output.
In total, a dataset of 50 values is computed by considering 5
synthetic measurement series. For the inference problem, the
model parameter’s prior pdf is given as P(θ) = N (1.5, 12).
The noise prior’s shape c0 and scale s0 parameters are
defined by prescribing the 5% and 95%-percentile noise pre-
cision values φ to 1/0.52 (noise standard deviation 0.5) and
1/0.00052 (noise standard deviation 0.0005), respectively.
The resulting noise prior reads P(φ) = Ga(c0 = 0.37, s0 =
1379941.5).

The Taylor series expansion of the exponential function is
used as surrogate model of the true function:

Mn = f napr (x, θ) =
n

∑

i=0

(θ x)i

i !

= 1

1
+ x

1! θ + (x)2

2! θ2 + . . .

=
n+1
∑

i=1

Fi
1(x) F

i
2(θ). (21)

This model has similarities to a PGD model, according to
Eq. (4), with n + 1 mode sets Fi

1(x) and Fi
2(θ), which

converges to the true model with n → ∞. The numerical
accuracy of the model increases with the number of n, so
that this number can be used to describe the current accuracy
degree of the model.

In a first step, the inference is performed using the sur-
rogate model f napr with an increasing number of terms n ∈
[1, 10], following algorithm 2. For all runs, the BF between
twomodels with n and n−1 approximation terms (Fig. 1(b))

and the Kullback-Leibler divergence K L(P (Mn)
ypred ‖P (Mn̄)

ypred )

between models with different number of terms n ∈ [1, 10]
and n̄ ∈ [n + 1, 10] are calculated (Fig. 2). Furthermore, the
parameters of the approximated posterior pdf s – meanm and
standard deviation

√
�−1 of the model parameter θ , mean

of the identified noise standard deviation σe = √

(c · s)−1

(given Fig. 1(a) compared to the known true values) – as
well as the free energy F (Fig. 1(b)) are tracked over the
increasing number of terms n. The predictive posterior for
models with different numbers of terms n are given in Fig. 4.
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Fig. 1 Demonstration example: (a) Convergence of the posterior pdf
parameters {m,�, s, c}: difference of mean m to true value θtrue = 1,
standard deviation

√
�−1 of the model parameters θ and the difference

of the identified noise standard deviationσe = √

(s · c)−1 to the true one
σetrue = 0.01 with increasing number of terms n. (b) Convergence of
the free energy Fn and BF to themodel with n−1 termswith increasing
number of terms n

The influence of the number of terms n on the identifica-
tion results can be seen in Fig. 1. The inferred parameters
{m,�, s, c} vary depending on the number of terms in the
model, but converge rapidly to the true values. The deviation
decreasesm−θtrue → 10−4 (Fig. 1). This is also observed in
the convergence of the BF between two models with increas-
ing accuracy (Mn−1 andMn , where the former refers to the
denominator and the latter to the numerator). In Fig. 1(b), the
BF is plotted as a function of terms n with values in the range
of [1/3 : 3] (note that the range [1 : 3] indicates an anecdotal
evidence forMn while [1/3 : 1] is considered anecdotal evi-
dence for Mn−1). It converges to one with increasing terms
n, which means that the free energy also converges to a fixed
value. The BF criterion can exceed extremely high values
in the first iterations steps (i.e. for models with a large dif-
ference in accuracy), indicating a high influence of adding
these first terms on the model response correlating with high
differences in the free energy. The KL divergence in Fig. 2
between different accurate models (n terms visa n̄ terms with
n ∈ [1, 10] and n̄ ∈ [n+ 1, 10]) converges linearly in a semi
log-scale with increasing number of modes. Whereby, all
computed KL divergences varying the number of terms are

here in one line, so that the diagonal K L(P (Mn−1)
ypred ‖P (Mn)

ypred )

represents the convergence behavior as already proposed in
algorithm 2.

In a second investigation, the measurement noise of the
virtual measurement data is varied, simulating different
degrees of sensor accuracy. The noise is modeled with nor-
mal distributions [N (0, σ 2

e )] with σe ∈ [10−1, 10−2, 10−3,

10−4]. A sufficient number of data points is used, so that in all
cases the assumed true noise value could be identified. The
inference algorithm is run for each noise standard deviation
σe, with increasing accuracy of the surrogate model, and the
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10−14

10−5

104

number of terms n

K
L

(P
(M

n
)

y
p
r
e
d

||P
(M

n̄
)

y
p
r
e
d

)

n̄ = 2 n̄ = 3
n̄ = 4 n̄ = 5
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n̄ = 8 n̄ = 9
n̄ = 10

Fig. 2 Demonstration example: Kullback-Leibler divergence between
different posterior predictive distributions corresponding to surrogates
Mn (n ∈ [1, 10]) and Mn̄ (n̄ ∈ [n + 1, 10]) with increasing accuracy

KL divergence and BF are computed between two sequential
models.

Figure 3 shows that both criteria again converge with
increasing number of terms n, where differences can be
seen regarding the given noise standard deviations of the
measurements. The KL divergences curves are nearly paral-
lel, indicating that a higher model accuracy is required for
smaller measurement errors. The same issue can be seenwith
the BF, which converges to one with increasing number of
terms, for decreasing measurement noise.

The implementation of this approach for practical exam-
ples requires to define thresholds for the tolerance values
in algorithm 2. These values were chosen specifically for
the examples presented and their applicability to any other
problem has to be investigated. Choosing the KL tolerance
to 10−2 and a BF tolerance range [1/2, 2] for all setups
results in models with 4, 5, 6, 7 terms for decreasing σe =
[10−1, 10−2, 10−3, 10−4]. This is inline with the expectation
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Fig. 3 Demonstration example: (a)KL by increasing number of terms n in the surrogate model and measurement data with different given standard
deviation σe. (b) Inference convergence criteria BF regarding successively increased number of terms n

Fig. 4 Demonstration example: Predicted posterior formodelswith dif-
ferent number of terms for measurement data with σe = 0.01 compared
to the true model

that a higher model accuracy (i.e. higher number of terms)
is required for more accurate measurement data (here mod-
eled by smaller deviations σe). For the case σe = 0.01, the
influence of different model accuracy on the posterior distri-
bution is plotted in Fig. 4. A model with 5 terms based on
the proposed tolerance values leads to a very good agreement
with the true model. Increasing the number of terms would
not improve the identification results anymore. Furthermore,
the number of 5 terms for σe = 0.01 is inline with the con-
vergence of the posterior parameters after Fig. 1 confirming
the proposed tolerance values.

5 Structural damage identification with
random fieldmaterial parameters

As mentioned in the introduction, the model parameter iden-
tification plays an important role in monitoring systems and
digital twin applications. In this context, a common task is
to identify structural changes and quantify the impact on

key performance indicators. As application examples, the
identification of damage phenomena for a 1D truss structure
(with synthetic data) as well as a reinforced concrete bridge
(with real measurement data) is addressed. The key idea is
to include the stiffness variation in space due to undergone
damage as a linear elastic material model with a Young’s
modulus being modeled by a log-normal random field. The
goal is to identify the posterior distribution of the random
field based on measurement data with a sufficiently accurate
PGD surrogate. Therefore, first a PGD model for the log-
normal random field parameters is derived as an extension to
the PGD approach for normal fields by [33].

5.1 PGD forwardmodel for linear elasticity with a
log-normal random field for the Young’s
modulus

A linear elastic problem described by the general equations
of mechanics (balance of momentum, kinematics for small
displacements and isotropic linear elastic material law) is
considered. TheYoung’smodulus E is assumed to depend on
the spatial position x and some new identification parameters
θ , reflecting damage. A log-normal distribution is assumed,
following the suggestions of the European design standards
[46] for material parameters. The log-normal distribution
avoids negative Young’s moduli. Therefore, the Young’s
modulus is given by a log-normal random field �LN (x, θ)

as

E(x, θ) := E0 �LN (x, θ)

= E0 exp(μ(x) +
K

∑

j=1

√

λ j V j (x) θ j

︸ ︷︷ ︸

normal random field

), (22)

123



Computational Mechanics

which is modeled as a transformation of an underlying nor-
mal random field [47] represented with a Karhunen-Loéve
expansion (e.g., [48–50]). InEq. (22),μ(x) is themeanvalue,
Vj are the eigenvectors, λ j the eigenvalues of the covariance
matrix (kernel) and θ the K variables (normally distributed
with zero mean) of the underlying normal random field. Note
that, due to this nonlinear transformation, the correlation of
the log-normal field is not identical to the prescribed one
in the normal field. The covariance matrix C simulates the
spatial dependency of the variables and is given by the covari-
ance function c(xi , x j ), describing the correlation between
two spatial points i and j. Among the many possible covari-
ance functions [48], the squared exponential kernel function
(i.e. belonging to the Matérn family) is used:

c(r) = σ 2 exp

(

− r2

2
2

)

, (23)

where r denotes the distance between two points |xi − x j |,
σ is the standard deviation and 
 the correlation length of
the random field. Based on a standard finite element dis-
cretization of the random field variables with a mesh size
much smaller then the correlation length, the solution of the
generalized eigenvalue problem for the correlation matrix
MT C M V = λ M V with the mass matrix M leads to the
eigenvalues and eigenvectors describing the underlying nor-
mal random field in Eq. (22). The number of random field
variables K depends on the ratio between the correlation
length and the structural dimension. For a study of the influ-
ence of the random field discretization on the identification
process, the reader is referred to [47]. In this example, the
number K is chosen based on the ratio of the eigenvalues

√

λK /
√

λ0 < tolRF (24)

with a prescribed tolerance (given in the examples). The ran-
dom field parameters (μ, σ and 
) are assumed to be known.
The identification parameters are the K unknown field vari-
ables θ defined in Eq. (22).

The PGD approach is applied to generate a numerical aba-
cus, giving the solution as a function of the spatial directions
x and the unknown model parameters θ , here the random
field variables. For this reason, the displacement field u is
approximated by a sum of n terms as

un(x, θ) =
n

∑

i=1

Fi
0(x) Fi

1(θ1) F
i
2(θ2) . . . Fi

K (θK ). (25)

The PGD modes are numerically determined by solving
the weak form of linear elasticity with the approximation
un from Eq. (25) over the multi-dimensional space �D =
�x

K
⊗

j=1
�θ j , with its Neumann and Dirichlet boundaries �N

and �D ,

∫

�D
δεn(x, θ) : Cnc

el (x, θ) : εn(x, θ) d�D

+
∫

�D
δun(x, θ) f n f (x, θ) d�D

−
∫

�N

δun(x, θ) tnt (x, θ) d�N = 0.

(26)

In the latter, δ• denotes the variation of •. The strains εn are
given considering the kinematic law εn = grad(un) in sepa-
rated form affine to Eq. (25). f n f is a given volume load, tnt

a specified surface load and Cnc
el refers to the linear elasticity

tensor, all depending on the space x and the random field
parameters θ . The Dirichlet condition un = u∗ completes
the description of the problem above. For an efficient PGD
computation, all θ -depending functions in Eq. (26) must be
expressed as an affine separate representation to Eq. (25),
allowing the separation of themulti-dimensional integral into
D lower dimensional integrals [51]. This separated form is
denoted by the subscripts (n f , nt , nc) in Eq. (26) given the
number of required terms for each function. In the investi-
gated case, the loads are not depending on the parameters θ

so that their separation is trivial. The linear elasticity tensor
explicitly depends on the random field parameters θ and the
space x by the given Young’s modulus definition in Eq. (22)

Cel,i jkl(x, θ) = �LN (x, θ)C0
el,i jkl (27)

with the averaged stiffness

C0
el,i jkl = E0

(1 + ν)

1

2
(δilδ jk + δikδ jl)

+ E0 ν

(1 + ν) (1 − 2ν)
δi jδkl

(28)

for the averaged Young’s modulus E0 and the Poisson’s
ratio ν. Since �LN is a log-normal random field defined in
Eq. (22), the separation of Eq. (27) is more complex than e.g.
prescribing the Young’s modulus as a normal random field
[33] and requires an approximation of the exponential func-
tion. Here, a Taylor series expansion of the field �LN around
the mean θ0 with a flexible number of terms is proposed to
separate the dependency on x and each θi . The Taylor series
expansion can be reordered to obtain a separated representa-
tion (see appendix C)

�LN ≈ �̂LN (x, θ)

=
nc

∑

i=1

Xi
0(x) Xi

1(θ1) X
i
2(θ2) . . . Xi

K (θK ),
(29)

affine to the assumed PGD model in Eq. (25). Inserting
this separation into Eq. (27) leads to the required separated
function of the linear elasticity tensor in Eq. (26)
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Cnc
el (x, θ) =

nc
∑

i=1

C0
el,i jkl X

i
0(x)

︸ ︷︷ ︸

X i
0(x)

Xi
1(θ1) X

i
2(θ2) . . . . (30)

There exist different ways to solve Eq. (26) in a discrete
way computing the single PGD modes Fi

j [52]. Here, the
progressive PGD strategy [53,54] is used, where the prob-
lem is solved iteratively for each new set of basis functions.
The computation is based on a fixed-point iteration involv-
ing the finite element computation of D small dimensional
problems – one for each PGD coordinate. The detailed equa-
tions of each problem and the used convergence criteria are
summarized in appendix D.

After a more elaborate computation – compared to a stan-
dard finite element model – of all PGD modes, the PGD
reduced forward model MPGD depending on the identi-
fication parameters θ , required in the variational inference
(Sect. 2), can be written as

Mn
PGD : gns (θ) =

n
∑

i=1

Fi
0(xs)

K
∏

j=1

Fi
j (θ j ), (31)

where xs denotes the coordinates of the sensors with mea-
surement data. Note, the mode functions Fi

j are only once
computed and just need to be evaluated for each parame-
ter set in the inference run. Furthermore, the spatial modes
Fi
1(xs) can be precomputed and cached at these positions

for an even more efficient computation during the inference
process. Furthermore, the Jacobian with respect to the iden-
tification parameters, required for nonlinear forward models
(Eq. (7)), can be computed by the derivative of the single
one-dimensional modes also in a very efficient way, includ-
ing only function evaluations

Jns (θ) =
⎡

⎣

n
∑

i=1

Fi
0(xs)

dFi
1(θ1)

dθ1

K
∏

j=1

Fi
j (θ j ),

n
∑

i=1

Fi
0(xs) F

i
1(θ1)

dFi
2(θ2)

dθ2

K
∏

j=3

Fi
j (θ j ), . . .

⎤

⎦ .

(32)

For the proposed iterative inferenceprocess in algorithm2,
it is important that the accuracy of the proposed PGD surro-
gate is mainly influenced by two aspects: the discretization
error for each coordinate solving the discrete PGD modes
and the truncation error (= number of mode sets n) [51].
Therefore, the accuracy of the PGD surrogate of each step n
in algorithm 2 can be increased by either refining the mesh
solving the PGD modes based on the discretized weak form
Eq. (26) or increasing the number of modes. For that rea-
son, using a PGD model in the proposed iterative inference
algorithm 2 leads to two nested loops: one over the mesh

refinement and one over the number of modes. Therefore,
the PGDmodel accuracy degree will, from now on, be given
by two superscripts M(k,n)

PGD , to differentiate between both
aspects, where k refers to the mesh refinement degree and
n to the number of modes of the current model. Further-
more, K Lmodes and BFmodes denote the comparison of PGD
models with the same mesh resolution k and different mode
numbers, whereas K Lmesh / BFmesh refer to different mesh
resolution by a fixed number of modes n.

5.2 1D truss example

In the academical truss example, a given stiffness variation
over the length is identified using the variational inference,
the introduced PGD model as forward model and synthetic
displacements as measurement data. The influence of the
number of modes and the refinement degree of the PGD for-
ward model on the identified stiffness is demonstrated. The
convergence of the introduced KL divergence criterion and
the BF for increasing model accuracy is shown.

A 1D steel truss, with geometry and boundary conditions
given in Fig. 5, is considered. A line load p = 25·105kN/m is
applied to the truss, and its position, given by X p , varies along
the length L = 3m. The stiffness of the truss is assumed to
vary over the x-direction following Eq. (22) with E0 = 210 ·
106kN/m2 andfixedfield parameters:μ(x) = 0,σ = 0.5 and

 = 2.5m. In general, these random field hyperparameters
could be identified as well. Here, it is assumed that these
parameters are known.

The first modes of the random field of the underlying nor-
mal field Eq. 22 are illustrated in Fig. 6. In this example,
only four modes are used, related to a tolerance tolRF =
10−2 with Eq. (24). The random field’s covariance matrix is
computed based on a mesh, defined by 50 linear elements
allowing to precompute the random field modes for all PGD
models by projecting the random field onto the x-mesh with
a variable mesh size hx . By doing this, a new computation of
the underlying eigenvalue problem for each mesh resolution
is avoided. As discussed in Sect. 5.1 the log-normal random
field is approximated by a Taylor series expansion �̂LN with
8 terms.

p

Lp

A, E(x,θ)x

Xp

L

Fig. 5 1D truss example: Geometry and boundary conditions
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Fig. 6 1D truss example: First four random field modes of �N describ-
ing the used log-normal random field �LN = exp(�N ) scaled by the
eigenvalues
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Fig. 7 1D truss example: Displacement measurements at 50 sensors
over the length x ∈ [0, L] generated using FEM with 600 linear
elements and a bell-shaped Young’s modulus distribution (E(x) =
E0 λm(x) = E0(1 − 0.3 < 1 − ((x − 0)2)/(2.52) >))

In the identification process, synthetic measurement data
are used. These are generated with a full order finite element
model of the system in Fig. 5, with 600 linear elements (mesh
size hx = 0.005m), and a Young’s modulus modeled with a
bell-shaped function [55] as

E(x) = E0 λm(x) = E0

(

1 − 0.3 < 1 − (x − 0)2

2.52
>

)

(33)

where < • >= 0 if • < 0 and< • >= • if • ≥ 0. The func-
tion λm(x) is plotted in Fig. 8. The synthetic data from the 50
sensors positioned over the length is shown in Fig. 7, for the
load positions (X p = 0.75m, 1.65m and 2.55m), with adding
a randommeasurement error described byN (0, 0.0012)[m].
As the true stiffness function is known here, the correlation
length 
 is chosen as the radius of the bell-shaped function,
i.e., 
 = 2.5. For each load position, a separate PGD model
is computed for θi ∈ [−2.5 : 2.5]. The priors for the random

field variables are chosen as P(θ) ∼ MVN (θ; 0, I) and
for the noise precision as P(φ) ∼ Ga(φ; c0 = 0.46, s0 =
2.2 106) [m−2]. The prior’s shape and scale parameters are
defined by prescribing the pdfs 5% and 95%-percentile pre-
cision values to 1/(0.02m)2 and 1/(0.0005m)2, respectively.

The inference algorithm 1 is run for the dataset illustrated
in Fig. 7. A sensitivity analysis is performed - first by vary-
ing the mesh resolution with a fixed number of modes n = 8
and second by varying the number of modes with a fixed
mesh size h = 0.025. The posterior stiffness factor dis-
tributions λ(x) and the corresponding KL divergences are
given in Fig. 8, for varying the number of modes, and in
Fig. 9, for different mesh resolutions. The posterior distri-
bution λ(x) = �LN (x, θ) is compared to the stiffness factor
used to generate the synthetic measurement data λm(x). It is
obtained by a propagation of the uncertainty with

�� ≈ ∂�LN

∂θ
|m �

∂�LN

∂θ

T

|m (34)

using the covariance matrix � of the resulting posterior dis-
tribution q(θ | y), the Jacobian of the field with respect to θ

evaluated at the posterior mean m of q(θ | y). The shaded
region is obtained by plotting the mean ± the standard devi-
ation as the square root of the diagonal entries of �� . For
comparison, the variational inference is run with a full finite
element model and the identified stiffness factor is shown in
Fig. 9. The resulting BF between two sequential PGDmodels
as well as the free energy during both variations are given in
Fig. 10.

It is possible to observe a very good agreement of the
identified log-normal randomfieldwith the assumed stiffness
variation (Fig. 8 and Fig. 9). There is also a clear influence
of the model’s accuracy on the identified stiffness, but with
an increased accuracy (higher number of modes (n > 8)
and/or smaller mesh sizes (h < 0.05m) the solution con-
verges. Fixing the number of modes to n = 8, the difference
in the identification results using a PGDmodel with themesh
sizes 0.05m or 0.01m is vanishing in Fig. 9 and is in line
with the reference run using a full order model. Here the
KL criterion, the BF and the free energy also converge as
model accuracy increases, although the KL has a less smooth
convergence when compared to the demonstration example
(Sect. 4). This is caused by the fact that the accuracy of the
PGD itself does not converge monotonically with the num-
ber of modes [54]. This must be considered in the proposed
adaptive way of selecting a sufficiently accurate model. Due
to the non-smoothness, adding a new set of PGD modes will
not necessarily improve the numerical accuracy of themodel.
For that reason, it is proposed to add always several newmode
sets and compute the discussed convergence criteria.

Basedon the results above, a PGDmodelwith 8modes and
h = 0.025 could be selected as a sufficiently accurate model,

123



Computational Mechanics

(a) (b)

Fig. 8 1D truss example: (a) Influence of number of modes n in PGD
forward model on the posterior stiffness factor distribution λ(x) com-
pared to the real one λm(x). The shaded region corresponds to the mean

± standard deviation. (b)Convergence of K Lmodes between PGDmod-
elsM4,n̄

PGD andM4,n
PGD with different numbers n > n̄. Mesh refinement

step 4 corresponds to a mesh size h = hx = hθ = 0.025

(a) (b)

Fig. 9 1D truss example: (a) Influence of mesh discretization in PGD
forward model on the posterior stiffness factor distribution λ(x) com-
pared to the real one λm(x) and the one identified using a FEM model
with h = 0.01m. The shaded region corresponds to the mean ± stan-

dard deviation. (b)Convergence K Lmesh between PGDmodelMk−1,8
PGD

andMk,8
PGD with 8 modes. The mesh refinement steps are given by the

mesh size h = hx = hθ = [0.05, 0.025, 0.01, 0.005]. Beside that, the
coarsest mesh is defined by hx = 0.3m and hθ = 0.2

where K L < 2 · 10−2 and BF ∈ [0.5, 2]. This selection
would be in line with the visual comparison of the identified
stiffness function in Fig. 9 and Fig. 8. The tolerance values
are in the same range as for the demonstration example. The
resulting posterior distribution is shown in Fig. 11, where it
is possible to identify a correlation between θ1 and θ3 and
between θ2 and θ4. For this reason, the identification prob-
lem has no unique solution. Additionally, the added noise is
identified by a standard deviation mean of 0.001 (0.00099
as 5 % and 0.00102 as 95 % percentile) fitting the synthetic
noise added in the data generation very well.

It is important to emphasize the ability of the PGD sur-
rogate to speed-up the inference runs: for example, one

identification run with the PGD reduced models M4,8
PGD is

more than 4000 times faster than the corresponding run with
the full order finite element model. A complete inference
with the PGD model is performed in a fraction of seconds
(0.03 seconds).

5.3 Two span concrete test bridge

For the second example, the proposed inference approach is
applied to the identification of the stiffness distribution of the
real, pre-damaged concrete bridge with two spans shown in
Fig. 12. This bridge was built as a demonstrator for inves-
tigating the assessment, service life forecast and repair of
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Fig. 10 1D truss example: (a) Bayes factor comparing computed models with consecutive number of PGD modes n with a constant mesh size of
h = 0.025 and (b) with different mesh sizes 1/h using n = 8 PGD modes
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Fig. 11 1D truss example: Posterior distribution q(θ | y) for the variational Bayesian inference run with PGD model M4,8
PGD (h = 0.025 and 8

modes)
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Fig. 12 Bridge example: Two span concrete test bridge at BAM testing side (left) and occured crack pattern in the middle of the first field (right)

bridges. The two white blocks in the picture are load boxes
of 2 tons, which can be moved along the bridge. Various
measurement systems were involved, e.g., digital image cor-
relation, stereophotogrammetry, fiber optic sensors, dynamic
strain sensors, wavelength scanning aswell as ultrasonic sen-
sors [56–58]. In this paper, the displacement data, measured
by the 49 stereophotogrammetry sensor points (black and
white circles) distributed over the length of the bridge after
some destructive tests, is used. As shown in Fig. 12, several
cracks have occured.

The geometry and boundary conditions of the numerical
model of the bridge are sketched in Fig. 13. A full 3D model
of half of the cross-section, with symmetric boundary condi-
tions, is used, where the moving load box is represented by
a surface load (Q = 10kN) over a length of 0.4m and the
cross-section’swidth (0.45m), at the current position X p . The
supports are modeled by fixing the corresponding degrees
of freedom (uz and/or ux ) at x = 0.2m, x = 12.2m and
x = 24.2m. The spatial mesh is discretized with 118,224
quadratic elements, with an averagemesh size of 0.05m. Sep-
arate PGD models are computed for each load position and
theunknownmodel parameters (the randomfieldparameters)
are discretized in the interval θi ∈ [−2.5 : 2.5] with linear
elements and an element length of hθ = 0.01. Similar to the
previous example, a log-normal distributed Young’s modu-
lus E(x, θ) given by Eq. (22), with E0 = 25 · 106kN/m2

and fixed parameters: μ = 0, σ = 0.5 and 
 = 8m. In
this way, the stiffness variation over the length, caused by
the cracks (see Fig. 12), can be identified. Based on a tol-
erance of tolRF = 0.01 and Eq. (24), the first four random
field modes are used. Since an isotropic exponential kernel is
used for the random field with a correlation length of 8 m, the
variations in the random field in y and z-direction are very
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−2

−1

0

1

2
·10−2

x [m]
m

ea
su

re
d

−Δ
u
z

[m
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Xp = 20.98m

Fig. 14 Bridge example: Displacement measurements at 49 sensors
over the length generated by stereophotogrammetry for different load
positions X p of the moving box used for the identification. The position
of the second load box was fixed at 23.95m

small. If stiffness variations over the height or width of the
bridge’s cross-section are of importance, anisotropic kernel
functions could be chosen. The random field is discretized
on a mesh with an element length of 0.4m and approximated
by a Taylor expansion with 8 terms.

The vertical deflections�uz measured by the steoreopho-
togrammetry sensor points xs , for different load positions, is
used in the inference (see Fig. 14). For the identification pro-
cess, the prior for the model parameters described by the
random field variables is chosen as P(θ) ∼ MVN (θ; 0, I)
and for the noise precision P(φ) ∼ Ga(φ; c0 = 0.84, s0 =
93331.7) [m−2]. The latter prior’s shape and scale parameters
are defined by prescribing the pdfs 5% and 95%-percentile
precision values to 1/(0.02m)2 and 1/(0.002m)2, respec-
tively.
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Fig. 13 Bridge example: geometry in [m] and boundary conditions
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Fig. 15 Bridge example: (a) KL and (b) BF as well as free energy convergence over increasing number of modes n

Fig. 16 Bridge example: Influence of number of modes on the poste-
rior Young’s modulus in x-direction (evaluated at the sensor positions).
The shaded region corresponds to the mean ± standard deviation. The
contour plot over the full domain gives the identified mean field for a
model with n = 25

The adaptive inference process based on algorithm 2 is
performed, automatically identifying the required number of
modes in the PGD forward model. Since the reference mea-
surement already includes the load box at its starting position,
the forward model in the identification run consists of the
difference between two PGD models (current load position
X p minus start load position X p = 0.5m). Thereby, linear
superposition of the response for different load configura-
tions is assumed. The proposed criteria, KL and BF, to track
the influence of the model’s accuracy are computed during
the inference runs with increasing number of modes. The
resulting values are illustrated in Fig. 15. Additionally, the

Fig. 17 Bridge example: Posterior predictive of the displacement field
for the new load position X p = 9m based on the identified Young’s
modulus fields with different number of modes in the PGD model and
the posterior’s mean noise precision φ = s c. The contour plot over the
full domain gives the mean displacement field for a model with n = 25

identified stiffness distributions over the length of the bridge
x , for PGD models with increasing accuracy, are given in
Fig. 16.

The inferred stiffness distribution (Fig. 16) shows a lower
stiffness in both spans as well as a higher stiffness around
the support in the middle. This accords with the observed
crack pattern, where cracks are concentrated in the midspan
of both fields. Contrary to our expectations, the inferred stiff-
ness around the supports at the beginning and end of the
bridge are significantly smaller than in the middle support.
This could be caused by the chosen correlation length (8m)
which maybe is to small or due to the chosen priors and a
possible low sensitivity in this area. Nevertheless, the iden-
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Fig. 18 Bridge example: Posterior distribution q(θ | y) for the variational Bayesian inference run with the PGD model with n = 25 modes

tified stiffness in Fig. 16 is almost identical when using 20
modes or more, suggesting that an increase of the number of
modes would no longer influence the inference results. This
is also confirmed in the KL and BF plots in Fig. 15. Since
the BF value is derived from the free energy, the free energy
values are also presented in Fig. 15 showing a smoother con-
vergence to a fixed, problem dependent maximum. Based
on this study, a sufficiently accurate model is chosen as the
PGD model with n = 25, corresponding to tolerance values
of K Lmodes < 2 · 10−2 and BFmodes ∈ [0.5, 2] (as in the
previous examples). Due to the non-smooth convergence of
the PGD model, the KL divergence must stay under the tol-
erances for some number of modes. Note, in Fig. 15 the KL
divergence is also less than the chosen tolerance for compar-
ing a model with 13 modes to one with 14 modes but not
comparing 14 with 15 modes. The resulting posterior distri-
bution for the random field variables θ is given in Fig. 18.
As many inverse problems, this example is also ill-posed,
since correlations in the posterior between θ1 and θ3 as well

as between θ2 and θ4 exist. In contrast to a deterministic
approach with only a single set of parameters as the result,
this is automatically identified in a Bayesian approach. The
mean of the model error’s standard deviation is identified
as 0.00047m (0.0004669m as 5% and 0.0004705m as 95%
percentile).

Since the true stiffness function for this real example is
not known, a testing data set (i.e., not used in the identifica-
tion) is used for validation purposes. In Fig. 17, the predicted
displacement field for the new (test) load case X p = 9m is
given based on the different inference runs with varying the
number of modes. A very good fit with the newmeasurement
data is observed.

6 Conclusion

In this work, the influence of the surrogate model’s numeri-
cal accuracy on the model identification process is studied. A
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PGD forward model is used in a variational Bayesian infer-
ence method for nonlinear models, for improved efficiency
of the model identification process.

It is demonstrated that the numericalmodel accuracy influ-
ences the identification results.An adaptive inferencemethod
is proposed, where the model is iteratively improved by
increasing the number of PGD modes or refining the mesh.
During the iterations, the influence of themodel refinement is
measured by theBF aswell as theKLdivergence between the
predictive posterior pdfs and the free energy. While the BF
converges to one and theKL to zero, the free energy smoothly
converges to a problem dependent maximum value, which is
not known a priori. It is shown that these criteria can measure
the influence of the numerical model accuracy on the iden-
tification results and can be computed very efficiently due
to the chosen variational approach. The proposed approach
is also applied for the identification of stiffness fields of two
structures: a truss (with synthetic data) and a concrete bridge
(with real measurements). To that end, a PGD model for
linear elasticity with a Young’s modulus represented by a
log-normal random field is derived. For that purpose a sep-
aration of the log-normal field is derived and included in
the PGD approach. For all examples, a tolerance for the KL
divergence of 2 · 10−2 and a BF in the range of [1/2 : 2]
could be used as a convergence criterion to select a suffi-
ciently accurate model, meaning that a further improvement
of the model will not change the identified stiffness distribu-
tion significantly. Furthermore, it is demonstrated in a simple
example with synthetic data that the proposed criteria can
also consider differentmeasurement accuracy.With the same
tolerance values for KL and BF different accurate models are
selected, if the given measurement standard deviation was
changed.

The importance and difficulty of considering the model’s
accuracywhen performingmodel identification is shown and
a possible approach for that is proposed.As the importance of
numerical models for monitoring and digital twins continue
to rise, so does the attention on surrogate models. Therefore,
the discussed topic is of general research interest for all types
of surrogates and identification methods in the future.
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Appendix A. KL in tractable terms

As mentioned before, the variational Bayesian algorithm is
optimization-based and aims at minimizing the KL diver-
gence between the true and approximate posteriors.However,
the KL definition written in Eq. (5) depends on the true pos-
terior pdf and therefore it needs to be reformulated in more
tractable terms. This derivation can be seen below:

K L(q‖P) = −
∫

q(�)log
P(� | y)
q(�)

d�

K L(q‖P) = −
∫

q(�)log
P( y,�)

P( y)q(�)
d�

K L(q‖P) = −
∫

q(�)log
P( y,�)

q(�)
d�

+
∫

q(�)log P( y)d�

K L(q‖P) = −
∫

q(�)log
P( y,�)

q(�)
d� + log P( y)

×
∫

q(�)d�

K L(q‖P) = −
∫

q(�)log
P( y,�)

q(�)
d� + log P( y)

(A1)

Appendix B. Prior and posterior pdfs

Following the work of [3], the prior pdfs are defined as fol-
lows:

P(θ) ∼MVN (θ;m0,�
−1
0 )

= 1

(2π)p/2
|�0|1/2 exp

{

−1

2
(θ − m0)

T�0(θ − m0)

}

P(φ) ∼Ga(φ; s0, c0)

= 1

�(c0)

φc0−1

sc00
exp

(

− φ

s0

)

.

(B2)
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While the posteriors are given by:

q(θ) ∼MVN (θ;m,�−1)

= 1

(2π)p/2
|�|1/2 exp

{

−1

2
(θ − m)T�(θ − m)

}

q(φ) ∼Ga(φ; s, c)

= 1

�(c)

φc−1

sc
exp

(

−φ

s

)

.

(B3)

Appendix C. Taylor series of log-normal field

For the separation of the log-normal Young’s modulus in
Eq. (22) the field �LN is approximated as a Taylor series
expansion around the mean θ0 as:

�LN (x, θ) ≈ �̂LN (x, θ)

=�LN (x, θ0)

+
K

∑

i=1

∂�LN (x, θ0)

∂θi
(θi − θi0)

+ 1

2!
K

∑

i=1

K
∑

k=1

∂2�LN (x, θ0)

∂θi∂θk
(θi − θi0)(θk − θk0)

+ 1

3!
K

∑

i=1

K
∑

k=1

K
∑

l=1

∂3�LN (x, θ0)

∂θi∂θk∂θl
(θi − θi0)(θk − θk0)

×(θl − θl0) + . . . .

(C4)

The approximation can be reordered to obtain the required
modes depending on the space x and the random field vari-
ables θi

�̂LN (x, θ) =
nc

∑

i=1

Xi
0(x) Xi

1(θ1) X
i
2(θ2) . . . Xi

K (θK ), (C5)

by computing the derivatives and expanding all products.
In the following this is shown for the first order terms and

two parameters θ = [θ1, θ2]:

�̂LN (x, θ) =�LN (x, θ0) +
K=2
∑

i=1

∂�LN (x, θ0)

∂θi
(θi − θi0)

=�LN (x, θ0) + ∂�LN (x, θ0)

∂θ1
(θ1 − θ10)

+ ∂�LN (x, θ0)

∂θ2
(θ2 − θ20)

=�LN (x, θ0)+�LN (x, θ0)
√

λ1V 1(x) (θ1−θ10)

+ �LN (x, θ0)
√

λ2V 2(x) (θ2 − θ20)

= �LN (x, θ0)
︸ ︷︷ ︸

X1
0(x)

1
︸︷︷︸

X1
1(θ1)

1
︸︷︷︸

X1
2(θ2)

+ �LN (x, θ0)
√

λ1V 1(x)
︸ ︷︷ ︸

X2
0(x)

(θ1 − θ10)
︸ ︷︷ ︸

X2
1(θ1)
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︸︷︷︸

X2
2(θ2)

+ �LN (x, θ0)
√

λ2V 2(x)
︸ ︷︷ ︸

X3
0(x)

1
︸︷︷︸

X3
1(θ1)

(θ2 − θ20)
︸ ︷︷ ︸

X3
2(θ2)

=
3

∑

i=1

Xi
0(x) Xi

1(θ1) X
i
2(θ2) (C6)

Appendix D. PGD fixed point problems

In case of the progressive PGD solver, the PGD modes Fi
j in

Eq. (25) are solved iteratively.

un =
n−1
∑

i=1

Fi
0(x)

K
∏

j=1

Fi
j (θ j ) + R(x)

K
∏

j=1

Tj (θ j )

= un−1 + R(x)

K
∏

j=1

Tj (θ j ).

(D7)

In each enrichment step m ∈ [1, M] a new set on
PGD modes [R, T1, T2, ...] in Eq. (D7) are computed in a
fixed-point iteration considering the K + 1 low-dimensional
problems.

For the here investigated problem the PGD weak form
of Eq. (26) including the definition of the varying Young’s
modulus as Eq. (30) is used. The volume load f n f vanishes
and the load is given as tnt (x, θ) = P x (x)

∏K
j=1 Pθ j (θ j )

with Pθ j = 1. In total, K +1 problems must be solved in the
fixed-point iteration (with K the number of random variables
θ j ).

The weak form for the first problem to calculate the new
spatial mode R is then given as

nc
∑

i=1

∫

x
δgrad(R) X i

0(x) : gradR dx

K
∏

j=1

∫

θ j

T j X
i
j (θ j ) Tj dθ j =

∫

x
δR P x d�x

K
∏

j=1

∫

θ j

T j Pθ j dθ j

−
n−1
∑

l

nc
∑

i=1

∫

x
δgrad(R) X i

0(x) : gradFl
0 dx

K
∏

j=1

∫

θ j

T j X
i
j (θ j ) F

l
j dθ j . (D8)
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The spatial problem is solved using standard finite element
method.

Theweak form for the remaining θ j problems reads exem-
plary for mode T1(θ1)

nc
∑

i=1

∫

x
grad(R) X i

0(x) : gradR dx

∫

θ1

δT1 X
i
1(θ1) T1 dθ1

K
∏

j=1, j 
=1

∫

θ j

T j X
i
j (θ j ) Tj dθ j

=
∫

x
R P x d�x

∫

θ1

δT1 Pθ1 dθ1

K
∏

j=1, j 
=1

∫

θ j

T j Pθ j dθ j

−
n−1
∑

l

nc
∑

i=1

∫

x
grad(R) X i

0(x) : gradF j
0 dx

∫

θ1

δT1 X
i
1(θ1) F

l
1 dθ1

K
∏

j=1

∫

θ j

T j X
i
j (θ j ) F

l
j dθ j .

Since there are no derivatives according θ1, the problem
can be solved in strong from. Afterwards, it is remapped on a
standard one-dimensional finite element problem to evaluate
e.g., the integrals

∫

T1Xi
1T1dθ1 in the following fixed-point

problems.
As stopping criterion for the fixed-point iteration in each

fixed-point step f

|normR f − normR f−1|/|normR f −1| < tol1

or|normR f − normR f −1| < tol2 (D9)

with

normR f = |R f |L2 |T f
1 (θ1)|L2 |T f

2 (θ2)|L2 . . . (D10)

is used.
As stop criterion for the enrichment steps, the amplitude

An = ‖Fn
0(x)‖L2

K
∏

j=1

‖Fn
k (θ j )‖L2 < tol (D11)

according toZou et al. [59] is used. If the tolerance is reached,
the enrichment loop stops and the final solution is given, with

n summations. Therefore, the same PGD algorithm as in the
authors publication [28] is used here.
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