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Abstract: Block-sparse regularization is already well known in active thermal imaging and is used
for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice
of regularization parameters which differs for each experiment. We show the benefits of using a
learned block iterative shrinkage thresholding algorithm (LBISTA) that is able to learn the choice of
regularization parameters, without the need to manually select them. In addition, LBISTA enables
the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore,
in this paper we present LBISTA and compare it with state-of-the-art block iterative shrinkage
thresholding using synthetically generated and experimental test data from active thermography
for defect reconstruction. Our results show that the use of the learned block-sparse optimization
approach provides smaller normalized mean square errors for a small fixed number of iterations.
Thus, this allows us to improve the convergence speed and only needs a few iterations to generate
accurate defect reconstruction in photothermal super-resolution imaging.

Keywords: active thermal imaging; block-sparsity; deep unfolding; defect reconstruction; iterative
shrinkage thresholding algorithm; laser thermography; learned optimization; neural network;
regularization

1. Introduction

Active thermal imaging is a nondestructive testing technique applied in many areas
such as in production industries (3D printing, car/aerospace manufacturing [1–3]), in
medicine (breast cancer diagnosis [4–6]), or in dentistry [7]. Most of the research in active
thermal imaging deals with the location of anomalies or defects in materials. These defects
are detected by actively heating up a specimen, e.g., by laser or flash illumination, which
yields photothermal imaging [8]. The resulting heat diffusion after heat excitation is
observed with an infrared (IR) camera. The observed heat flow by the IR camera is then
evaluated using the generated thermal film sequence. Defect indications are clearly visible
in these thermal film sequences if the heat accumulates at a void or if changes in the
heat flow gradient are visible due to a crack. Instead of photothermal imaging, other
thermographic imaging techniques can be applied, where e.g., induction coils are used
as a heating source [9]. Apart from active thermography, there are other nondestructive
testing techniques such as ultrasound testing (UT), x-ray computed tomography (CT), and
eddy current testing (ET). Active thermal imaging outperforms these techniques as it is a
contactless technique (UT needs contact), is relatively inexpensive and flexible in terms of
specimen sizes (compared to CT), and also enables us to investigate deeper-lying defects
(compared to ET). However, active thermography suffers from low spatial resolution due
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to the blurring nature of heat diffusion. Therefore, it is of huge interest to overcome
the spatial resolution limitations, which can be circumvented by utilizing suitable image
processing techniques.

Knowing the resulting heat distribution by active thermal imaging for a defect-free
body, the exact defect distribution of the defective body can be found by solving an underly-
ing inverse problem [10]. This severely ill-posed thermal inverse problem can be solved by
common techniques such as singular value decomposition or Bayesian approaches [11,12].
However, these techniques are computationally intensive in contrast to sparsity-exploiting
techniques such as the least absolute shrinkage and selection operator (LASSO) meth-
ods [13].

Sparse signal reconstruction is becoming increasingly popular, especially in the indus-
trial sector. These algorithms are highly attractive as, in the field of compressed sensing,
knowledge of the device or target can be exploited for a high-quality reconstruction [14,15].
Consequently, in the last few years, optimization algorithms like ISTA, FISTA [16], learned
algorithms such as LISTA [17], and adaptions like ALISTA [18] or LISTA-AT [19] gained
much attention, especially in the field of computational imaging. Unfolding methods are
already established in research and are used to solve inverse problems [20]. Especially for
multiple-measurement-vector (MMV) problems, group LASSO as a block-regularization
method can be applied to find an accurate solution [21,22]. Block-sparse recovery has
been extensively studied with performance guarantees, also in fields of applied mathemat-
ics [23–25] and has been recently applied to active thermal imaging for defect detection in
nondestructive testing [26–32]. Using multiple and different blind illumination patterns for
heating in active thermal imaging results in an MMV problem. Blind illumination patterns
assume that the exact position of illumination is unknown in industrial applications [29].
This occurs, for example, when the heat source or the specimen is held by a robot that has a
certain amount of positional noise. Unfortunately, so far, one needs to carefully choose the
regularization parameters for the block optimization problem due to the sensitivity of the
thresholding [31], which made this approach tedious to implement. In addition, it is very
likely that an optimal manual choice of these parameters differs for different investigated
specimens. Additionally, it is unclear whether the optimal parameters have been really
found. Finally, the algorithm needs hundreds of iterations to reach convergence even if the
optimal regularization parameters have been found.

These algorithms are analytically well understood, but difficult to apply in practice.
The main disadvantage of these classical approaches to solving the inverse thermal problem
is the high computational effort, e.g., due to many iterations or expensive computations.
Additionally, these algorithms depend on parameters, such as the block sparse regularizer,
which directly affects the reconstruction quality or stability of the respective method. They
are therefore impractical, especially in the manufacturing industry where one wants to
reconstruct defects quickly and accurately to see if a large number of samples are defective.
In this work, a solution is provided for the aforementioned problem by utilizing a learned
iterative joint sparsity approach called the learned block iterative shrinkage thresholding
algorithm (LBISTA). This approach applies neural network learning, e.g., a suitable choice
of the regularization parameters or the training weights. In our approach, the training data
are generated synthetically using uniformly random distributed defect distribution and
corresponding thermal film sequences. Utilizing LBISTA for photothermal super resolution
(SR) imaging avoids the manual choice of regularization parameters and allows for a higher
convergence speed than the block iterative shrinkage thresholding algorithm (Block-ISTA
or BISTA). It should be noted that LBISTA needs training times of a few hours, depending
on the used hardware, to establish a trained network. Once the network is trained, LBISTA
can be applied to photothermal SR imaging and generates super-resolved images much
faster than BISTA. Thus, this could be highly attractive in production industries such as in
3D printing, where thermal imaging is used to monitor the processing [33–36], avoiding
further post-inspections after the 3D printing has finished [26] and thus enables smaller
processing time and costs. In general, such a learned block-sparse recovery approach is
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not new as learned group LASSO approaches already exist [37–39]. In [40] we were able to
apply this idea to various BISTA-type algorithms but we did not focus on the theoretical
aspects of this approach. Thus, the novel and main contributions of this manuscript are:

• implementation of LBISTA as a method to solve the inverse problem in photothermal
SR imaging for nondestructive testing without a manual choice of regularization
parameters;

• results of applying LBISTA to synthetic and experimental test data based on experi-
ments performed with a specimen made of steel S235JR to examine defects that are
not resolvable with conventional flash thermography;

• comparison of LBISTA with state-of-the-art BISTA for photothermal SR imaging;
• parameter studies of (i) tied and (ii) untied LBISTA: (1) studies of the hyperparameters,

(2) studies of the parameters set to generate the synthetic training data (forward
model) for photothermal SR imaging. In the tied case we train the same particular
trainable parameter for each layer and in the untied case we can train it for each
layer individually.

The outline of this manuscript is as follows. Section 2 explains the mathematical model
in active thermal imaging and in photothermal SR imaging. In this section, it is shown how
photothermal SR imaging can be cast into a block-sparse recovery problem. In Section 3,
the implementation of LBISTA is shown, i.e., the description of the training data and
the description of the proposed algorithms (the code is included in https://github.com/
BAMresearch/Photothermal_SR_Net, accessed on 23 January 2020). Section 4 presents
the results after applying LBISTA to synthetic data and to experimental data acquired
from thermal imaging during structured laser illumination measurements. The results are
compared with state-of-the-art BISTA in conventional photothermal SR imaging (where
Block-ISTA or Block-FISTA are often used as optimization techniques within the iterative
joint sparsity approach, see e.g., [32]). In addition, parameter studies are shown indicating
the influence of the hyperparameters and the training parameters set to generate synthetic
training data on the performance of LBISTA. Finally, in Section 5, the main achievements
with LBISTA are listed and some future perspectives are given.

2. Mathematical Model in Active Thermal Imaging

In these studies, we work with a defect pattern assuming it does not change over the
height (lines as defects, see Figure 1) so that we can simplify our model by calculating the
mean over the vertically arranged pixels (see dimension y in Figure 1). The IR camera
measures temperature values that can be described in active thermal imaging by a convolu-
tion in space and time (denoted in the following as ∗r,t) of the fundamental solution of the
heat diffusion equation and the absorbed excitation energy (see Green’s function solution
approach in [10]). In the following, these measured temperature values are described by a
discrete temperature matrix

T = φPSF ∗r,t X (1)

with T ∈ RNr×Nt . φPSF ∈ RNr×Nt represents the discrete equivalent of the fundamental
solution of the heat diffusion equation, where Nr stands for the number of measured
pixels in the dimension r and Nt for the number of measured images in time domain.
PSF indicates that the values in the matrix refer to the well-known thermal point spread
function (PSF). The discrete equivalent of the absorbed heat flux density is designated as
X ∈ RNr×Nt . It considers the irradiance in discrete space (r) and time (t) dimension denoted
by Ir,t ∈ RNr×Nt as well as the absorption coefficient of the material under investigation in
discrete space denoted by a ∈ RNr , so that X = Ir,t ◦A, where ◦ is the Hadamard-product
and A = [a . . . a] ∈ RNr×Nt

https://github.com/BAMresearch/Photothermal_SR_Net
https://github.com/BAMresearch/Photothermal_SR_Net
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Figure 1. Exemplary specimen with defects shown as blackened stripes. A laser line array with
twelve laser lines is used. Here y stands for the spatial vertical dimension and r stands for the spatial
horizontal dimension. The illumination pattern differs for each measurement in the illuminated
position and in the number of laser lines (indicated by the red area) which are switched on (randomly
chosen). The dashed frame around the pattern indicates the covered illuminated area if all laser lines
are switched on.

As described in the introduction, we are dealing with blind structured illumination,
which means that we do not know the exact illuminated positions at the specimen under
investigation using a laser as a heat source. This results in a small but relevant change of
Equation (1) into:

Tm = φPSF ∗r,t Xm = φPSF ∗r,t (Im
r,t ◦A), (2)

with m = 1 . . . Nmeas, where Nmeas denotes the number of measurements. The spatial
and temporal distribution of the absorbed heat flux density Xm = Im

r,t ◦A varies for each
measurement m as the illuminated spatial position varies for each measurement m. This
represents an MMV problem in the forward problem formulation.

2.1. Defect Detection and Reconstruction

In our case, defects on a material are physically described as a change of optical
absorption coefficient since the defect region (high value: max{a} ∼ 0.95) differs from
the defect-free region (low value: min{a} ∼ 0.15) in its material properties. Thus, the
absorption pattern matrix A (see Equation (2)) represents the defect pattern that is of interest.
Since we assume blind structured illumination, we cannot separate the illumination Im

r,t
from the absorption pattern matrix A. However, we can reformulate Equation (2) by
extracting the known illumination pulse duration it ∈ RNt , which does not change over
the measurements, from Im

r,t = im
r ⊗ it with im

r ∈ RNr yielding:

Tm = φPSF ∗r,t [(im
r ⊗ it) ◦A]

= (φPSF ∗t it) ∗r [(im
r ⊗ 1) ◦A]

= φ ∗r Xm
r ,

(3)

where φ ∈ RNr×Nt represents the thermal PSF, that considers the illumination pulse length.
Moreover, Xm

r ∈ RNr×Nt .

2.2. Photothermal Super Resolution

The photothermal SR technique refers to structured illumination in space and promotes
high resolvability by e.g., illuminating a specimen using a narrow laser line. The realization
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of photothermal SR is possible if a lot of measurements/illuminations are performed with
the narrow laser line resulting in an MMV problem. In our previous studies, we have
shown that one can scan step by step with a single laser line with submillimeter position
shifts to provide high resolvability [31]. This technique relies on spatial frequency mixing
of the illumination pattern and the target pattern, here the absorption pattern. Spatial
frequency mixing allows us to generate higher frequency components, enabling super-
resolution. Since im

r has a certain width in space according to the used narrow laser line
width, the use of photothermal SR results in equal spatial distributions for ∑m im

r and a
(see [31]). Hence, the initial goal is to determine the variable Xm

r . We measure Tm with the
IR camera and we can determine φ analytically. This underlying inverse problem has been
considered many times in our studies [29–32] and a promising approach to obtain Xr was
block-regularization.

2.3. Block-Minimization Problem

Before using block-regularization, we eliminate the time dimension to reduce the data
size. The straightforward way shown in our previous studies [30–32] is to extract one
thermogram per measurement in the time domain, which exhibits the highest SNR—this is
the so-called maximum thermogram (MT) method. We can reformulate Equation (3) after
applying the MT method separately to each measurement m yielding the reduced (reduc)
data with:

Tm
reduc = φreduc ∗r xm

reduc (4)

with Tm
reduc, φreduc, and xm

reduc ∈ RNr . To cast this problem into a block-sparse problem, we
use the knowledge that the absorption pattern remains the same for each measurement,
i.e., for each m = 1, . . . , Nmeas we have supp

(
xm

reduc
)
⊂ supp(a), where

supp(xm
reduc) =

{
k
∣∣ |xm

reduc[k]| 6= 0 , k = 1, . . . , Nr
}

.

By casting these measurements into a matrix

Xreduc =
(

x1
reduc, · · · , xm

reduc, · · · , xNmeas
reduc

)
∈ RNr×Nmeas (5)

we obtain the block-sparse vector x̃ = vec(XT
reduc) ∈ RNr ·Nmeas with Nr blocks of length

Nmeas. Using e.g., Block-ISTA then tries to minimize the following term:

X̂reduc = arg min
Xreduc

Nmeas

∑
m=1

Nr

∑
k=1

∣∣(φreduc ∗r xm
reduc

)
[k]− Tm

reduc[k]
∣∣2 (6)

+ λ‖Xreduc‖2,1

with the block- or joint-sparsity inducing `2,1-norm ‖Xreduc‖2,1 = ∑Nr
k=1

√
∑Nmeas

m=1 |xm
reduc[k]|2

this is important as we are working with blind structured illumination. Block-ISTA is
stated as the following fixed-point iteration (inspired by [27,41]) and were also used in our
previous studies [30–32] to solve (6),

x̂m
(i) = ηλ

(
x̂m
(i−1) − 2γφreduc ∗r

(
φreduc ∗r x̂m

(i−1) − Tm
reduc

))
, (7)

i = 1, . . . , Niter. The number of iterations Niter is chosen such that convergence is reached
and the soft block-thresholding operator ηλ can be computed by:

ηλ(x̂m)[k] = max

0, 1− λ√
∑Nmeas

m=1 |x̂m[k]|2

x̂m[k]. (8)
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The step size is defined by γ ∈ (0, 1
L ], where L is the Lipschitz constant of the gra-

dient of the data fitting term. The value for L can be determined empirically or by
L = 2π‖φ̂reduc‖∞ where ‖ · ‖∞ denotes the supremum/infinity norm and φ̂reduc denotes
the Fourier transform of φreduc [27]. The value for λ is chosen empirically for (7)—Block-
ISTA, e.g., λ = 4× 10−3. The same value was used in our previous work, where we utilized
Block-FISTA to examine the same specimen [30].

3. Learned Block Iterative Shrinkage Thresholding Algorithm

The success of LBISTA is strongly dependent on the choice of the training data and
on the implementation of the training which will be explained in detail in the following
subsections.

3.1. Training Data

To create the training data, we follow the forward problem shown in Equation (4). To
define xm

reduc, we have different parameters, which can be varied: the defect width (see the
width of a black stripe in Figure 1), the laser line width (see the width of a single laser line
shown in Figure 1), the absorption coefficient for a defective and a defect-free region, the
number of defects (probability of nonzero in space for a if we assume that the defect-free
regions have an absorption coefficient of 0, i.e., the element ai of a is equal to 1 with a given
probability indicating a defect - we then widen these defects according to the defect width,
i.e., setting the respective elements of a also to 1), and the number of laser lines (probability
of nonzero in space for im

r if we assume that im
r equals zero at the nonilluminated positions,

works similar to generating a). Hence, we implemented xm
reduc as im

r ◦ a, determined φreduc
analytically and calculated Tm

reduc.

3.2. Training Implementation

Inspired by the code implementation of [42] we consider layer-wise learning instead
of end-to-end learning for LBISTA. Each network depends on a set Θ of trainable variables
and on a number of layers K. We define the layers for tied LBISTA as follows

x̂m
(i) = ηλ(i−1)

(
s ∗ x̂m

(i−1) + b ∗ ym
)

(9)

and for untied LBISTA

x̂m
(i) = ηλ(i−1)

(
s(i−1) ∗ x̂m

(i−1) + b(i−1) ∗ ym
)

, (10)

m = 1, . . . , Nmeas. Note that we simplified the fixed point representation with ∗ := ∗r and
ym := Tm

reduc. We define the set of trainable variables Θtied = {s, b} ∪
⋃K

i=1 Θ(i)
tied for tied

LBISTA (9), where

Θ(i)
tied =

{
λ(i−1)

}
, i = 1, . . . , K.

We initialize these variables with b = 2γφreduc ∈ RNr , s = e− b ∗φreduc ∈ RNr , where
e = [1, 0, . . . , 0]T ∈ RNr for some step size γ ∈ (0, 1

L ]. In addition, we use the same initial-
ization for the regularization parameter in each layer i = 0, . . . , K− 1 with λ(i) = 4× 10−3.

For untied LBISTA (10) we define Θuntied =
⋃K

i=1 Θ(i)
untied, where

Θ(i)
untied =

{
s(i−1), b(i−1), λ(i−1)

}
, i = 1, . . . , K.

Untied means that each layer has its own set of trainable variables s, b, we use the same
initialization for each layer. Therefore, we initialize b(i) = 2γφreduc, s(i) = e− b ∗φreduc,
in each layer i = 0, . . . , K− 1. These variables are initialized such that we would obtain the
original Block-ISTA if we do not apply the training.
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The training follows Algorithm 1 and can take a large amount of time depending on
the choice of the termination condition and therefore the number of iterations for each layer
and each refinement. Hence, the training time also depends on the number of refinements
and on the number of layers. The calculation time for one iteration is around 150 ms.
Within a layer, we usually have 10,000 iterations and with each refinement, an additional
1000 iterations. We have used the GPU Quadro RTX 8000 to perform the training.

Algorithm 1: LBISTA, implementation of training
Input : Training rate tr, refinements f , exact solution x∗,m and trainable Variables

V with case = tied or case = untied
for i = 1, . . . , K do

loss = 1
2 ∑Nmeas

m=1 ‖x̂m
(i) − x∗,m‖2

2

for t = 1, . . . , Maxiter do
AdamOptimizer(tr).min

(
loss, var list=Θ(i)

case
)

end
for fm in refinements f do

for t = 1, . . . , Maxiter do
AdamOptimizer(tr · fm).min

(
loss, var list=Θcase

)
end

end
end

4. Evaluation of LBISTA
4.1. Numerical Results

To study the performance of the LBISTA, we first show numerical studies considering
the block-sparse convolution problem Tm

reduc = φreduc ∗r xm
reduc. There is also a theoretical

analysis of this approach in the setting of sparse recovering—in [18,43] a lower and upper
bound for the reconstruction error is derived. This could also be applied to the block-setting
and especially to the setting of photothermal SR imaging, but this is part of ongoing work.

In the following, we use the same notation as shown in Equation (4) with ym
train =

φreduc ∗r xm
train and ym

train, xm
train ∈ RNr . An analytical formulation of φreduc can be found

in [30]. Note that φreduc is generated after applying the MT method. Table 1 shows the used
parameters for training with synthetic data based on xm

train = im
train ◦ a. More precisely, the

cells corresponding to defect pattern determine the values in a and the cells corresponding
to illumination pattern the values in im

train ∈ RNr . Further, Gaussian noise is added to
generate ym

train based on the shown SNR value in the table. For the determination of
Gaussian noise variance σ2

noise, we have used: SNR = µ2/σ2
noise = 8 dB with the squared

signal mean µ2 = PNZ. PNZ denotes the probability of nonzeros. LBISTA is trained for the
dimensions Nr = 1280 (number of pixels), Nmeas = 150 (number of measurements based on
differently chosen illumination and therefore differently generated xm

reduc). The maximum
number of iterations Maxiter has been decreased for untied LBISTA since updating more
variables causes higher computation times for each iteration.

In the following, the training data are determined by xm
i,train, ym

i,train ∈ RNr and i ∈ {1, . . . ,

NB}, m ∈ {1, . . . , Nmeas}, so that (Xi, train)
NB
i=1 =

(
x1

i, train, . . . , xNmeas
i, train

)NB

i=1
∈ RNB×Nr×Nmeas

and similar for (Yi, train)
NB
i=1 ∈ RNB×Nr×Nmeas , e.g., Figure 2b. LBISTA reaches a smaller

normalized mean square error (NMSE) much faster than BISTA, Figure 2e,f. According to
the curves in (d), LBISTA outperforms BISTA in terms of reconstruction using φreduc (see
(a)) and ytest (see (c)). Of course, it strongly depends on the choice of λ how well BISTA
reconstructs. Therefore, we chose the same initial values of λ for BISTA and LBISTA to
have a better comparison.
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Table 1. Parameters used in LBISTA for problem definition and training.

Gaussian Noise in ym
train SNR = 8 dB

Defect pattern defect width = 1 mm
defect sparsity (PNZ) = 0.01

absorption coefficient = {0, 1}
Illumination pattern laser line width = 0.8 mm

illumination sparsity (PNZ) = 0.01
Training parameters refinements f : fm = {0.5, 0.1, 0.05}

training rate tr = 0.001
initial lambda λ = 0.004
number of layers K = 6

step size γ = 1√
2

batch number NB = 150
tied LBISTA max. number of iterations Maxiter = 105

untied LBISTA max. number of iterations Maxiter = 104

Figure 2. Exemplary synthetic training and synthetic test data as well as NMSE performance studies.
(a): shape of used φreduc in training, (b,c): comparison of the curve shapes for exemplary training
and test datasets with e.g., x1

1, train ∈ RNr , (d): reconstruction of xtest using convolution-based tied
LBISTA (6 iterations/layers) vs. BISTA (1000 iterations), (e): NMSE over iterations for BISTA with
95 % confidence interval, (f): NMSE over iterations for tied LBISTA with 95 % confidence interval.

Figure 2 shows the results with synthetic test data ytest ∈ RNr and ground truth
xtest ∈ RNr . In the following section we use real measurement test data instead of ytest on
LBISTA, but still trained with synthetic training data.

4.2. Evaluation of LBISTA with Experimental Data from Active Thermal Imaging

Instead of creating test data synthetically as in the previous section, we apply LBISTA
to real experimental data, which were measured with the IR camera (InfraTec ImageIR 9300,
1280× 1024 pixels full frame, spectral range: 3–5µm). We have used the same dataset as in
a previous publication (see [30] as a reference). We have used the IR camera in transmission
configuration (illumination on the front of the specimen and observation of the back side
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with the IR camera). The specimen has a thickness of 3 mm and 5 blackened stripe pairs
on the front, see Figure 1. All in all, we performed around 150 measurements, resulting
in m = 1 . . . 150, 30 measurements per pair. Within these 30 measurements, we shifted the
position by 0.4 mm twice: once after the first and again after the second ten measurements.
After 30 measurements the position was shifted to the next pair. This is repeated until we
scanned the whole specimen (Figure 1). Each measurement differs by randomly (uniform
distribution) switching on a certain number of laser lines out of twelve (at least one laser
line is turned on for each measurement). Figure 3 shows the experimental test data after
removing the dimension y by calculating the mean over the vertically arranged pixels
and eliminating the time dimension by applying the MT method ([30–32]). Nevertheless,
there is a disturbance in the data at position 41 mm represented by a straight line over all
measurements. This comes from the fact that the specimen had a marker line on the rear
side to have an orientation about the defects in thermographic transmission configuration,
Figure 4.

Figure 3. Test data from photothermal structured illumination measurements. To obtain this image,
averaging over the vertically arranged pixels as well as applying the MT method (see [30–32]) to
eliminate the time dimension is necessary. The blue marker at position = 41 mm refers to the marker
line on the investigated specimen (Figure 4).
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Figure 4. Sample front and rear view to understand origin of white marker line at position 41 mm,
Figure 3. The rear side of the sample has been observed by the IR camera and the front side has been
excited by a laser array. The defects on the front side are shown by blackened stripes (5 pairs). The
marker line on the rear side is in the same position as the left edge of the right stripe from the third
pair. The distances between the pairs are (left to right): 0.5, 1, 3, 2, 1.3 mm. A stripe is 1 mm wide and
the distance of each pair is around 10 mm.

In the following, we compare the result after applying BISTA or LBISTA. Calculating
the sum over all measurements as explained in Section 2.2 results in an approximation of
the defect pattern, as shown in Figure 5. The dashed blue curve indicates the outcome of the
BISTA algorithm and shows only more or less good indications for the third pair with the
largest distance between the stripes (around position 37 . . . 44 mm). The result of block fast
ISTA (Block-FISTA), the purple dashed line, also shows only a more or less good indication
for the defects, but still improves the resolution and even shows the fourth defect. Block-
FISTA is also a block iterative shrinkage algorithm but with a better convergence rate than
BISTA [16,27], but also has the main drawback of finding optimal regularization parameters
empirically. In contrast, the application of LBISTA results in very good indications for
three of five pairs. Only the stripes with the largest and closest distance to each other
(position 11 . . . 14 mm) cannot be clearly recognized. The other three stripes are very well
reconstructed, even the stripe width can be recognized. Since the marker line at position
41 mm disturbs the pattern recognition, the stripes with the largest distance to each other
are hard to resolve. For now, parameters from Table 1 have been used, but it is still unclear
whether these are the best choice. Therefore, we varied some of these to study their impact
on the result of tied and untied LBISTA, see Figure 6 and Figure 7, respectively.
Figure 6:

• Training batch size (a,b): Varying the number of batches between NB = 100 and
NB = 200 does not really change the result.

• Defect pattern (c,d,e,f): In contrast, changing the sparsity of the defects from
PNZ ∈ [0.005, 0.03] (c.f. (e,f)) or the defect width (see (c,d)) leads to significant changes
in the results such that the result in (d) is even able to clearly detect both stripes in the
first pair with the smallest distance between the stripes. In (f), obviously a too small
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sparsity has been used as the PNZ is quite high in comparison to the chosen PNZ in
(e). Thus, it is obviously beneficial to know roughly the sparsity.

• Training rate and number of layers (g,h): In (g) we get similarly good results just by
using one refinement instead of three as used in Figure 5. Only using one refinement
could save a lot of time during training. In (h), a rather bad result is shown, where we
used one refinement and only three layers. Thus, these parameters should be chosen
high enough so that we reach convergence within training.

Figure 7:

• Absorption coefficient and training iterations (a,b): In contrast to tied LBISTA, untied
LBISTA exhibits significant changes by varying the absorption coefficient in training.
According to our studies, an absorption coefficient of {0, 1} is a good choice. Further,
increasing the maximum number of iterations as shown in (b) can enhance the recon-
struction quality so that all stripes could be indicated very well except for the middle
stripe pair (most likely due to the marker line).

• Training batch size (c,d): The result in (c) using fewer batches and iterations as in (b)
shows that similarly good results can be achieved. Increasing the number of batches
to NB = 200 as shown in (d) can further enhance the reconstruction quality as now
even the middle defect pair could be clearly resolved.

• Defect width (e,f): The variation of the defect width rather degrades the reconstruction
result as shown in (e,f). This means that the default choice performs best for untied
LBISTA. However, with tied LBISTA (Figure 6c,d) we could see improvements by
changing the parameter of the defect width.

• Defect sparsity (g,h): The variation of the sparsity in untied LBISTA in (g,h) confirms
our investigations in tied LBISTA (see (e,f)), deterioration by using a too small sparsity
of PNZ = 0.03.

Figure 5. Pattern reconstruction of blackened stripes as shown in Figure 4 using BISTA, Block-FISTA,
and tied LBISTA. For LBISTA the parameters in Table 1 were used. Hence, synthetic training data
have been used. The BISTA and Block-FISTA result has been created by using γ = 1√

2
, λ = 0.004,

Niter = 500 (selected from [30]). The marker line can be seen in the BISTA curve exhibiting normalized
amplitude values < 0 at position 41 mm.
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Figure 6. Parameter studies for tied LBISTA applied to experimental test data shown in Figure 3.
The blackened areas represent the blackened stripes for better orientation. The blue curves stand
for the result after applying the tied LBISTA to the experimental test data. All images are based on
the parameter choice shown in Table 1. The following parameters have been changed, respectively:
(a) NB = 100, (b) NB = 200, (c) defect width = 0.5 mm, (d) defect width = 2 mm, (e) defect sparsity
PNZ = 0.005, (f) defect sparsity PNZ = 0.03, (g) only one refinement fm = {0.5}, (h) only three layers
K = 3 and one refinement fm = {0.01}.

Figure 7. Parameter studies for untied LBISTA applied to experimental test data shown in Figure 3.
The blackened areas represent the blackened stripes for better orientation. The yellow curves
stand for the result after applying the untied LBISTA to the experimental test data. All images
are based on the parameter choice shown in Table 1. The following parameters have been changed,
respectively: (a) absorption coefficient = {0.3, 0.7}, (b) Maxiter = 105, (c) NB = 100, (d) NB = 200,
(e) defect width = 0.5 mm, (f) defect width = 2 mm, (g) defect sparsity PNZ = 0.005, (h) defect spar-
sity PNZ = 0.03.
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5. Conclusions and Outlook

The application of LBISTA leads to much more promising results than the state-of-
the-art BISTA. With LBISTA, we can omit manually selected regularization parameters
and obtain the results faster and with higher reconstruction qualities/smaller NMSE for a
small fixed number of iterations. This paper showcases the improvements in reconstruction
for different cases: (1) convolution measurements with synthetic test data (see Figure 2);
(2) convolution measurements with experimental test data from photothermal measure-
ments (see outstanding results for tied LBISTA in Figures 5 and 6d and for untied LBISTA
e.g., in Figure 7d). These are based on the same training dataset. In all cases, it could be
observed that untied LBISTA provides more reliable results than tied LBISTA in terms of
reconstruction quality. Moreover, the parameter studies encouraged us to use as many
batches, iterations, and layers as possible to achieve high reconstruction qualities. Further, a
very precise model of the experiment is necessary to provide accurate reconstruction results.

Thus, the application of learned regularization algorithms, such as the proposed
LBISTA, is highly recommended and attractive for industrial applications where the user
does not have to choose regularization parameters manually and benefits from the remark-
able speed of convergence of LBISTA. LBISTA therefore enables a less complicated evaluation
of the photothermal SR data and offers the possibility of reliable in situ inspections.

As an outlook, we will study other learned block-regularization techniques based
on unfolding algorithms such as FISTA or Elastic-Net. In addition, we will further study
how to increase the performance of the training to train with larger datasets where we
do not have to eliminate the time dimension or calculate the mean over the vertically
arranged pixels.
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