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Abstract: Advanced high-performance filler metals for wire arc additive manufacturing (WAAM)
exist on the market already. Nevertheless, these high-strength steels are not yet widely used in
industrial applications due to limited knowledge of cold-cracking susceptibility, welding residual
stresses, and therefore sufficient safety in terms of manufacturing and operation. High residual
stresses promote cold-cracking risk, especially in the welding of high-strength steels, as the result of a
complex interaction between the applied material, process conditions, and component design. The
focus of the present investigation was the determination of the influence of the process parameters
on the ∆t8/5 cooling time, mechanical properties, and residual stresses to correlate, for the first time,
heat control, cooling conditions, and residual stress for WAAM of high-strength filler materials.
This contributed to the knowledge regarding the safe avoidance of cold cracking. In addition to
a thermophysical simulation using a dilatometer of different high-strength steels with subsequent
tensile testing, reference WAAM specimens (open hollow cuboids) were welded while utilizing a
high-strength filler metal (ultimate tensile strength > 790 MPa). The heat control was varied by means
of the heat input and interlayer temperature such that the ∆t8/5 cooling times corresponded to the
recommended processing range (approx. 5 s to 20 s). For the heat input, significant effects were
exhibited, in particular on the local residual stresses in the component. Welding with an excessive
heat input or deposition rate may lead to low cooling rates, and hence to unfavorable microstructure
and component properties, but at the same time, is intended to result in lower tensile residual stress
levels. Such complex interactions must ultimately be clarified to provide users with easily applicable
processing recommendations and standard specifications for an economical WAAM of high-strength
steels. These investigations demonstrated a major influence of the heat input on both the cooling
conditions and the residual stresses of components manufactured with WAAM using high-strength
filler materials. A higher heat input led to longer cooling times (∆t8/5) and approx. 200 MPa lower
residual stresses in the surface of the top layer.

Keywords: WAAM; additive manufacturing; heat control; high-strength filler metals; residual stress

1. Introduction

Additive manufacturing (AM) processes enable engineers and designers to break new
ground in the direct implementation of lightweight construction principles. In particular,
the use of modern high-strength structural steels allows the design of lightweight compo-
nents with low wall thicknesses and high-performance component properties. A weight
reduction of 78% can be achieved by simply exchanging a conventional S235J2 with an
S960QL [1,2]. The efficient use of materials and energy can reduce industrial emissions
of greenhouse gases in order to achieve the national and international climate protection

Metals 2022, 12, 951. https://doi.org/10.3390/met12060951 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12060951
https://doi.org/10.3390/met12060951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-1843-6473
https://orcid.org/0000-0003-2226-9337
https://orcid.org/0000-0003-0340-9656
https://doi.org/10.3390/met12060951
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12060951?type=check_update&version=2


Metals 2022, 12, 951 2 of 10

targets [3]. With AM of high-strength materials in particular a full exploitation of the
lightweight construction potential of technical applications in the areas of system, function,
structure, and material is achievable [4]. A further increase in efficiency can be achieved
through near-net-shape production [5].

The basic applicability of WAAM in the production of complex and large components
with industrial robots has been proven in various works [4–6]. For a large-scale economic
industrial application, there is a lack of quantitative information on the manufacturing-
related stresses and structural reliability during component production and operation. This
involves extensive investigations of the complex interactions between the welding process,
especially heat control by means of the welding thermal cycle, the metallurgical processes,
and design aspects, with the aim of reliably avoiding high tensile residual stresses. Similar
to conventional joint welding, high tensile residual stresses are detrimental regarding cold
cracking and also premature component failure, especially for high-strength materials. For
welded joints, stress optimization by means of adapted heat-control concepts have already
been the subject of research. Schroepfer et al. demonstrated the major influence of heat
control on the formation of welding residual stresses [7]. It was shown that the interpass
temperature in particular affected the global reactions stresses that were superimposed with
local welding stresses, and the heat input predominantly influenced the cooling time and
weld microstructure. However, systematic studies on their transferability to AM for high-
strength steels are still lacking. Hoennige et al. investigated welding stresses in WAAM
components of Ti6Al-4V and demonstrated that it was possible to reduce longitudinal
residual stresses and distortion using side rolling [8]. Although manufacturing-related
stresses in structural steel WAAM components have already been the subject of research
by Denkena et al. [9], these have not yet been considered in the context of the special
microstructures and low ductility reserves of high-strength steels and the effect of the
welding parameters on the residual stresses. Depending on the component dimensions,
ready-to-use WAAM welding systems are now commercially available in various sizes, and
can be used to generate components automatically [10]. In addition, studies demonstrated
the suitability and efficiency of the controlled MSG short arc (e.g., cold metal transfer
(CMT) or ColdArc) for large components [11]. Different studies dealt with the strong
dependence of the temperature distribution and the resulting component geometry on
the welding parameters [12–14]. These investigations showed the great importance of
heat control in setting the desired microstructural properties of high-strength steels using
WAAM. Graf et al. investigated the influence of the wire feed rate and build-up strategy
(continuous or discontinuous) on temperature development during WAAM [12]. These
investigations confirmed the great influence of the build-up strategy and component
geometry on temperature accumulation in WAAM components. The relatively narrow
processing range in high-strength steel welding; e.g., cooling time ∆t8/5 for S690: 5 to
20 s, involves limited heat control parameters in order to achieve low manufacturing-
related stresses, and at the same time, adequate microstructures with low cold cracking
susceptibility and sufficient mechanical properties. This can be achieved by adjusting
the heat input: preheating and interlayer temperature in such a way that as little heat as
possible is introduced in the component during production [13]. In addition, Mueller et al.
showed the influence of welding parameters on the mechanical–technological properties of
WAAM-manufactured components [14]. The results indicated a lower yield strength and
an increased tensile strength when welding with a higher heat input.

It should be emphasized that the use of high-strength structural steels has great
potential in WAAM. The process-related residual stresses and material-related low ductility
reserves, combined with the high welding requirements, result in a high risk of cold
cracking. Therefore, residual stress analyses of the AM components are necessary to
evaluate the influence of the material and design aspects and of the process conditions.
Various methods can be used for this, such as X-ray diffraction and the incremental hole-
drilling method for residual stresses near the surface [15,16]. Due to the limitations of
drilling methods, which only provide reliable measurements up to approx. 60% of the
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material yield strength, nondestructive analysis by means of XRD should be used whenever
it is to be assumed that measured values in the yield strength range are to be detected.
Since the penetration depth of the X-rays is only a few micrometers, only the residual
stresses near the surface can be determined. In research, other methods are commonly used
for comparison purposes, especially in the determination of welding residual stresses in
the bulk [15]. These include, for example, the contour method, neutron and synchrotron
diffraction, the dissection technique, or the so-called deep-hole drilling [17]. Several
investigations of AM components showed that high residual stresses and residual stress
gradients could be expected, especially on the component surfaces [18,19], which also were
in the range of the material yield strength. Due to this, as well as the fact that high tensile
residual stresses; e.g., at notches, have a detrimental effect on the cold-cracking risk and
performance of the component, investigations of the residual stresses should initially be
analyzed predominantly by means of XRD. However, to date, no studies in this regard have
been carried out to prevent cold cracking in WAAM processing of high-strength structural
steels in the context of the evolution (magnitude and distribution) of welding stresses
in realistic component dimensions. However, such knowledge is crucial for economic
application, since the applicability of postweld heat treatment for residual stress reduction
in these high-strength steels is only limited by economic and metallurgical aspects due to
the special microstructures.

In this context, this study dealt with the fundamental relationships between the weld-
ing parameters and additive build-up strategy on the resulting cooling rates, mechanical
properties, and residual stresses. This investigation was part of a joint project of the
Chemnitz University of Technology and BAM (FOSTA P1380/IGF 21,162 BG).

2. Materials and Methods
2.1. WAAM Welding System

For the welding tests, a robot-assisted WAAM cell consisting of a KUKA industrial
robot and Fronius welding power source was implemented at the Chemnitz University
of Technology, cf. Figure 1. The robot program installed on the controller contained all
movement commands for the robot arm (manipulator) and for the welding power source.
The controller evaluated the program and sent the corresponding motion and welding
commands to both the manipulator and the welding power source via a corresponding
interface. In the present study, a controlled short arc was used with the parameters of
welding speed (travel speed of the robot), wire feed rate, arc correction, and dynamic
factors.
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Figure 1. Simplified block diagram of the implemented WAAM cell at the Chemnitz University of
Technology; layer width bS and height hS were set indirectly via the welding parameters of welding
speed vT and volume flow per time V/t.

The path coordinates for additive manufacturing were basically derived from a CAD
model using slicers and translated into executable welding programs using a specially
developed compiler. The workflow for the manufacturer-independent generation of exe-
cutable robot programs, as well as the required software, were developed and successfully
used in independent projects at the Chemnitz University of Technology.
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2.2. Materials

In this project, a high-strength WAAM-optimized filler metal with a strength class of
790 MPa and a diameter of 1.2 mm was used. In contrast to conventional high-strength
filler materials of the same strength (e.g., G 79 5 M21 Mn4Ni1.5CrMo), this material has
stabilizing alloying elements that ensure WAAM-optimized melting conditions. With
regard to welding heat control, this ensured an extended processing window while also
ensuring the required mechanical properties. The WAAM specimen’s reference geometries
were built on a 30 mm thick steel substrate plate of S690QL with a yield strength of
690 MPa. In accordance with the recommendations of the steel manufacturers, this material
combination allows adequate bonding of the AM component to the substrate plate within
the selected experimental design. In this way, the necessary ductility in the transition area
and, at the same time, an adequately high strength of the substrate in connection with
a sufficiently high stiffness or restraint condition close to real applications were realized
when WAAM-welding the component specimens.

For the thermophysical welding and forming simulation, in addition to the above-
mentioned materials, samples of S960QL were also investigated in order to be able to
compare the behavior of the novel WAAM filler metal with conventional high-strength
structural steels. Table 1 shows the chemical compositions and mechanical properties of all
test materials.

Table 1. Mechanical properties and chemical composition (in wt%, Fe-balanced) of the filler and
the base metals investigated in the recommended ∆t8/5 range of 5 s to 20 s based on material test
certificates.

Material
Chemical Composition Mechanical Properties

C Mn Si Mo Cr Ni Rp0.2 Rm A5

WAAM wire 0.09 1.70 0.40 0.60 0.35 2.00 820 MPa 920 MPa 20%
S690QL (1.8931) 0.14 1.15 0.30 0.17 0.30 0.10 771 MPa 824 MPa 17%
S960QL (1.8933) 0.17 0.88 0.27 0.52 0.49 0.51 1039 MPa 1059 MPa 15%

2.3. Thermophysical Welding and Forming Simulation with Dilatometer

In this investigation, the fine-grained structural steels S690QL (1.8931) and S960QL
(1.8933) and the novel WAAM wire were comparatively analyzed. To obtain detailed results
on the ultimate tensile strength as a function of the ∆t8/5 cooling time, tests were carried out
to thermophysically simulate a welding process. In the test series, sheet specimens were
subjected to one time–temperature cycle (load-free) based on WAAM welding (Figure 2,
left). After cooling to room temperature (RT) defined by the ∆t8/5 cooling time, the sheet
specimens were subjected to a tensile test (test speed 10 mm/min) in the same setup, cf.
Figure 2. These tests were used to determine the influence of varying cooling rates on the
tensile strength of the materials. The peak temperature of the time–temperature cycles was
1200 ◦C, and the ∆t8/5 cooling time was varied between 1.5 s and 45 s.
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2.4. Welding Experiments

The layer width bS and height hS were set indirectly via the welding parameters (weld-
ing speed vT and volume flow per time V/t), cf. Figure 1. Consequently, these parameters
were the main influencing variables on the generated material cross-section [4]. At the
same time, the welding parameters influenced the heat input into the WAAM component,
and thus also the behavior of the metallic melt during processing. The described welding
tests were performed to examine the interactions between welding parameters, cooling
conditions, and residual stresses on identical specimen dimensions.

For this purpose, a total of nine geometrically identical open hollow cuboids were
fabricated and investigated under systematic (full factorial) variations in the interlayer
temperature (100 ◦C, 200 ◦C, and 300 ◦C) and heat input (200 kJ/m, 425 kJ/m, and 650
kJ/m), cf. Figure 3. The cooling times were determined during welding by means of
temperature measurements with thermocouples (type-K).
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2.5. Residual Stress Analysis

The analysis of local residual stresses was performed via X-ray diffraction (XRD)
transverse and longitudinal to the welding direction using the sin2

ψ method at defined
positions on the surface of the top layer of the reference geometries [15,16]. Table 2 shows
the parameters used for the residual stress analysis.

Table 2. Parameters for residual stress analysis using XRD (sin2
ψ method).

Radiation: CrKα
Tube Power:

30 kV/6.7 mA Collimator: 2 mm Detector:
Linear Solid State

Diffraction Line:
{211}α

ψ-Tilting:
0◦ to ±45◦

ψ-Steps:
±10

Measuring Time:
5 s

3. Results and Discussion
3.1. Thermophysical Welding and Forming Simulation with Dilatometer

Figure 4 shows the ultimate tensile strength as a function of the cooling time ∆t8/5 for
the test materials S690QL, S960QL, and WAAM wire.
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Figure 4. Influence of ∆t8/5 cooling time on ultimate tensile strength of the investigated test materials
S690QL, S960OL, and high-strength WAAM wire (G79) with 3 experiments per data point and a
maximum standard deviation S = ±10 MPa.

Between 5 s and 25 s, the tensile strength of all test materials decreased with increas-
ing cooling time ∆t8/5. Due to the higher grade and the different alloying concept, the
level of the strength determined for S960QL was comparatively higher than that of the
other test materials. From approx. 10 s, the strength reduction increased significantly
for S690QL compared to S960QL and the WAAM wire. The absolute difference between
the maximum and minimum tensile strength for the S690QL over the entire ∆t8/5 time
range was significantly higher (with 350 MPa) than for S960QL or G79, with a difference of
approx. 150–200 MPa. This could be traced back primarily to the increased proportions of
strength-increasing alloying elements compared to the S690QL steel, such as Ni, Mo, and
Cr. From a cooling time of approx. 25 s, the ultimate tensile strength of the WAAM wire
remained more or less constant up to 45 s. This was in accordance with studies of other
authors, who focused on testing of mechanical properties in tensile specimens of an actual
WAAM component/wall [14], in which, however, a relatively high effect of the cooling
conditions on the yield strength was found. In future investigations, testing of the yield
strength should therefore be mandatory.

Hence, the combination of S960QL as a substrate plate and such WAAM welding wire
as a filler material would offer the potential of additive manufacturing in a wide ∆t8/5 time
range without a significant loss in strength.

3.2. Cooling Time during Additive Manufacturing

As with multilayer welding, each WAAM layer is subject to a complex heat treatment
consisting of multiple instances of heating and cooling (weld thermal cycle). The last
effective cooling time ∆t8/5 with a peak temperature above 800 ◦C of the respective layer
was relevant here. This last effective cooling rate significantly determined the microstruc-
ture and properties of the final component. Figure 5 shows the regression model of the
determined ∆t8/5 times within the studied experimental design. The model quality was
high, with R2 = 98.6%.
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The statistical evaluation showed (within a quadratic regression model) that the effects
of the interlayer temperature and heat input were both significant. The cooling time
increased approx. linearly with increasing heat input. Due to a slight interaction between
the heat input and interlayer temperature, this linear increase could be observed at all
interlayer temperatures. The heat input had a much stronger effect on the cooling time than
the interlayer temperature, since there was a correlation with the amount of heat introduced,
and thus had a major influence on the cooling characteristics of the component. Due to the
rather low heat dissipation into the component, especially at higher layer numbers, the
cooling time could only be adjusted to a small extent by varying the interlayer temperature
at a constant heat input. It should be mentioned that this was in strong contrast to the effect
of the interpass temperature on joint welding, which had a significantly higher influence
on the cooling rates depending on the plate thickness and applied heat input, with which it
also had a considerable interaction [7].

3.3. Residual Stress Analysis

Figure 6 shows the distribution of residual stresses on the top layer surface of the
specimen, which was manufactured with central test parameters (E = 425 kJ/m, Ti = 200 ◦C).
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welded with central test parameters (E = 425 kJ/m, Ti = 200 ◦C).

For this purpose, the specimens were divided into four quadrants (Q1 to Q4). The
analysis proceeded from the centerline of the specimen (x = 0 mm) to the corners. A
constant residual stress level in the middle area of the walls and an increase to approx.
400 MPa of the tensile residual stresses in the corner areas was exhibited that could be traced
back to a higher design-related shrinkage restraint corresponding to commonly known
models. These results were qualitatively comparable with other studies; e.g., on WAAM of
IN718 [8,20]. However, the ratio of yield strength to residual stress was lower here. It was
assumed that this was due to compensating transformation residual stresses (formation of
compressive loads during cooling process) due to the solid-phase transformation of the
high-strength steel weld metal according to generally accepted concepts [16,21]. Another
influence on the residual stresses occurred due to the weld start and end points. An
increased heat input in quadrants Q1 and Q4 at the weld start and end, respectively, caused
elevated residual stresses compared to Q2 and Q3, where constant process conditions
prevailed. The mean scatter of the analyzed stress values was ±22 MPa. To determine
the influence of the heat input and interlayer temperature on the residual stresses of the
surface layers, all nine WAAM-welded hollow cuboids were analyzed in the range of
x = 0 mm to x = 35 mm. The mean residual stress level was determined in each case, cf.
Figure 6. Figure 7 shows the statistical evaluation of the averaged stress levels from Q3
using regression analysis.
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stresses on top layer within Q3. Model qualities: for σE

x: R2 = 69.5%; for σE
y: R2 = 88.7%.

The interlayer temperature (Figure 7, center) showed no significant influence on either
the longitudinal or transversal local residual stresses of the top layer, as the effect on the
cooling time also was rather small. The heat input (Figure 7, right) had a significant effect
on the longitudinal residual stresses σE

x (p = 0.011). The model quality was R2 = 69.5%.
The increase in heat input caused a lower residual stress level on the top layer. This was
due to the smaller cross-section of the top layer at a lower fusion rate, with a comparable
shrinkage restraint due to the dimensions of the wall. Although this resulted in similar high
shrinkage forces, they acted over a smaller cross-section compared to the higher deposition
rate. The transversal residual stresses σE

y were also influenced by the heat input. The effect
was significant (p = 0.005), with a model quality of R2 = 88.7%. A comparable influence
similar to the longitudinal residual stresses could be assumed, with the difference that the
shrinkage restraint in the transverse direction (wall thickness direction) was much less
pronounced than in the longitudinal direction.

It should be emphasized that the resulting residual stress level on the surface of
the top layer was the result of a complex superposition of shrinkage, quenching, and
transformation residual stresses according to general concepts, as mentioned above [21].
Other authors investigated these local effects due to high temperature gradients, and found
significant influences on the local stress distributions and magnitudes [21], as well as
complex interactions with superimposing global welding stresses due to high shrinkage
restraints [7]. In comparison to other studies with materials that did not undergo a solid-
phase transformation during cooling, which influenced the residual stresses; e.g., [8,20],
there was an overall change in the stress equilibrium up to an overall reduction in the
residual stresses, which can be specifically utilized, or is already systematically exploited
by special material developments [22]. It is therefore important to clarify which of these
effects dominates and contributes significantly to the local residual stress formation. This
is ultimately reserved for further investigations. For this purpose, areal residual stress
analyses on the side walls of the hollow cuboids, as well as exemplary stress analyses in
the bulk, are planned.

4. Conclusions

This paper presented an influence analysis of the interlayer temperature and heat
input on cooling time and residual stresses of high-strength steel components manufactured
using WAAM. The results allowed the following conclusions:

1. New high-strength, special WAAM wires can be processed over a wide ∆t8/5 cooling
time range (5–45 s) without a pronounced decrease in strength.

2. By adapting the layer build-up strategy, constant component geometries with a
different heat input could be realized.

3. The heat input had a significant influence on the cooling behavior during layer-by-
layer production of the component. High heat input values led to lower cooling rates.
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The interlayer temperature had a comparatively small effect on the cooling time, and
should thus be suitable for adjusting or optimizing in terms of the process time or
stress engineering.

4. The residual stresses on the top layers along the welding direction showed an increase
of over 50% (from approx. 200 MPa to up to 300–450 MPa) on average toward the
corners of the part due to design-related restraints.

5. The interlayer temperature did not show any significant influence on the local residual
stresses of the top layer surface within the experimental design.

6. The effect of heat input on the local longitudinal and transversal residual stress level
on the top layer surfaces was significant. A higher heat input or fusion rate caused
considerably lower residual stresses (e.g., ∆σE

max ≥ 200 MPa between E = 200 kJ/m
and 650 kJ/m). A final clarification of these influences will require the investigation
of local effects due to shrinkage and transformation caused by high local temperature
gradients during cooling, as well as systematic investigations of other specimen
surfaces, such as the specimen side walls; residual stresses analyses in the bulk are
required for this purpose.

These results are the basis for ongoing investigations of the residual stress levels and
distributions (e.g., side wall surface and bulk). Furthermore, the effect of component design
and WAAM strategy and the resulting weld thermal cycle on the welding stresses, mi-
crostructure, and properties will be examined. These will help to derive recommendations
regarding stress-optimized WAAM processing with high-strength steel filler metals and
the development of an easy-to-apply cold-cracking test for WAAM.

Author Contributions: R.S.-W., A.H., K.W. and D.S. designed the experiment; R.S.-W. and A.H.
carried out the welding tests, the thermophysical forming simulation with the dilatometer, and the
evaluation of the data generated in the process; K.W. and D.S. were responsible for the planning,
execution, and evaluation of all residual stress measurements; R.S.-W. wrote this article. J.H., A.K.
and T.K. contributed to data evaluation, interpretation and discussion. All authors have read and
agreed to the published version of the manuscript.
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