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Abstract: Diffraction enhanced imaging (DEI) is an advanced digital radiographic imaging technique
employing the refraction of X-rays to contrast internal interfaces. This study aims to qualitatively
and quantitatively evaluate images acquired using this technique and to assess how different fitting
functions to the typical rocking curves (RCs) influence the quality of the images. RCs are obtained
for every image pixel. This allows the separate determination of the absorption and the refraction
properties of the material in a position-sensitive manner. Comparison of various types of fitting
functions reveals that the Pseudo-Voigt (PsdV) function is best suited to fit typical RCs. A robust
algorithm was developed in the Python programming language, which reliably extracts the physically
meaningful information from each pixel of the image. We demonstrate the potential of the algorithm
with two specimens: a silicone gel specimen that has well-defined interfaces, and an additively
manufactured polycarbonate specimen.

Keywords: diffraction enhanced imaging; analyzer-based imaging; X-ray refraction; non-destructive
evaluation; Pseudo-Voigt fit function; Python

1. Introduction

The use of lightweight materials for various applications has rapidly increased in
recent years. To utilize these materials in practice, a comprehensive investigation is required
to validate their different properties. Since the introduction of digital detector arrays for
non-destructive testing, novel possibilities to analyze and characterize materials have been
available for the user. Nevertheless, hard X-rays are not suitable to analyze lightweight
materials due to their poor absorption contrast. As an alternative to absorption, other
interactions of X-rays with matter, such as X-ray refraction (XR) [1], can be used to obtain
contrast-enhanced images of internal interfaces. This allows not only characterization,
but also non-destructive evaluation (damage analysis) of these materials. Generally, XR
imaging is based on the assumption that when X-rays pass through a specimen with
interfaces, they are mainly absorbed and refracted at the interfaces [2], with negligible
diffraction or Compton scattering. Several XR imaging techniques have been developed
in recent decades. They employ devices such as gratings [3,4] or crystals [5–7] to separate
the deflected (refracted) beam portions from the primary radiation, or use large distances
between the specimen and the detector [8–10]. One such imaging technique is the diffraction
enhanced imaging technique [6] (also known as analyzer-based imaging, ABI). It is based
on the concept that an analyzer crystal acts as angular filter to obtain different images
corresponding to different refraction angles.

While the XR techniques listed above are mainly synchrotron based, the roots of XR
imaging date back to the 1980s and 1990s [1,11] when access to synchrotron sources was
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rather limited. Laboratory XR imaging techniques are based on scanning the specimen
through a finely collimated beam and detecting refracted beam portions. A so-called
refraction value (see Section 2) has been introduced to correlate the measured (refracted)
intensity with the specific surface inside the specimen (internal surface per unit volume).
When transferring the concept of the refraction value to the DEI set-up, parameters of the
so-called rocking curves (RCs) are needed. It turned out that fitting conventional Gaussian
peak functions did not sufficiently simulate the measured RCs and sometimes even failed
completely, thereby yielding wrong values of the above-mentioned parameters. In this
study, we introduce a novel robust fitting routine based on Pseudo-Voigt functions. We also
demonstrate how this routine allows the extraction of the RCs parameters and, therefore,
of the microstructural properties of specimens.

2. Diffraction Enhanced Imaging

The DEI technique uses an intense and parallel monochromatic X-ray beam from a
synchrotron source and an analyzer crystal (AC) positioned downstream of the specimen
(see Figure 1). The AC is tilted in the (angular) vicinity of a Bragg reflection at θB, collecting
a rocking curve (RC) for each image pixel. If a (refracting) object is placed upstream of
the AC, the RC is damped, broadened, and shifted. The AC separates the beam portions
according to the deflection angle, θ’ = θ − θB (see Figure 2), by accepting only rays that
meet the Bragg condition for the actual tilt angle. However, the series of images obtained
using this technique need to be processed to retrieve maximum information from the RCs.
The reciprocal lattice vector H of a certain AC Bragg reflection predefines the directional
sensitivity of DEI experiments as follows: only features laying nearly perpendicular to the
scattering plane (the plane spanned by the incident beam direction and H) are detectable,
i.e., not all interfaces are contrasted at once for one specimen orientation. One needs at least
two perpendicular specimen orientations to detect all interfaces contained in the specimen.
This, on the other hand, turns to great advantage, since it implies an orientation sensitivity
of the technique: a specimen can be purposedly mounted in such a way that only interfaces
of a certain orientation are contrasted.
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the actual set-up at BAMline (hard X-ray beamline at the electron storage ring BESSY II, at Helmholtz-
Zentrum Berlin, Germany).
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Figure 2. Typical RC recorded for a pixel: intensity as a function of the angular position (θ − θB) of the
AC. Black line: the primary beam, flat field, measured; red line: a purely absorbing specimen without
any internal surfaces, calculated; blue line: an absorbing specimen containing internal surfaces,
measured. The loss of (peak) intensity due to refraction can be used to quantify the scattering.

DEI has been used to detect and quantify the microcrack density and orientation
in porous ceramics [12,13] or damage after cyclic loading in all-oxide ceramic matrix
composites [14]. In-situ experiments revealed the formation of cracks in fiber-reinforced
plastics [15], the damage evolution in metal matrix composites under tensile load [16], or
the evolution of different types of porosity in additively manufactured AlSi10Mg during
heat treatment [17]. Recently, a synchrotron X-ray refraction tomography study quantified
the hydrogen-assisted microcracking in duplex stainless steel [18] by 3D XR imaging.

In this study, we show that the Pseudo-Voigt function (PsdV) is suited to fit the typical
RC at each pixel separately, thereby allowing the extraction of relevant microstructural
features. Furthermore, the comparison of feature extraction with algorithms in ImageJ and
Python elucidates the advantages of using the latter to obtain improved results with shorter
computation times. Using our algorithm, we can extract and compute different parameters
from the RCs; their corresponding physical information is listed in Table 1.

Table 1. Extracted rocking curve parameters and their physical equivalent. FWHM is the full width
at half maximum.

RC Parameter Physical Phenomenon Structural Information

peak integral
∫

I(θ) dθ transmission absorbing mass

peak height Imax = max (I(θ)) apparent transmission absorbing mass
+ specific surface

peak position mode (I(θ)) refraction angle structure gradient 1

peak width (FWHM) w (I(θ)) scattering specific surface
1 Gradient of the transmission length of the local scattering macro-structures, i.e., gradient of the objects’ phase shift.

The RC, i.e., I(θ), measured with a specimen, corresponds to the convolution product
of a reference RC, I0(θ), of the empty beam (the so-called flat field) and the scattering
function of the specimen, s(θ):

I(θ) = s(θ)⊗ I0(θ), (1)

where ⊗ denotes the convolution operator.
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Therefore, the RC parameters of Table 1 must be determined separately for the
two-image series: with and without the specimen. To extract the parameters of s(θ) (i.e.,
the specimen properties) we use the following equations:

T =
∫

s(θ) dθ =
∫

I(θ) dθ /
∫

I0(θ) dθ, (2)

AT = max(I(θ))/max(I0(θ)), (3)

∆θ(smax) = θ(Imax)− θ(I0,max), (4)

w (s(θ)) =
(

w2 (I(θ))− w2 (I0(θ))
)1/2

(5)

where Equation (2) represents the transmission T, Equation (3) the so-called apparent
transmission AT, Equation (4) the refraction angle, and Equation (5) the scattering. The
transmission accounts for the absorption effects only, whereas the apparent transmission
accounts for absorption and extinction (due to scattering) effects.

In the first DEI paper [6], the authors suggest an algorithm to extract images of the
“apparent absorption” and “refraction angle”. Since, from a medical point of view it is
desirable to minimize the radiation dose, the authors in [6] acquired just two images (at
roughly half the maximum peak intensity on each side of the RC) and used relative changes
of intensity and the slope to compute the two parameters. Assuming a Gaussian RC shape,
Arfelli et al. [19] introduced the G2DEI algorithm to additionally extract the scattering
width from three images on the RC. Chen et al. [20] indicated how to retrieve different
types of information from the analysis of the moments of RCs, in particular the skewness
(3rd moment) and the kurtosis (4th moment), revealing the asymmetry (caused by the
local curvature of interfaces) and the strength of the tails relative to the peak, respectively.
Interestingly, the straightforward approach of Chen et al. does not require any fitting
procedure or any assumption about the type of peak function.

In former studies, we quantified the results obtained from DEI in terms of the refraction
value Cm. Such quantity has been introduced by Fensch-Kleemann et al. [21] to quantify
laboratory-based XR topography [11] results (i.e., 2D scans of the specimen). In this
laboratory set-up, the refracted beam portions (see e.g., [22–25]) deviating from a well-
collimated primary beam (collimation of the Kratky type [26]) are collected in a fixed
angular range. The Cm can be calculated by normalizing the intensity of the refracted
X-rays with the corresponding absorption effects. This formalism has been transferred to
the quantities obtained from DEI experiments [16], assuming that Cm can be considered
as an additional attenuation coefficient; see Figure 2 (for details see [16]). In terms of RC
parameters, the sample transmission corresponds to the ratio of peak integrals of I(θ) and
I0(θ) (IT and IT0 in Equations (6) and (7)). A purely absorbing specimen would just dampen
the RC without the specimen, I0(θ), by a constant factor, leaving the width unchanged (see
Figure 2). Since refraction corresponds to a pure redistribution of beam portions (i.e., it
leaves the integral unchanged), a specimen with internal interfaces causes broadening of
the RC at the expense of peak height (extinction). Therefore, the refraction value represents
an equivalent to the scattering as follows:

Cm·d = 1− IR

IR0

IT0

IT
, (6)

where d is the specimen thickness, IR = max(I(θ)) and IR0 = max(I0(θ)) are the RC peak
heights with and without the specimen, respectively. In other words, Cm is the apparent
transmission normalized to the true transmission. In order to eliminate the dependence on
the specimen thickness, Equation (6) is normalized by µ·d = −ln(IT/IT0) = −ln(T), µ being
the attenuation coefficient as follows:

Cm/µ =

(
1− IR

IR0

IT0

IT

)
/ ln

(
IT0

IT

)
. (7)
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This approach waives one recording full RCs, when such measurements are exceed-
ingly time consuming, e.g., in the case of X-ray refraction computed tomography (XRCT)
experiments [18,27]. Instead of sampling the full RC, one can record images with the AC at
θB (i.e., in the RC center of the flatfield, without the specimen). At this setting, all X-rays
deflected by refraction events within the specimen are rejected by the analyzer crystal, caus-
ing an additional attenuation of the X-rays; assuming negligible peak shifts one could write:
IR = I(θB) and IR0 = I0(θB)). Transmission images are recorded as conventional radiographs,
i.e., without the AC in the beam and with the detector lowered into the (incident) beam.
This set-up yields IT and IT0. In this study, however, IR(θC) is the maximum of the fitted
RCs (i.e., θC being θ(Imax)).

3. Experimental Section

The DEI experiments were carried out at the beamline BAMline, using synchrotron
radiation of the electron storage ring BESSY II, at Helmholtz-Zentrum Berlin, Germany [28,29].
Using a double crystal monochromator (Si (111)), the beam energy was set to 17.5 keV. A
flat panel detector (1600 × 1200 pixels) in combination with a lens system and a 50 µm thick
CWO scintillator screen provided a pixel size of 4.08 µm, capturing a field-of-view (FoV) of
approximately 6.5 × 4.9 mm2. The incident beam was narrowed to the FoV by a slit system,
to avoid detector backlighting [30,31]. The exposure time for each image of the series was
1 s. The AC was adjusted to θB = 6.488◦. The RC was sampled in 61 steps of 2 × 10−4◦

(~3.5 µrad) symmetrical to θB. Two such image series were recorded with and without (the
so-called flat field) the specimen in the beam path. Beyond numerical normalization, the flat
field images enable one to remove strong artefacts of the imaging system (composed by the
monochromator, the AC, and the scintillator screen). Examples of raw images obtained from
different tilt positions of the AC are shown in Figure 7 below.

In our set-up, the scattering vector pointed upwards. In the images shown below, refraction
contrast was obtained only from interfaces, the normal of which has a vertical component.

In Figure 2, the changes in the RC due to a purely absorbing specimen (without any
interfaces) is a pure reduction of the RC (i.e., the width remains a constant red line), while
an absorbing and refracting specimen (i.e., with internal surfaces) broadens the curve (blue
line). The integral of the two RCs is the same. In some cases, we additionally observe a shift
of the peak position (also depicted in Figure 2). The RCs are recorded for each individual
pixel of the entire image of 1600 × 1200 pixels.

The total number of RCs per image (~2 million) demands the use of an automated and robust
algorithm to extract the RC parameters by using appropriate computer programming languages.

A silicone gel specimen containing air bubbles serves as a demonstration to highlight
the properties that can be extracted (here, very well-defined and separated interfaces).

Additionally, an additively manufactured (AM) polycarbonate specimen [32] displays
different features (i.e., elongated pores at the interface of consecutive layers).

4. Image Analysis Algorithm
4.1. Selection of Fitting Functions

As a reference, we implemented a fitting procedure based on Gaussian functions
(Equation (8)), as suggested, e.g., by Arfelli et al. [19]:

I(θ) = IB +
Ae

−4 ln (2)(θ−θc)2

w2

w
√

π/4 ln(2)
, (8)

where IB is the baseline level (offset), θc is the center, A is the integral, and w the FWHM
of the RC for each pixel. The FWHM is linked to the standard deviation σ by the factor (8
ln(2))

1
2 . It should be noted that θc is not necessarily equal to θB, in particular in the presence

of macroscopic structures which cause a peak shift. It turned out that fitting with Gaussians
could not properly reproduce the RCs at the maximum and at the tails at the same time
(Figure 3).
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Figure 3. Comparison of the two fitting functions to the experimental RC of a single pixel. The gray
value (intensity of the pixel at that angular position of the analyzer crystal) is plotted as a function of
the number of slice (proportional to the angular position of the analyzer crystal).

Among different alternative peak fitting functions, such as Pearson VII or Inverse
Polynomial, the Pseudo-Voigt (PsdV) fit function proved to be best suited to fit the exper-
imental RCs and extract the targeted quantities. The Voigt function is a convolution of
Gaussian and Lorentzian functions, whereas the PsdV function (Equation (9)) is a simpler
weighted sum of these two functions, as a close approximation to the Voigt function.

The Pseudo-Voigt Function reads as follows:

I(θ) = IB + A

[
mu

2
π

w

4(θ − θc)
2 + w2

+ (1−mu)

√
4 ln 2√
π w

e−
4 ln (2)

w2 (θ−θc)
2
]

, (9)

where mu is the (linear) weighting factor of Lorentzian and Gaussian functions.
Only three out of five different coefficients obtained from the PsdV function proved to

be useful for further evaluation, namely, A, w, and θc (Figure 4). They resulted in different
image modalities (Table 1). The height of the RC gives the information about the reduction
of intensity due to refraction, and also needs to be extracted. As the PsdV function does not
contain a parameter to directly extract this value, we coded the algorithm to calculate Imax
from the fitting parameters (see Section 4.3) using the following equation:

Imax = IB + 2A/πw
(
(1−mu)

√
π ln 2 + mu

)
. (10)

It is obvious that the PsdV function results in much better fit of the tails and of the
peak of a typical experimental RC, compared to the Gaussian function. This is supported
by the calculated R2 values, serving as a figure of merit: 0.9917 for the Gaussian and 0.9988
for the PsdV.
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4.2. ImageJ Macro Language

The PsdV fitting procedure was first implemented using ImageJ Macro to validate the
accuracy of the fit, as it can be computed with simple codes. Although ImageJ [33] offers
a variety of inbuilt peak fitting functions, the PsdV function had to be implemented as a
user-defined plugin. By fitting and analyzing the RC of every pixel of the image and flat
field stacks with the PsdV function, the extracted quantities (the parameters of the function)
were then assigned as gray values to the respective pixel of the different image modalities.

The PsdV function requires initial guesses for each of its parameters. These initial guesses
were tested using Origin 2019 software, such that the fitting procedure could converge with
the minimum number of iterations, in the minimum time, and with optimal quality for each
pixel. Changes and manipulation of these guesses had a drastic impact on the fitting of the
curve. Based on numerous trials using Origin 2019, the accuracy of the initial guesses for the
fitting were checked and were also validated for use in ImageJ. Since the RC height is needed
for the evaluation, it was derived from a numerical fine sampling of the obtained fit function
(i.e, with a step five times finer than the experimental angular steps).

The four images (see Table 1) of the specimen and the flat field were used to calculate
images of: the transmission (peak integral), the apparent transmission (peak height), the
refraction angle (peak position) (according to Equations (2)–(5)), the refraction value Cm·d,
the attenuation µ·d, and the specific surface Cm/(µ·d), according to Equations (6) and (7). It
should be noted that the negative logarithm of the apparent transmission image is named
the apparent absorption in some studies (e.g., [6,19]).

Figure 5 shows refraction angle images computed using the ImageJ Macro Language,
using the two types of fit functions in the case of the silicone gel specimen.
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Figure 5. Refraction angle images of the silicone gel specimen obtained from (a) the Gaussian function
and (b) the PsdV function. Note the substantial improvement in the quality of image (b), which was
computed using the PsdV function.

For larger datasets (number of images in a stack), the computing time per iteration
increased, and some erroneous fit results occurred. Figure 4 shows that the peak region
of the experimental RC is not exactly fitted at the peak. This phenomenon occurred for
the AM specimen; in that case, the different images modalities displayed some erroneous
pixels (see Figure 6a).
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Figure 6. Comparison of transmission (integral) images of an additively manufactured polymer
specimen obtained from fitting PsdV functions in (a) ImageJ and (b) Python. The black pixels in
Figure (a) are due to ill-fitting of the experimental RC. Figure (b) demonstrates the improved quality
of images with no ill-fitted pixels using the Python module.

The reason for this failure of the fitting procedure was the ad-hoc implementation of
the user-defined macro.

Instead of using Equation (9) for each actual AC tilt angle, it proved advantageous to
compute the fitting as a function of the slice number (i.e., the integer image number in the
stack). Each image was read as the number of the slice, which is proportional to the angle
of the analyzer crystal. The fitting function used this number to calculate the variables of
the function, rather than reading the angle itself.

As the number of images in a stack are increased, computation times become longer.
Therefore, after the accuracy of the fitting procedure was validated by means of R2 values,
the task of reducing the computing time had to be addressed. In fact, even though the im-
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ages evaluated with the PsdV function were of better quality as compared to the Gaussian,
the use of the PsdV led to an approximately 25 times large computing time for each pixel
than the Gaussian function. This factor increased even further with the image size and with
the number of images in the stack in ImageJ. Table 2 lists the iteration parameters for both
types of peak functions for one pixel.

Table 2. Number of cycles (iterations) needed for the best fitting for individual RC and the average
time required for each cycle in ImageJ.

Gaussian Fit PsdV Fit

Number of iterations 106 936
Time consumption/RC 2 ms 49 ms

The total time required to evaluate the whole specimen and the flat field stack reached
2–3 days (depending on the number of images in the stack). Table 3 lists the influence of the
number of images in the stack on the time required for computation. It is to be noted that
all times reported are intended as average values. Every fit of an individual RC of a pixel
in a stack may require a different number of iterations. To overcome these shortcomings
and optimize the time performance of the algorithm, this approach was programmed in
the Python language.

Table 3. Number of iterations needed and time consumption per RC of fitting PsdV functions in
ImageJ as a function of the number of images of DEI measurements.

Number of Images/RC Iterations (Average) Time/RC (Average)

41 936 49 ms
61 967 60 ms
81 969 96 ms

121 1305 124 ms

4.3. Python Code

Python 3.0 (released in 2008) is a multi-paradigm programming language that fully
supports both object-oriented programming and structured programming. The vast array of
standard libraries in Python could provide a better solution to both problems: increase the
quality of images and reduce the computing time. The lmfit module package contains fitting
procedures of peak functions such as Gaussian, Lorentzian, Voigt, PsdV, etc. [34]. This
Python module allowed the algorithm to yield images of superior quality in substantially
reduced computing times.

The algorithm in Python was coded to follow the same procedure of creating blank
images and assigning the parameters as gray values to the respective pixels of the image.
The main part of the Python code is given in the Supplementary Material. Irrespective of
the number of images in the stack, the internal features or the deviations of the RC from the
ideal curve, optimal convergence of the fitting procedure (see Figure 6b) could be obtained
in approximately 8 h. This represented a time reduction of a factor of 10, compared to
ImageJ. Moreover, the image quality was significantly improved.

It is to be noted that the time required for the computation depends on the specifi-
cations of the computer. The computer used for this computation possesses an Intel(R)
Core (TM) i5-8500 CPU at 3.00 GHz, 32 GB RAM and a 64-bit operating system. The
Python program also allows simultaneous work with different sets of images, with each set
working in dedicated consoles. This represents an enormous improvement as compared to
ImageJ (even if several instances of ImageJ are opened simultaneously). Simultaneously
working with different sets of image stacks is limited only by the specifications of the
computer. In the case where eight different pairs of image stacks (object and flat field stack)
were processed simultaneously, the fit converged to its optimum in 14 h (total for all of the
eight pairs of images).
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5. Results and Discussion

The silicone gel specimen (Figure 7a,b) with microscopic air bubbles ranging from
approximately 100–400 µm in diameter, served as an example of a material meso-structure
containing separated and geometrically well-defined interfaces. The images were computed
with the algorithm programmed in Python, and all modalities could be extracted from the
RC (Figure 8).
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Figure 7. (a) Photograph of the silicone gel specimen with microscopic air bubbles, (b) raw image
(corrected for the flat field) recorded in the center of the rocking curve. The marked region shows a
concentration of air bubbles. (c) Sketch of the principal paths of X-rays traversing a spherical object,
acting as an imperfect converging lens. The RC sample’s intensity accumulations from the top and
bottom cap of the bubbles at different off-center AC positions and the extinction at edges in the RC
center (images on the right).
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Figure 8. Image details computed from fitting each pixel of the specimen with the PsdV function,
showing (a) transmission, (b) apparent transmission, (c) refraction angle (d) scattering (width), and
(e) Cm·d. The latter two quantities highlight the same features at different scales, proving the analogy
derived in Section 2. Note that the scattering vector is pointing upwards, so that crescents appear
above and below each bubble.
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The principle of deflection of monochromatic X-rays at spherical shapes inside a
specimen is shown in Figure 7c. The edges of an air bubble, i.e., its concave boundaries,
cause the X-rays to be refracted convergently [35].

At the lower angular position, we observe the X-rays concentrated at the lower edge
inside the air bubble, and at the higher angle, concentration at the upper edge. (Figure 7c).
In Figure 8, a 250 × 250-pixel (1 × 1 mm2) detail of the full image (Figure 7b) is shown,
highlighting a cluster of air bubbles. The improved quality of images obtained using the PsdV
function compared to the Gaussian function is shown Figure 8 for all of the extracted features.

The Cm·d value is computed for each pixel according to Equation (5) (basically the
ratio of height and integral of the RCs normalized to the flat field). In other words, the
loss of peak intensity is an indirect measure of the increase of the peak width. Thus, the
image of Cm·d and the scattering (width) carry the same information; this can be seen from
a comparison of Figure 8d, e (see also Table 1).

The DEI or analyzer-based imaging technique is sensitive to the interfaces that are
parallel to the plane of the analyzer crystal. (To observe the interfaces perpendicular to
such plane we would have to rotate the specimen.) In the Cm·d images, it was observed that
at the top and the bottom edges of each air bubble (i.e., surface nearly parallel to the plane
of the analyzer crystal) crescent shape signals appear, whereas the perpendicular interfaces
(at the equator line of each air bubble) display no noticeable intensity. An advantage of the
DEI technique is that the scattering vector is predefined by the analyzer crystal, therefore
surfaces with different orientation (e.g., cracks and pores) can easily be distinguished
and quantitatively separated. In fact, if a further measurement was performed with the
orientation of the specimen changed by 90◦, pores would yield the same signal (i.e., the
same images as in Figure 8), while cracks would not be detected if they were visible in the
previous set-up (and vice-versa, they would be detected if they were previously invisible).

6. Conclusions

We have shown that the physical information content of image series collected ac-
cording to the DEI principle can be more precisely exploited when using PsdV functions
(instead of Gaussians) to fit experimental RCs. Using the ImageJ macro code, the fitting
routines were optimized with respect to accuracy, robustness, and speed. However, it
turned out that, locally, some RCs could not be fitted (especially if one of the parameters
of the fitting function was far from the average values in the image). Using an optimized
tool (lmfit) in a Python programming environment, the ill-behaved RCs of such pixels
could be properly fitted, and a significant reduction in the computation time (by a factor of
seven compared to ImageJ) was achieved. The added advantage of working in dedicated
consoles for simultaneously processing different image datasets assured the practicality
and versatility of the developed Python algorithm.

Beyond the modalities (transmission, refraction angle, scattering), which have been
shown to be extracted from Gaussian type RCs, we showed the analogy between scattering
and the so-called refraction value (Cm) images. Since the latter quantity is accessible with
lower experimental effort, the use of our Python routine paves the road to an even faster
access to X-ray refraction data analysis.

Supplementary Materials: Supporting information on the main part of the Python code can be
downloaded at: https://www.mdpi.com/article/10.3390/jimaging8080206/s1.
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