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Abstract: The detection of internal irregularities is crucial for quality assessment in metal-based
additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization
of in-process thermography as an in situ monitoring tool in combination with post-process X-ray
micro computed tomography (XCT) as a reference technique has shown great potential for this
aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a
requirement for correlation. In this study, the registration of thermography and XCT reference datasets
of a cylindric specimen containing keyhole pores is carried out for the development of a porosity
prediction model. The considered datasets show variations in shape, data type and dimensionality,
especially due to shrinkage and material elevation effects present in the manufactured part. Since
the resulting deformations are challenging for registration, a novel preprocessing methodology is
introduced that involves an adaptive volume adjustment algorithm which is based on the porosity
distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image
registration is enabled. The results demonstrate the influence of the part deformation on the resulting
porosity location and the importance of registration in terms of irregularity prediction.

Keywords: selective laser melting (SLM); laser powder bed fusion (L-PBF); additive manufacturing
(AM); process monitoring; infrared thermography; X-ray micro computed tomography (XCT); defect
detection; image registration

1. Introduction

The industrial use of metal-based additive manufacturing (AM) processes has rapidly
increased in recent years [1]. In comparison to traditional manufacturing, AM technologies
such as laser powder bed fusion (L-PBF) offer the benefit of producing parts of highly
complex geometry directly from the 3D CAD model while reducing the material waste [2].
L-PBF counts as one of the most established AM techniques and stands out due to its
ability to produce features in high spatial resolution of tens of microns [3,4]. However, the
occurrence of irregularities such as internal porosity, cracks, or surface roughness during
manufacturing poses a risk to the final component quality [4,5]. Poor process parametriza-
tion (i.e., by scan velocity and laser power) was found to be an influential factor for the
formation of irregularities [5]. Thermography as a radiometric nondestructive testing
method has been utilized to monitor the part’s local thermal history. This is performed by
extracting thermal features from the spatial and temporal temperature distribution of the
melt pool and part surface. From the obtained feature distribution, local areas of thermal
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deviation can be identified in which porosity is likely to form [6]. As a reference technique
for the determination of the spatial distribution of porosity, X-ray micro computed tomog-
raphy (XCT) is widely applied [7]. The correlation of thermographic feature data and XCT
reference data facilitates the prediction of porosity likelihood [6]. The in situ detection of
porosity has received increasing attention in the scientific community in recent years which
is evident from the rising number of publications [8].

An important aspect for the prediction of irregularities such as porosity is the regis-
tration of the in situ monitoring and the reference XCT data. Image registration can be
understood as the spatial alignment of two or more images. This mainly includes the
goal of finding a transformation that aligns the features of interest visible in the image
data [9]. A registration function can be obtained by applying a spatial transformation on a
moving image that is registered with a fixed image. Here, a similarity measure or a cost
function between the two images is optimized typically in several iteration steps [10,11].
A common example of a registration function is the affine transformation model, which
allows translation, rotation, scaling, and skew of the moving image. This high number of
degrees of freedom with respect to image transformation is not always necessary. For many
applications, it might be sufficient to utilize only a rigid model that allows translation and
rotation [11]. The evaluation of the registration accuracy is challenging and often limited to
a qualitative validation by the user [12].

In terms of predicting internal porosity from sensor data, methods of artificial intelli-
gence such as machine learning (ML) algorithms can be applied [13]. A requirement for a
successful prediction is the accurate spatial allocation between sensor signal and resulting
porosity information. Otherwise, the model is trained on spatially mismatched data and
basically learns irrelevant data patterns. In L-PBF, the occurring irregularities have small
dimensions. For example, in a study by Sinclair et al. [14], keyhole pores with diameters in
the range of 10–60 µm were quantified. From that, it can be concluded that for a prediction
of single keyhole pores, even small allocation errors resulting from the registration may
significantly reduce the performance of the prediction model.

Furthermore, the differences in data format and dimensionality resulting from the
different measurement methods are challenging for registration. The layer-wise acquired
thermograms from in situ thermography contain information about the thermal radiation
from the different object surfaces visible in the field of view of the camera (i.e., melt
pool, solidified material, unmolten powder, and machine surroundings) [15]. Due to the
projection of the 3-dimensional (3D) scene to the 2-dimensional (2D) focal plane array of
the camera sensor, the height information of the specimen surface is lost. Thermographic in
situ monitoring in L-PBF will result in 4-dimensional (4D) data consisting of a time series
of 2D thermograms for each manufactured layer. Here, the measurable signal is limited
by the camera dynamics as well as the chosen spatial and temporal resolution. In contrast,
XCT provides a spatially high resolved 3D object representation of the manufactured
specimen. The 3D object reconstruction is created from 2D projection images captured
by a flat panel X-ray detector. The projection images are reconstructed using algorithms
such as the Feldkamp algorithm for cone beam geometry [16]. The reconstruction includes
an interpolation process on the gray value voxel grid. Artifacts, such as scatter [17], cone
beam [18], and beam hardening [19], may decrease the spatial resolution and the registration
procedure. Furthermore, the XCT data contains all shape deformations of the part caused
by the manufacturing process which remain in the part after removal from the dummy
cylinder, such as shrinkage and warping [20].

In the literature [6,8,21–27], a range of methods is utilized to align thermographic
in situ monitoring data and XCT reference data as a preparational step for irregularity
prediction in the scope of L-PBF. Here, the insertion of artificial voids offers the advantage
of predefined void location and shape. This benefits the identification of the defects in the
determined in situ signal [8]. Mireles et al. [21] integrated artificial voids in the design of
a metal part manufactured by electron beam melting. The correlation between reference
XCT data and data obtained by an off-axis infrared (IR) camera was performed utilizing
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the known defect position within the part. Lough et al. [22] qualitatively compared single
lateral slices in a cylindrical test specimen on the basis of voids that were produced by
decreasing the laser power. In a study by Coeck et al. [23], the registration of IR data and
XCT data was performed utilizing the large size of the present lack of fusion (LoF) voids in
the observed specimen as reference object. Due to the low number of voids (45 voids in a
10 mm3 volume) and their large dimensions, a straightforward spatial assignment between
voids and melt pool monitoring data was feasible. The data time series derived from the
off-axis photodiodes of the melt pool monitoring system were mapped to the 3D position
of the laser scanner. Single data points from the obtained point cloud were allocated to a
void event if the distance between the data point centroid and the void centroid was below
500 µm. Forien et al. [24] overlapped X-ray radiography scans of single tracks with coaxial
pyrometry in situ monitoring data using a manual translation. Like [23], the time series
data obtained by pyrometry was mapped to the 3D laser scanner position. Voids were
segmented manually and correlated with the pyrometry signal in a radius of 65 µm around
the void centroids.

Apart from manual mapping of signal and reference data, image registration algo-
rithms can be utilized to automatically align multiple images for further analysis [9]. A 3D
image registration was performed by Mohr et al. [25] to overlap optical tomography and
XCT datasets. Here, the open-source software elastix 4.9 (University Medical Center Utrecht,
Utrecht and contributors, The Netherlands) was utilized to apply an affine transformation.
In a recently published study, Lough et al. [6] performed a voxel-based quantitative anal-
ysis using a layer-by-layer registration along the z axis of the specimen which included
down-sampling of the XCT dataset. Here, the datasets were aligned manually along the z
axis. Afterwards, an automated translation algorithm was applied. Taherkani et al. [26]
registered XCT data according to the specimens CAD file using the 3D image analysis
software Dragonfly Pro v4.0 (Object Research Systems Inc., Montreal, QC, Canada). As
geometric reference, horizontal and vertical grooves were integrated into their specimen
design. The alignment of the CT data with the melt pool monitoring data was carried out
on the basis of artificial voids integrated in the specimen. Gobert et al. [27] utilized an
affine mapping function to register CT data and powder bed image data acquired by a high
resolution digital single-lens camera. The registration was based on minimization of the
root mean square error between geometrical reference points in the datasets.

The literature [4,5] emphasizes that irregularity prediction in L-PBF is an important
task to predict the service life of the produced part. The development of accurate prediction
models requires a precise image registration of the acquired monitoring data and the
reference data, especially due to the small dimensions of the occurring irregularities. To
the authors’ knowledge, few systematic investigations concerning registration methods in
the scope of irregularity prediction in L-PBF have been performed. Some authors [21,22]
rely on large artificial voids integrated in the specimen design to simplify their detection
in the sensor data and in the ground truth data. If registration algorithms are applied,
their accuracy is usually not further specified, even though it is essential information to
evaluate the measurement uncertainty. Furthermore, the influence of occurring shape
distortions such as warping or shrinkage in the datasets are usually not included in the
registration approach.

This study focuses on the registration of feature datasets extracted from in situ ther-
mography and an XCT dataset of a cylindric specimen that contained keyhole pores [28].
The registration is performed as a preliminary step to facilitate a highly accurate prediction
of the present irregularities using ML methods (to be reported in a sister paper). The intro-
duced registration methodology focuses on dataset preprocessing to enable the application
of a simple 3D image-by-image registration. A systematic description of the singular data
processing steps and the challenges arising from the different formats and dimensionalities
of the datasets is given. In the context of the XCT dataset, especially the influence of the
present shrinkage and material elevation on the registration accuracy is examined. Here, a
novel method to adaptively adjust the part deformation is developed based on the pore
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distribution in the specimen. The obtained registration accuracy is evaluated and future
challenges in the context of irregularity prediction in L-PBF are derived.

2. Materials and Experimental Procedures

A cylindrical specimen was produced on a commercial L-PBF machine (SLM 280 HL,
SLM Solutions Group AG, Lübeck, Germany) using AISI 316L stainless steel powder.
The powder was specified as follows: apparent density of 4.58 g/cm3, Dmean = 34.69 µm,
D10 = 18.22 µm, D50 = 30.5 µm, and D90 = 55.87 µm. The specimen design included a
surrounding staircase structure as registration landmark (see Figure 1) inspired by a study
by Gobert et al. [27]. The entire specimen was built upon the milled surface of a dummy
cylinder to prevent cutting losses. The inner cylinder (diameter: 7 mm, height: 12 mm) con-
sisted of six sections. The sections were manufactured with varying processing parameters
to introduce keyhole porosity into the material. The parameter variation was performed by
decreasing the scanning velocity. This resulted in increased volumetric energy densities
(VED) [28], see Table 1. A hatch distance of 120 µm and a layer thickness of 50 µm were
utilized. Furthermore, a cross and a letter landmark were added to the specimen’s top
surface as further geometric landmarks.
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Figure 1. (a) Specimen design including staircase structure, top surface cross landmark, labeling
letter landmark, dummy cylinder, and the introduced coordinate systems S and S′. The green areas
mark sections that were manufactured using increased VED. In this view, section 1 is hidden behind
the staircase which is indicated by the dashed line. (b) Manufactured specimen on dummy cylinder.
Adapted from Ref. [28].

Table 1. Overview of the manufacturing conditions of the different cylinder sections (corresponding
to specimen “B” in [28]). In the last column, the relative increase of the VED in comparison to
sections 1, 3, and 5 is given by the percentage value in brackets.

Section Layer Count Laser Power P in W Scan Velocity v in mm/s VED in J/mm3

1 1–60 275 700 65.45
2 61–80 275 560 81.84 (+25%)
3 81–140 275 700 65.45
4 141–160 275 467 98.21 (+50%)
5 161–220 275 700 65.45
6 221–240 275 400 114.45 (+75%)

The in situ monitoring setup consisted of three infrared cameras that were mounted
off-axis outside of the machine, utilizing a custom-made optical entrance. The thermal
radiation of the process was guided to the cameras by a system of gold-coated mirrors
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and beam splitters that were optically adapted to the spectral sensitivity of the respective
camera system. For further details concerning the powder specifications, scanning strategy,
and the machine setup, refer to a previously conducted study [28]. In this study, the in situ
monitoring data of the deployed short-wave infrared camera (Goldeye CL-033 TEC1 from
Allied Vision Technologies GmbH, Stadtroda, Germany) was utilized for the investigation.

From the short-wave infrared camera, a 4D dataset consisting of thermograms with
the size of 90 pix2 (pixel scale of approximately 100 µm/pix) was obtained from 240 manu-
facturing layers during the process monitoring. The dataset size was 90 × 90 × nim,l × 240,
where nim,l depicts the number of the image that was acquired during the exposure of
a single layer l. nim,l could vary slightly for the different layers due to variations in the
starting time of the recording and durations of the layer illumination. It was of the order of
approximately 8000 images. All thermograms were temperature calibrated using a single
point calibration method [29]. Ten different features were identified from the spatial and
temporal temperature information present in the thermograms (Table 2). Detailed insights
concerning the feature extraction can be found in [28]. A coordinate system S (Figure 1)
was introduced to describe the respective 3D voxel position of each feature value in the
specimen data. The features were distinguished into melt pool-based and time-dependent
temperature features. Both feature classes differed in spatial information density. Melt
pool-based features were extracted for each image and spatially assigned to the x-y position
of the pixel with the highest temperature visible in the image. This pixel represented the
position where the laser spot was located on the specimen surface. Due to the temporal
and spatial resolution of the camera, the melt pool feature data were distributed sparsely in
each respective layer. The sparsity was dependent on the scan velocity and resulted in data
point distances along a single scan track ranging from approximately 110 µm (in section 6)
to 200 µm (in sections 1, 3, and 5) with a hatch distance of 120 µm. The feature extraction
resulted in 3D datasets Fi of the size 3 × nmp,l × 240. Here, the first dimension represented
the individual feature value and its associated x-y position in the observed layer (in total
240 layers). The index i in Fi corresponds to the observed melt pool feature and nmp,l
corresponds to the number of melt pool images in the image series of the respective layer.
The time-dependent features were calculated from the temporal temperature information
of each image pixel from a single layer manufacturing. Hence, the spatial information
density was limited only by the spatial resolution of the camera. As a result, 3D datasets
Fj of the size 90 × 90 × 240 were generated for the respective time-dependent feature j.
According to the spatial resolution of the camera and the nominal layer height, a voxel size
of 100 × 100 × 50 µm3 was present in all datasets.

Table 2. Extracted features from in-situ monitoring thermograms.

Feature Class Feature

Melt pool-based features 1

Area
Length
Width

Eccentricity
Perimeter

Mean temperature
Maximum temperature

Time-dependent temperature features
Time over threshold of 1200 K
Time over threshold of 1680 K
Time over threshold of 2400 K

1 Corresponding to the geometry and temperature distribution of the apparent melt pool blob visible in the
thermogram data.

Subsequent to manufacturing, XCT was performed on the specimen and the sur-
rounding staircase after separation from the base plate using the commercial CT-scanner
GE v|tome|x 180/300 (GE Sensing and Inspection Technologies GmbH, Wunstorf, Ger-
many) [28]. A voltage of 222 kV and a current of 45 µA were used to acquire 3000 projections
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at an acquisition time of 2 s. To improve the signal-to-noise ratio of the projections, three
images were taken at each of the 3000 angular positions, and their average was used for the
3D reconstruction. The reconstruction of the XCT projection data was performed by using
the filtered back-projection algorithm [16], resulting in a raw dataset Vraw with the spatial
dimension of 2024 × 2024 × 2024 and a voxel size of 10 µm3. The achieved voxel size
enabled the quantitative analysis of features of a size above 20 µm3. A further coordinate
system S′ (Figure 1) given by the axis of the original XCT data was utilized to describe the
XCT voxel positions. Subsequent to the reconstruction, a beam hardening correction [30]
was performed. Furthermore, the cylinder axis was aligned parallel to the z′ axis. This
was carried out using ImageJ Fiji [31] and MATLAB (MathWorks Inc., Natick, MA, USA).
Here, contiguous x′-y′ slices were extracted from Vraw and a circle fit [32] was applied
to the circular shape visible in the slice. Afterwards, the circle fit centroids of all slices
were calculated. From the calculated course of the centroids along the z′ axis, the angle
of cylinder axis inclination was determined. The alignment was performed by manual
rotation of the cylinder around the x′ and y′ axis. The resulting angle deviation after the
axis alignment was calculated to approximately 0.005◦. This resulted in a maximum height
deviation at the specimen surface of approximately 1 µm (regarding height and diameter
of the CAD of the specimen). The image data were further processed by adjusting the
brightness and the contrast. A 3D dataset Vproc with the size of 711 × 711 × 1260 voxels
was obtained containing the density information of inner cylinder and the landmark struc-
tures on the specimen top. In the following, a local thresholding algorithm introduced by
Phansalker et al. [33] was applied to the data to distinguish between material and voids.
The binarized dataset is denoted as Vproc,bin. An overview of the datasets that are used in
this study is given in Table 3.

Table 3. Overview of the obtained datasets from thermography and XCT. nmp,l corresponds to
the number of images acquired during the manufacturing of a single layer and is in the order of
approximately 8000 images.

Dataset Source Content Dimensions Voxel Size in µm3

Fi SWIR camera Values of i-th melt pool-based feature 3 × nmp,l × 240 100 × 100 × 50
Fj SWIR camera Values of j-th time-dependent temperature features 90 × 90 × 240 100 × 100 × 50

Ak SWIR camera Preprocessed and interpolated values of
k-th feature 935 × 980 × 1200 10 × 10 × 10

Vraw XCT Density information (raw) 2024 × 2024 × 2024 10 × 10 × 10
Vproc XCT Density information (cropped, increased contrast) 711 × 711 × 1260 10 × 10 × 10

Vproc,bin XCT Porosity information (cropped) 711 × 711 × 1260 10 × 10 × 10
Vfinal XCT Porosity information (cropped, adjusted to CAD) 711 × 711 × 1200 10 × 10 × 10

3. Registration Methodology and Results

The aim of this study was the registration of the obtained thermogram feature datasets
and the corresponding XCT dataset to produce an accurately aligned data basis for future
irregularity prediction modeling. Preprocessing methods were used to adjust each dataset
to match the original specimen geometry given by the CAD. Based on a sophisticated
preprocessing workflow, the registration was simplified to a simple 3D image-to-image
algorithm. In the following, the performed processing steps concerning thermogram feature
data, the reference XCT data, and the image registration are described, and the obtained
results are presented. A schematic overview of all performed steps is given in Figure 2.
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correspond to the registration. Datasets are indicated by bold frames.

3.1. Preprocessing of Thermogram Feature Dataset

A first evaluation of the obtained melt pool-based feature dataset Fi and the time-
dependent feature dataset Fj revealed three pre-registration challenges: First of all, due
to the sparse nature of Fi, a volume interpolation was necessary to perform an image-
to-image registration [34]. Secondly, perspective distortion was found in both datasets
resulting from the optical setup [28] used for the process monitoring. Such distortion led to
inconsistent voxel scales in the x and y axis. Thirdly, the datasets were resampled to the
voxel scale 10 µm3 of the XCT reference data to enable the precise spatial overlap of all
datasets. One 3D linear interpolation algorithm was implemented to solve all three pre-
registration challenges. Thus, missing pixel values in the sparse melt pool-based features
were interpolated (see Figure 3a), the present imaging error was rectified, and the voxel
size was adjusted. The distorted image scales sx = 103.8 µm/pix and sy = 108.9 µm/pix
were calculated from pre-manufacturing recordings of a calibration target (grid pattern),
while the scale in the z direction sz was given by the layer thickness of 50 µm. The size of
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the rectified target volume A (width wA, depth dA, and height hA) was derived from the
former thermogram size 90 pix2 and the overall layer count (240 layers):

wA = 90 · sx′

sx
(1)

dA = 90 ·
sy′

sy
(2)

hA = 240 · sz′

sz
(3)

Here, sx′ = 10 µm, sy′ = 10 µm and sz′ = 10 µm denote the voxel size of the XCT data.
From the initial datasets Fi and Fj, k = i + j = 10 datasets Ak with a size of 935× 980× 1200

voxels were interpolated. The results of the interpolation of melt pool-based feature data
from a single layer are depicted in Figure 3b.
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3.2. Preprocessing of XCT Dataset

The XCT dataset contained the porosity information present in the specimen. The
dimensions and the shape of the cylindric specimen in the XCT dataset deviated signifi-
cantly from the shape of the original CAD. A first comparison of the specimen to the CAD
model height showed a vertical shrinkage. Furthermore, the observation of the top surface
revealed a severe shape deformation. The surface rim was elevated in comparison to its
center. This resulted in significant height deviations (see Figure 4). The maximum height
differences of approximately 400 µm between surface rim and center (which corresponds
to 8 manufacturing layers) would produce major errors if a simple lateral slicing along the
x′-y′ plane was performed for correlation with the monitoring data. Alongside this, the
registration landmarks (letter and cross) that were later utilized to obtain a registration
function were inspected since they can be clearly separated from the main cylindrical
specimen. The bordering areas of the landmarks exhibited a local height increase. This
represented a distortion of the original surface (see Figure 4). The surface deformation
posed a major difficulty for the registration because it was unclear how the deformation
was formed over the course of the manufacturing process.
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Figure 4. Cross-sectional slice of XCT reference volume at a depth of x′ = 3 mm. Gray value variations
in the bulk material are image artifacts originated by the cone-beam reconstruction of strong absorbing
material. Height elevations on the surface rim and lateral shrinkage in the section of increased VED
are visible. The approximated top surface shape (continuous blue line) is repeated below (dashed
blue line) for a better comparison with the pore distribution. In Detail A, the areas of local surface
height increase close to the landmarks are marked by blue circles.

Ulbricht et al. [7] found a similar surface deformation in an equally designed specimen
that was manufactured using the same material and machine. Furthermore, they found
indications of a comparable surface deformation at multiple stages of the manufacturing
process. These previous deformations were estimated from the observation of LoF voids
at the transition from a void-free section and followed by a section with artificial voids
(notches) within the specimen. The authors suggested that the deformation could have
been present during the entire manufacturing process. In the current study, the observation
of the pore distribution in the transition from section 5 to 6 indicated a similar effect (see
Figure 4). Therefore, a method was developed to adjust the surface in the dataset based on
the deformation information obtained from the pore distribution. The method assumed
that all previous surface deformations that had formed during manufacturing had a quali-
tatively similar shape to the visible deformation of the specimen surface. Furthermore, it
was assumed that the previous surface deformation can be reconstructed from the depth
distribution of the lowest keyhole pores at the onset of a region with increased VED, i.e.,
section 6. Finally, the preprocessing method for the XCT dataset consisted of five steps
(compare Figure 2):

1. Preliminary height adjustment;
2. Determination of the surface deformation;
3. Estimation of the surface deformation history;
4. Determination of a deformation adjustment function;
5. Volume reconstruction utilizing the deformation adjustment function.

3.2.1. Preliminary Height Adjustment

Due to the height difference between the manufactured specimen represented in
the XCT dataset and the original CAD, a preliminary height adjustment was performed.
The shrinkage was estimated from the height of the staircase treads that were built as
registration landmarks. The staircase was built upon the milled surface of the dummy
structure and scanned by XCT along with the cylindric specimen. The stair treads were
located at specific layer heights, starting at a height of 3 mm, and repeating every 1 mm.
Even though the staircase was built without VED variation (utilization of standard VED
of 65.45 J/mm3), it was found that the highest staircase tread had an approximately equal
height to the rim of the top surface. Furthermore, it was found that section 1 exhibited a
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height decrease of approximately 230 µm (7.66%) in comparison to the CAD model. This
was probably caused by solidification shrinkage [25]. In the remaining sections 2 to 6,
the height decrease was noticeably lower and amounted in total to approximately 60 µm
(0.67%). A 3D linear interpolation to the original CAD height was utilized to perform the
height adjustment. From the large difference in height decrease, it was decided to split the
whole dataset into two subsets (the first subset containing section 1, and the second subset
containing sections 2 to 6) and to perform separate height adjustments. Afterwards, the
two subsets were vertically fused again.

The voxel size was effectively locally distorted by the performed height adjustment.
In the case of a quantitative void volume analysis, this must be considered. For this study,
this effect was of no further significance.

3.2.2. Determination of the Surface Deformation

For the quantification of the surface deformation, the voxels representing the specimen
surface were extracted in the first place. For further refinement of the surface information
of Vproc,bin, the extraction was performed on the adjusted intensities of Vproc. Here, a
customized thresholding algorithm was utilized. It is based on the ISO50% value TISO50%
which was calculated as a global threshold from the intensity values of Vproc. The ISO50%
value represents the average between the highest peak of background voxels and the
highest peak of material voxels in a histogram of all voxel gray values [35]. The surface
height was calculated for every single x′-y′ position. To suppress errors arising from
possible reconstruction artifacts located above the surface, the algorithm was extended by
further thresholding conditions. A subset Vproc,ROI was extracted from a region of interest
(ROI) in Vproc which included the entire surface information. Ix′ ,y′ ,z′ corresponds to the
respective gray value of a voxel in Vproc,ROI where the indices x′, y′, and z′ correspond to
the voxel position in the respective axis. A surface edge was determined if the following
criteria were fulfilled:

Ix′ , y′ , z′ ≥ TISO50% (4)

Ix′ , y′ , z′+1 < TISO50% (5)

nvox

∑
i=1

Ix′ ,y′ ,z′−i ≥ nvox · TISO50% (6)

nvox is the number of voxels below the observed edge voxel which were considered for
the surface determination. The parameter was manually tuned to 10, which produced good
results concerning the suppression of reconstruction artifacts. The 2D array of calculated
surface data points (Figure 5a) were denoted as Hsurf. Subsequently, the cross landmark,
the labeling letter, and their bordering areas were removed since the found local surface
increase was obstructive for determination of the surface information. Here, arithmetic
image multiplication with polygon masks was used to perform the removal of the cross
landmark and the labeling letter. An interpolation algorithm [36] was used to reconstruct
the missing surface parts. Additional smoothing was applied to remove local height
deviations, i.e., spatter elements that were connected to the surface. The determination
accuracy was quantified by a mean absolute error (MAE) of approximately 4 µm. The
resulting surface reconstruction Hsurf,rec is depicted in Figure 5b.
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Figure 5. (a) Part surface extracted by thresholding algorithm. (b) Reconstructed part surface after
removal of registration landmarks. (c) Reconstructed surface from lowest pores in the transition zone
(between sections 5 and 6) at an approximately average specimen height of 10.7 mm. (d) Part surface
after application of deformation adjustment function extracted by thresholding algorithm.

3.2.3. Estimation of the Surface Deformation History

The distribution of the pores in the transition zones between sections of standard VED
followed by sections of increased VED was the basis for the estimation of the former surface
deformation history. Such pores in the transition zones are called boundary pores hereafter.
Due to the increased VED utilized in sections 2, 4, and 6, predominantly keyhole pores were
present. Keyhole pores are likely to form at the bottom of the melt pool and be entrapped
in its lower part [37]. Inspired by the findings of Ulbricht et al. [7], it is assumed that the
topography of the former surface can be reconstructed from the statistically distributed
pores at the boundary of the transition zone. The first step to estimate the previous
surface deformation was the extraction of the boundary pores. The transition zones from
section 1 to 2 and from section 3 to 4 were not regarded due to the low information density
resulting from the low number of pores in these sections. The decreased number of pores
contributed to the lower increase of VED [38] utilized in these sections (+25% in section 2
and +50% in section 4). Only in the transition from section 5 to 6 was a sufficient number
of pores present. A data subset from height z′ = 1050 to 1090 vox (equal to a specimen
height of 10.5 µm to 10.9 µm) that contained the lowest boundary pores was extracted from
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Vproc,bin. The 3D position of each respective pore centroid in the subset was calculated
(MATLAB function “regionprops3”) and stored in a 2D array. The pores located at the rim
of the obtained disc-shaped point cloud were extracted (MATLAB function “boundary”).
For the surface reconstruction, only the pores of the bottom part of the rim were utilized
since they were located in the transition zone. These centroids were denoted as Hpores and
were located at an average centroid height of approximately z′ = 1070 voxel. Here, the
same interpolation algorithm as used for the top surface [36] was applied to reconstruct
the surface shape. This shape was denoted as Hpores,rec. Additional smoothing was added
to remove local inhomogeneities. Hpores,rec is depicted in Figure 5c. Good agreement
was found between the reconstructions Hpores,rec and Hsurf,rec. Furthermore, the standard
deviation (STD) σpores of the original centroid heights in Hpores,rec was calculated to 33 µm,
which is significantly lower than the STD σsurf of Hsurf,rec (95 µm).

3.2.4. Determination of a Deformation Adjustment Function

Based on Hpores,rec, a deformation adjustment function gx′ ,y′ (z′) was determined for
the compensation of the surface deformation history. As stated above, the method assumed
that all surface deformations during the manufacturing had an approximately similar
shape like the surface deformation Hsurf,rec determined in Section 3.2.2. However, the
comparison of σpore and σsurf implied that the average height amplitude of the deformed
surfaces increased with growing z′. This was taken into account by the introduction of a
compression factor c. The idea behind c was the adaption of the average height amplitude
in dependency to z′. Due to the given pore distribution, only three reference surfaces were
available for the calculation of c: (i) The non-deformed milled surface of the dummy base
volume Hplate at z′ = 0 vox with σplate = 0, (ii) the surface reconstruction Hpores,rec from the
boundary pores at an average height of z′ ≈ 1070 voxel with σpores = 33 µm, and (iii) the
surface reconstruction Hsurf,rec with σsurf = 95 µm of the specimen top. Due to this lack of
information, only a sectional linear interpolation approach was feasible for the calculation
of c (see Figure 6a).
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The compression factor c is given by:

c
(
z′
)
=

{
m1z′+b1
σsurf : Hplate < z′ < Hpores,rec

m2z′+b2
σsurf : Hpores,rec ≤ z′ < Hsurf,rec

(7)
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m1 = 3.902× 10−3, m2 = 4.479× 10−3 correspond to the slope and b1 = 0, b2 = −4.33 corre-
spond to the intercept of gx′ ,y′ (z

′) in the respective interpolation section (see Figure 6a). The

sections were chosen corresponding to the average height of the substrate plate Hplate = 0,
the average height of the extracted pore centroids Hpores,rec and the average surface height
Hsurf,rec. To obtain values between 0 and 1, a normalization with σsurf was performed.

The local height deviation at an arbitrary voxel position resulting from the surface
deformation was calculated by the deformation adjustment function gx′ ,y′ (z

′):

gx′ ,y′
(
z′
)
= ∆Hsurf,rec

x′ ,y′ · c
(
z′
)

(8)

∆Hsurf
x′ ,y′= Hsurf,rec

x′ ,y′ − Hsurf,rec (9)

Here, the local height deviation at voxel position x′ and y′ is given by ∆Hsurf,rec
x′ ,y′ .

Exemplary values of gx′ ,y′ (z
′) for chosen layer heights are depicted in Figure 6b.

3.2.5. Volume Reconstruction Utilizing the Deformation Adjustment Function

Equation (8) gives an incremental floating number which corresponds to the height
deviation of the considered voxel with the height z′. The volume reconstruction was
performed by the generation of a new volume Vfinal from the distorted volume Vproc,bin.
Here, for each new voxel in Vfinal, the position of a corresponding voxel in Vproc,bin was
calculated and its associated binary value was assigned to the new voxel:

Vrec(x′, y′, z′
)
= Vproc,bin(x′, y′, z∗

)
(10)

with z∗ =
⌈

z′+gx′ ,y′
(
z′
)⌋

(11)

z* was rounded to avoid non-integer values. Since the specimen height was locally
adjusted to the CAD height, the number of voxels containing density information was larger
in Vfinal than in Vproc,bin. Therefore, single voxel values from Vproc,bin were duplicated
during the assignment to Vfinal. The decision to duplicate a voxel was determined by the
rounding operation of z*. The maximum percentage of duplicated voxel at a single x′-y′

position was approximated to ~3% from the maximum height difference between the real
specimen and the CAD (~400 µm). The final size of Vfinal was 711 × 711 × 1200 voxels. For
evaluation, the adjusted top surface of Vfinal was extracted by the thresholding algorithm
described Section 3.2.2 (Figure 5d). After the removal of the cross and the label landmark
(see Section 3.2.2), the STD of the surface height of Vfinal was calculated to 30 µm. This
is a significant decrease compared to the surface of Vproc (STD of 95 µm). Furthermore,
a comparison of the pore distribution in the transition zone pre- and post-adjustment is
depicted in Figure 7. In the hypothetical case of a specimen free of surface deformations,
the pores were expected to appear at an approximately similar height z′ in the specimen
under the assumption of a comparatively small statistical depth variation of keyhole pores.
The former dataset is distinguished by pores being distributed heterogeneously, appearing
at first especially in the right half of the specimen in Figure 7a with a transition to the left
half with growing z′. The height difference between the first appearance of keyhole pores in
the cylinder right half to a pore distribution over the entire specimen cross-section amounts
to approximately 10 to 11 voxels. In the case of the adjusted dataset, this height difference is
decreased to approximately 5 to 6 voxels, especially when disregarding the pores present at
the specimen rim. These were presumably LoF voids resulting from the interface between
bulk and contour scans [7,39–41]. Furthermore, the described transition in the former
dataset from right specimen half to left specimen half is no longer present here.
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Figure 7. Pore distribution between section 5 and 6 starting at a specimen height of approximately 
1050 voxels (10.5 mm) increasing by z’ = 1 voxel (10 μm) per image slice (a) before deformation 
adjustment (Vproc,bin) and (b) after deformation adjustment (Vfinal). While the pore appearance in (a) 
is mainly starting on the right specimen half and transitions over the course of 10 image slices to the 
left half, the pore appearance in (b) begins mainly in the center and transitions faster (approximately 
in 5 image slices) from singular pores to a widespread distribution over the entire cross-section. The 
dashed red lines indicate the approximate starting and stopping points of the pore transition and 
are added to increase the readability of the figure. The starting points were manually approximated 
based on the appearance of a sufficient number of clearly identifiable pores in the cylinder bulk. The 
stopping points were manually approximated as the images in which pores appeared in major parts 
of the bulk. 

Due to the performed surface adjustment, the utilization of a simple 3D image-by-
image registration algorithm was enabled. 

3.3. Image Registration 
The spatial image registration was performed using the MATLAB Registration 

Estimator Toolbox. Here, several different feature-based and intensity-based algorithms 

Figure 7. Pore distribution between section 5 and 6 starting at a specimen height of approximately
1050 voxels (10.5 mm) increasing by z′ = 1 voxel (10 µm) per image slice (a) before deformation
adjustment (Vproc,bin) and (b) after deformation adjustment (Vfinal). While the pore appearance in
(a) is mainly starting on the right specimen half and transitions over the course of 10 image slices to the
left half, the pore appearance in (b) begins mainly in the center and transitions faster (approximately
in 5 image slices) from singular pores to a widespread distribution over the entire cross-section. The
dashed red lines indicate the approximate starting and stopping points of the pore transition and
are added to increase the readability of the figure. The starting points were manually approximated
based on the appearance of a sufficient number of clearly identifiable pores in the cylinder bulk. The
stopping points were manually approximated as the images in which pores appeared in major parts
of the bulk.

Due to the performed surface adjustment, the utilization of a simple 3D image-by-
image registration algorithm was enabled.

3.3. Image Registration

The spatial image registration was performed using the MATLAB Registration Estima-
tor Toolbox. Here, several different feature-based and intensity-based algorithms for image
registration are available. For this study, a monomodal intensity-based algorithm [10] was
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chosen because the datasets were acquired by different imaging techniques and therefore,
had different spatial resolutions and different geometric features. The thermograms were
labeled as moving images which were spatially transformed to be registered on the XCT
fixed images [11]. A registration function T was generated using images of the cross land-
mark on the specimen top surface. The cross landmark was visible in both thermography
and XCT image data (see Figure 8). In the case of the XCT data, the cross was extracted
from the cross-section slice of Vfinal. Regarding the thermogram data, the extraction of the
cross landmark was performed from a sum of intensity image from the thermograms of
the landmark manufacturing. Here, the pixel temperatures of all 2D thermograms from
the manufacturing series of specimen layer were summed up and normalized afterwards.
Layer 242 was chosen for the sum of intensity image since the landmark structures were the
most clearly identifiable here. Both images were further processed to improve the clearness
of the landmark geometry. At first, noisy background elements were removed from the
image using arithmetical image multiplication and a polygonal mask. The low spatial
resolution of the thermographic camera demanded the use of morphological and median
filters to clarify the cross edges. Furthermore, the introduced preprocessing in Section 3.1
was applied on the thermography cross landmark image. Finally, the image was binarized
using a global threshold.
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overlapping area, while pink and green correspond to deviating areas. 
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“translation”) were available in the MATLAB toolbox for the monomodal registration to 
produce a registration function. These models exhibit different degrees of freedom 
concerning the available transformations. The highest degree of freedom is given by the 
similarity model that allows translation, rotation, shearing, and scaling of the moving 
image. The affine model does not allow shearing, while only translation and rotation are 
available when using the rigid model. In the case of the translation model, only image 
translation is applied on the moving image. Due to the performed resampling and 
rectification from the preprocessing of the cross landmark, the moving image already had 
the same image scale as the XCT image and present distortions were adjusted. 
Furthermore, the size of the sum of intensity image of the cross landmark in the 
thermogram dataset may be artificially enlarged by thermal expansion and the choice of 
the binarization threshold. Therefore, shearing and scaling are unnecessary degrees of 
freedom that might introduce registration inaccuracy. Two registration functions based 

Figure 8. (a) Sum of temperature image from the raw 4D thermogram dataset. (b) x′-y′ slice of
Vbin at a height of z′ = 1205 vox. (c) Extracted and processed cross labels from (a,b) after the spatial
registration was performed. Shown here is a monomodal translation registration with a quality
of 0.958 calculated by the MATLAB Registration Estimator Toolbox. White areas correspond to
overlapping area, while pink and green correspond to deviating areas.

Four different transformation models (“similarity”, “affine”, “rigid”, and “translation”)
were available in the MATLAB toolbox for the monomodal registration to produce a
registration function. These models exhibit different degrees of freedom concerning the
available transformations. The highest degree of freedom is given by the similarity model
that allows translation, rotation, shearing, and scaling of the moving image. The affine
model does not allow shearing, while only translation and rotation are available when
using the rigid model. In the case of the translation model, only image translation is
applied on the moving image. Due to the performed resampling and rectification from
the preprocessing of the cross landmark, the moving image already had the same image
scale as the XCT image and present distortions were adjusted. Furthermore, the size of the
sum of intensity image of the cross landmark in the thermogram dataset may be artificially
enlarged by thermal expansion and the choice of the binarization threshold. Therefore,
shearing and scaling are unnecessary degrees of freedom that might introduce registration
inaccuracy. Two registration functions based on the rigid and the translation model were
determined. In the following, the obtained registration functions were applied on the slices
of the preprocessed thermogram datasets Ak and the preprocessed XCT dataset Vfinal [34]:
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T
(

Ak,2D
z

)
↔ Vfinal,2D

z′ with z = z′ (12)

Here, Ak,2D
z correspond to a 2D x-y slice of Ak and Vfinal,2D

z′ to the 2D x′-y′ slice of Vfinal.
As stated in Section 1, the evaluation of the registration accuracy is often challenging. In
this study, a simple method was utilized to evaluate the registration results. A full dataset
of layer maps from thermography (chosen feature: melt pool area) was registered with
the corresponding XCT dataset. Afterwards, the contours of the registered x-y slices were
approximated by a circle fit [32]. In the case of the thermogram dataset, a binarization
using a manually chosen threshold was necessary for the detection of the boundary edges.
From the circle fit, the average distance ∆D between the circle centroids of the registered
datasets was calculated for all slices:

∆D =
1

nslice

nslice

∑
i=1

√
(xcen

z − x′cen
z′ )2 + (ycen

z − y′cen
z′ )2 with z = z′ (13)

Here, the centroid position of the thermogram feature image is given by xcen
z and

ycen
z , while the centroid position of the XCT image is given by x′cen

z′ and y′cen
z′ . ∆D was

an indicator for the translation error that was present after the registration. Furthermore,
the MAE of average difference of the circle radius ∆R was calculated as a measure of the
scaling error. The results are shown in Table 4.

Table 4. Geometric errors resulting from different transformation modes of registration in the
corresponding sections. Here, ∆D corresponds to the MAE of the distance between the circle fit
centroids and ∆R to the MAE of the difference between the circle fit radii. The STD of both sizes is
given by σ∆D and σ∆R, respectively.

Transformation Model
(Including Degrees of Freedom) Section ∆D in µm σ∆D in µm ∆R in µm σ∆R in µm

Rigid (translation and rotation)

1 23 ±12 21 ±8
2 42 ±20 38 ±6
3 23 ±11 25 ±7
4 65 ±29 59 ±11
5 25 ±12 30 ±11
6 80 ±31 57 ±23

Translation (translation)

1 27 ±13 19 ±8
2 43 ±19 37 ±5
3 29 ±12 23 ±7
4 53 ±22 55 ±9
5 27 ±12 28 ±10
6 64 ±27 55 ±23

4. Discussion

It is important to place this investigation in the overall context of irregularity prediction
in L-PBF parts. The precise prediction of irregularities based on the obtained thermographic
in situ monitoring data was the objective. The registration is a necessary step to align
monitoring and reference datasets. Therefore, the achieved registration precision is a
crucial information because it limits the effective volume size in which irregularities can be
accurately predicted.

The preprocessing of the thermogram data included, in the case of melt pool-based
features, an interpolation from a sparse point cloud of voxels to a resampled 3D volume
dataset. This was performed to adjust the thermogram voxel sizes to the XCT voxel size.
Thus, the datasets could be registered more precisely with a theoretical accuracy lower
than the pixel resolution of the IR camera, 100 µm2. Single voxel values of the interpolated
datasets should be treated with care because it is uncertain if they necessarily reflect the
exact thermal history of the temporally high dynamic L-PBF process. It can be concluded
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that the temporal and spatial resolution of the raw thermograms is important information
that should be considered for the prediction of irregularities. Especially if the original
thermogram datasets have a lower spatial information density than the registered datasets,
a further resampling of the registered datasets to a larger voxel size might be necessary.

In the context of XCT data preprocessing, it was found that an adjustment of the
detected surface deformation is of vital importance for the overall registration accuracy.
The obtained results from the introduced adjustment method are promising since they
show a clear decrease in shape deformation (compare Figures 5d and 7). Nonetheless, it is
necessary to critically analyze the single XCT preprocessing steps that were performed.

The basic method of reconstructing former surface deformations from the internal
void distribution in the part was strongly motivated by the findings of Ulbricht et al. [7]
and their observations related to the surface deformation. Here, multiple indications of
the former surface deformations were visible in the XCT data due to the implementation
of artificial notches in their design. In the specimen investigated in the current study,
no such notches were present since their implementation might have interfered with the
presence of keyhole pores whose formation was forced by the chosen design. Therefore,
the available information for surface reconstruction was limited. Only pores in one section
could be used for the reconstruction of the surface deformation history. From this lack of
information arose the decision to utilize a linear sectional approach for the calculation of the
compression factor c. This choice might be an oversimplification in terms of describing the
surface deformation history. The potential need of more complex fitting approaches such
as higher order polynomials or exponential functions to describe the surface deformation
history will be investigated in future research. In future experimental designs, the insertion
of artificial voids as references instead of boundary pores could be used for an easier
determination of the deformation history.

The chosen simple fitting approach for the compression factor c well compensated the
error induced by the surface deformation (Figures 5d and 7). The results show that the
specimen deformation was determined accurately by the chosen customized thresholding
and surface reconstruction algorithm. Here, the choice of other registration landmarks
which are not positioned on the specimen top could improve this result even further, since
the step of surface reconstruction of missing areas would be omitted.

In order to describe the surface deformation history, the assumption was made that
all surface deformations during manufacturing had an approximately similar shape to the
deformation of the specimen top. The results indicate that this assumption is promising.
The deformation reconstructed from the pore centroids at an approximate specimen height
of z′ = 1070 voxel is in good agreement with the determined top surface deformation. This
is remarkable since the reconstruction is based on the positional information of the present
keyhole pores.

The formation of keyhole pores is connected to unstable conditions in the melt pool
keyhole [37]. As a result, keyhole pores can occur spatially irregularly during the man-
ufacturing of a scan track (compare Figure 7). Additionally, the melt pool depth varies
to a certain extent. As a result, the z′ position of pores which result from a single layer
manufacturing can fluctuate. The melt pool depth was shown to depend on the laser
processing parameters. Mohr et al. [25] found melt pool depths of 213 ± 19 µm for a
VED of 65.5 J/mm3 and 471 ± 54 µm for a VED of 152.7 J/mm3 using the same machine
and material that was utilized in the present study. It can be assumed that the average
melt pool depths from the VED utilized in section 6 (114.45 J/mm3) lay in between these
results. However, regarding the pores that were utilized for the former surface deformation
reconstruction, the positional fluctuations are limited by the manufacturing of overlying
layers. Here, the keyhole of the new layer can interact with the lower pores which may
lead to the escape of the entrapped gas or a recombination with new pores. Therefore, the
positional fluctuation is effectively limited to the layer thickness (50 µm).

The heterogeneous spatial pore distribution and the fluctuation in the vertical pore
location were identified as interfering factors for the reconstruction of the former surface de-
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formation. Nonetheless, the surface deformation calculated by pore distribution (Figure 5c)
showed similar shape tendencies as the top surface deformation (Figure 5a). From that, it
can be concluded that the history of surface deformation is effectively linked to the resulting
pore location. Precise knowledge of the surface deformation history is, therefore, essential
for an allocation of in situ sensor data to the porosity information obtained from XCT. To
the best of the authors’ knowledge, these findings are new and underline the importance of
shape adjustment in the registration procedure for irregularity prediction.

It needs to be remarked that the density information of the manufactured specimen is
effectively locally distorted by the shape adjustment to match with the “ideal” specimen
geometry given by the CAD. Therefore, the quantitative void sizes in the adjusted dataset
should be analyzed with care since they might differ from the results in the raw dataset.
However, a quantitative void analysis can be enabled again if the applied deformation
adjustment is reverted.

In terms of the image registration, the allowed transformation options of the investi-
gated registration models were rotation and translation. Due to the performed preprocess-
ing of both datasets, it was decided that shearing and scaling as additional transformations
were unnecessary degrees of freedom. The results (Table 4) show that the lowest errors
were achieved when applying the rigid model in section 3. In the section of increased VED,
lower accuracy was achieved. This was presumably caused by the lateral shrinkage present
in these sections (visible in Figures 4 and 6b). The shrinkage seemed to prevent the algo-
rithm to produce even better results. The comparison between the registration functions
showed that the translation model performed better in the section of increased VED. The
additionally allowed rotation of the rigid model appears to be counterproductive here and
the results indicate that both XCT and thermography datasets were already aligned well
from preprocessing. The lower performance from the rigid transformation might result
from the shape deviations between the cross landmark images that might have induced an
unnecessary rotation.

The results show that already a simple transformation function with a low number
of degrees of freedom is sufficient for the registration of the preprocessed datasets. For
data that are not preprocessed, it might be a reasonable choice to choose a model that
contains shearing and scaling. Here, the quality of the geometric landmark is a crucial
factor. Furthermore, the results show the potential of the developed registration method if
no lateral shrinkage is present. An extension of the algorithm to improve the registration
accuracy if lateral shrinkage is present will be the objective of future studies.

5. Conclusions

In this study, a 3D image-to-image registration was performed on datasets of ther-
mal features extracted from in situ thermography and a corresponding XCT dataset. The
registration was performed as a prerequisite for irregularity prediction. Extensive data pre-
processing was conducted to obtain similar data dimensionalities to enable the utilization
of the chosen, simple registration method. The preprocessing of the thermal feature dataset
included the compensation of image distortion, the interpolation of missing datapoints
and a resampling to the voxel scale of the XCT data. In the case of the XCT dataset, vertical
shrinkage was preliminary corrected from the height information of a staircase landmark
structure. Furthermore, a novel shape adjustment method was introduced to eliminate the
surface deformation history that was found in the entire part. An image registration func-
tion was derived from the utilization of geometric landmarks located on the specimen top
surface. The registration accuracy was assessed among the obtained geometrical errors in
the registered datasets. From the results of the performed image registration, the following
conclusions are drawn:

• Thermally induced warping and solidification shrinkage, especially in the form of sur-
face deformations, are a major challenge for the image registration because it prevents
the application of simple registration methods. In this study, it was demonstrated
that the distribution of boundary keyhole pores within the observed specimen can
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be utilized to reconstruct the surface deformation for a specific point in time within
the manufacturing. Furthermore, it was shown that an adjustment function based
on the approximated surface deformation history enables the adjustment of the part
deformation and the application of a simple 3D image-to-image registration.

• The geometrical references that were included in the specimen design proved to be
very beneficial for the data registration. The surrounding staircase structure provided
information for the preliminary adjustment of the vertical part shrinkage. The cross
label added on the specimen top could be utilized to generate a registration function.
A drawback of this structure was its disruptive influence during the reconstruction of
the top surface information.

• The performed registration resulted in a translation error of 23 µm ± 12 µm and a
scaling error of 21 µm ± 8 µm (rigid model in section 3). These errors are significantly
lower than the spatial resolution achieved by the IR camera. From the utilization of the
adjustment function, it was found that high improvement was achieved in comparison
to the unadjusted dataset. Based on these findings, it is possible for the first time to
consider the registration accuracy in irregularity prediction modeling.

In future studies, the registered datasets will be used to generate a ML-based model
for the prediction of irregularities within the produced part. Here, the obtained registration
error information will be incorporated to determine the spatial resolution in which the
porosity can be reasonably predicted. Apart from that, we aim to improve the algorithm
to make it more robust if lateral shrinkage is present in the part. The insertion of artificial
voids within the specimen is a promising option to reconstruct the surface information at
different specimen heights. A further option in this regard is the in situ measurement of the
part surface topography by laser profilometry that can be integrated into the process. By
that, a more accurate deformation adjustment can be achieved which will further increase
the registration accuracy and ultimately the irregularity prediction accuracy.

Author Contributions: Conceptualization, S.O., T.F. and S.J.A.; methodology, S.O., T.F., A.U., G.M.
and S.J.A.; software, S.O.; investigation, S.O., G.M. and T.F.; data curation, S.O., T.F. and A.U.;
writing—original draft preparation, S.O. and T.F.; writing—review and editing, S.O., T.F., A.U., G.M.,
G.B., C.M. and S.J.A.; visualization, S.O.; supervision, G.B., C.M. and S.J.A.; project administration,
G.B., C.M. and S.J.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the BAM Focus Area Materials project ProMoAM “Process
monitoring of Additive Manufacturing”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are thankful for the financial support and the fruitful cooperation with
all partners.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al Rashid, A.; Khan, S.A.; Al-Ghamdi, S.G.; Koç, M. Additive Manufacturing: Technology, Applications, Markets, and Opportuni-

ties for the Built Environment. Autom. Constr. 2020, 118, 103268. [CrossRef]
2. Tapia, G.; Elwany, A. A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing. J. Manuf. Sci. Eng.

2014, 136, 060801. [CrossRef]
3. Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
4. Fritsch, T.; Farahbod-Sternahl, L.; Serrano-Muñoz, I.; Léonard, F.; Haberland, C.; Bruno, G. 3d Computed Tomography Quantifies

the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured In625
Lattice Struts. Adv. Eng. Mater. 2021, 2021, 2100689. [CrossRef]

5. McCann, R.; Obeidi, M.A.; Hughes, C.; McCarthy, É.; Egan, D.S.; Vijayaraghavan, R.K.; Joshi, A.M.; Acinas Garzon, V.; Dowling,
D.P.; McNally, P.J.; et al. In-Situ Sensing, Process Monitoring; Machine Control in Laser Powder Bed Fusion: A Review. Addit.
Manuf. 2021, 45, 102058. [CrossRef]

http://doi.org/10.1016/j.autcon.2020.103268
http://doi.org/10.1115/1.4028540
http://doi.org/10.1007/s11665-014-0958-z
http://doi.org/10.1002/adem.202100689
http://doi.org/10.1016/j.addma.2021.102058


Metals 2022, 12, 947 20 of 21

6. Lough, C.S.; Liu, T.; Wang, X.; Brown, B.; Landers, R.G.; Bristow, D.A.; Drallmeier, J.A.; Kinzel, E.C. Local Prediction of Laser
Powder Bed Fusion Porosity by Short-Wave Infrared Imaging Thermal Feature Porosity Probability Maps. J. Mater. Processing
Technol. 2022, 302, 117473. [CrossRef]

7. Ulbricht, A.; Mohr, G.; Altenburg, S.J.; Oster, S.; Maierhofer, C.; Bruno, G. Can Potential Defects in Lpbf Be Healed from the Laser
Exposure of Subsequent Layers? A Quantitative Study. Metals 2021, 11, 1012. [CrossRef]

8. Grasso, M.; Remani, A.; Dickins, A.; Colosimo, B.M.; Leach, R.K. In-Situ Measurement and Monitoring Methods for Metal Powder
Bed Fusion: An Updated Review. Meas. Sci. Technol. 2021, 32, 112001. [CrossRef]

9. Oliveira, F.P.; Tavares, J.M. Medical Image Registration: A Review. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 73–93.
[CrossRef]

10. Gao, Z.; Gu, B.; Lin, J. Monomodal Image Registration Using Mutual Information Based Methods. Image Vis. Comput. 2008, 26,
164–173. [CrossRef]

11. Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P. Elastix: A Toolbox for Intensity-Based Medical Image Registration.
IEEE Trans. Med. Imaging 2010, 29, 196–205. [CrossRef] [PubMed]

12. Alpert, N.M.; Berdichevsky, D.; Levin, Z.; Morris, E.D.; Fischman, A.J. Improved Methods for Image Registration. Neuroimage
1996, 3, 10–18. [CrossRef] [PubMed]

13. Guo, W.G.; Tian, Q.; Guo, S.; Guo, Y. A Physics-Driven Deep Learning Model for Process-Porosity Causal Relationship and
Porosity Prediction with Interpretability in Laser Metal Deposition. CIRP Ann. 2020, 69, 205–208. [CrossRef]

14. Sinclair, L.; Leung, C.L.A.; Marussi, S.; Clark, S.J.; Chen, Y.; Olbinado, M.P.; Rack, A.; Gardy, J.; Baxter, G.J.; Lee, P.D. In Situ
Radiographic and Ex Situ Tomographic Analysis of Pore Interactions During Multilayer Builds in Laser Powder Bed Fusion.
Addit. Manuf. 2020, 36, 101512. [CrossRef]

15. Mohr, G.; Nowakowski, S.; Altenburg, S.J.; Maierhofer, C.; Hilgenberg, K. Experimental Determination of the Emissivity of
Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples. Metals 2020,
10, 1546. [CrossRef]

16. Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical Cone-Beam Algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [CrossRef]
17. Schörner, K.; Goldammer, M.; Stephan, J. Scatter Correction by Modulation of Primary Radiation in Industrial X-Ray Ct: Beam-

Hardening Effects and Their Correction. In Proceedings of the International Symposium on Digital Industrial Radiology and
Computed Tomography—Mo.3.2, Berlin, Germany, 20–22 June 2011.

18. Ametova, E.; Ferrucci, M.; Dewulf, W. A Tool for Reducing Cone-Beam Artifacts in Computed Tomography Data. In Proceedings
of the 7th Conference on Industrial Computed Tomography (iCT 2017), Leuven, Belgium, 7–9 February 2017.

19. Roche, R.C.; Abel, R.A.; Johnson, K.G.; Perry, C.T. Quantification of Porosity in Acropora Pulchra (Brook 1891) Using X-ray
Micro-Computed Tomography Techniques. J. Exp. Mar. Biol. Ecol. 2010, 396, 1–9. [CrossRef]

20. Shah, P.; Racasan, R.; Bills, P. Comparison of Different Additive Manufacturing Methods Using Computed Tomography. Case
Stud. Nondestruct. Test. Eval. 2016, 6, 69–78. [CrossRef]

21. Mireles, J.; Ridwan, S.; Morton, P.A.; Hinojos, A.; Wicker, R.B. Analysis and Correction of Defects within Parts Fabricated Using
Powder Bed Fusion Technology. Surf. Topogr. Metrol. Prop. 2015, 3, 034002. [CrossRef]

22. Lough, C.S.; Wang, X.; Smith, C.C.; Landers, R.G.; Bristow, D.A.; Drallmeier, J.A.; Brown, B.; Kinzel, E.C. Correlation of Swir
Imaging with Lpbf 304l Stainless Steel Part Properties. Addit. Manuf. 2020, 35, 101359. [CrossRef]

23. Coeck, S.; Bisht, M.; Plas, J.; Verbist, F. Prediction of Lack of Fusion Porosity in Selective Laser Melting Based on Melt Pool
Monitoring Data. Addit. Manuf. 2019, 25, 347–356. [CrossRef]

24. Forien, J.-B.; Calta, N.P.; DePond, P.J.; Guss, G.M.; Roehling, T.T.; Matthews, M.J. Detecting Keyhole Pore Defects and Monitoring
Process Signatures During Laser Powder Bed Fusion: A Correlation between in Situ Pyrometry and Ex Situ X-ray Radiography.
Addit. Manuf. 2020, 35, 101336. [CrossRef]

25. Mohr, G.; Altenburg, S.J.; Ulbricht, A.; Heinrich, P.; Baum, D.; Maierhofer, C.; Hilgenberg, K. In-Situ Defect Detection in Laser
Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography. Metals 2020,
10, 103. [CrossRef]

26. Taherkhani, K.; Sheydaeian, E.; Eischer, C.; Otto, M.; Toyserkani, E. Development of a Defect-Detection Platform Using Photodiode
Signals Collected from the Melt Pool of Laser Powder-Bed Fusion. Addit. Manuf. 2021, 46, 102152. [CrossRef]

27. Gobert, C.; Reutzel, E.W.; Petrich, J.; Nassar, A.R.; Phoha, S. Application of Supervised Machine Learning for Defect Detection
During Metallic Powder Bed Fusion Additive Manufacturing Using High Resolution Imaging. Addit. Manuf. 2018, 21, 517–528.
[CrossRef]

28. Oster, S.; Maierhofer, C.; Mohr, G.; Hilgenberg, K.; Ulbricht, A.; Altenburg, S.J. Investigation of the Thermal History of L-Pbf Metal
Parts by Feature Extraction from in-Situ Swir Thermography. In Proceedings of the Thermosense: Thermal Infrared Applications
XLIII, online, 12–16 April 2021; p. 117430C. [CrossRef]

29. Scheuschner, N.; Strasse, A.; Altenburg, S.J.; Gumenyuk, A.; Maierhofer, C. In-Situ Thermographic Monitoring of the Laser Metal
Deposition Process. In Proceedings of the II International Conference on Simulation for Additive Manufacturing, Pavia, Italy,
11–13 September 2019.

30. Herman, G.T. Correction for Beam Hardening in Computed Tomography. Phys. Med. Biol. 1997, 24, 81–106. [CrossRef]
31. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid,

B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [CrossRef]

http://doi.org/10.1016/j.jmatprotec.2021.117473
http://doi.org/10.3390/met11071012
http://doi.org/10.1088/1361-6501/ac0b6b
http://doi.org/10.1080/10255842.2012.670855
http://doi.org/10.1016/j.imavis.2006.08.002
http://doi.org/10.1109/TMI.2009.2035616
http://www.ncbi.nlm.nih.gov/pubmed/19923044
http://doi.org/10.1006/nimg.1996.0002
http://www.ncbi.nlm.nih.gov/pubmed/9345471
http://doi.org/10.1016/j.cirp.2020.04.049
http://doi.org/10.1016/j.addma.2020.101512
http://doi.org/10.3390/met10111546
http://doi.org/10.1364/JOSAA.1.000612
http://doi.org/10.1016/j.jembe.2010.10.006
http://doi.org/10.1016/j.csndt.2016.05.008
http://doi.org/10.1088/2051-672X/3/3/034002
http://doi.org/10.1016/j.addma.2020.101359
http://doi.org/10.1016/j.addma.2018.11.015
http://doi.org/10.1016/j.addma.2020.101336
http://doi.org/10.3390/met10010103
http://doi.org/10.1016/j.addma.2021.102152
http://doi.org/10.1016/j.addma.2018.04.005
http://doi.org/10.1117/12.2587913
http://doi.org/10.1088/0031-9155/24/1/008
http://doi.org/10.1038/nmeth.2019


Metals 2022, 12, 947 21 of 21

32. Chernov, N. Circle Fit (Pratt Method). Available online: https://www.mathworks.com/matlabcentral/fileexchange/22643-circle-
fit-pratt-method (accessed on 1 November 2021).

33. Phansalkar, N.; More, S.; Sabale, A.; Madhuri, J. Adaptive Local Thresholding for Detection of Nuclei in Diversity Stained
Cytology Images. In Proceedings of the 2011 International Conference on Communications and Signal Processing, Kerala, India,
10–12 February 2011. [CrossRef]

34. Markelj, P.; Tomazevic, D.; Likar, B.; Pernus, F. A Review of 3d/2d Registration Methods for Image-Guided Interventions.
Med. Image Anal. 2012, 16, 642–661. [CrossRef]

35. Kiekens, K.; Welkenhuyzen, F.; Tan, Y.; Bleys, P.; Voet, A.; Kruth, J.P.; Dewulf, W. A Test Object with Parallel Grooves for
Calibration and Accuracy Assessment of Industrial Computed Tomography (Ct) Metrology. Meas. Sci. Technol. 2011, 22, 115502.
[CrossRef]

36. D’Errico, J. Surface Fitting Using Gridfit. Available online: https://www.mathworks.com/matlabcentral/fileexchange/8998
-surface-fitting-using-gridfit (accessed on 5 July 2021).

37. Hojjatzadeh, S.M.H.; Parab, N.D.; Guo, Q.; Qu, M.; Xiong, L.; Zhao, C.; Escano, L.I.; Fezzaa, K.; Everhart, W.; Sun, T.; et al. Direct
Observation of Pore Formation Mechanisms During Lpbf Additive Manufacturing Process and High Energy Density Laser
Welding. Int. J. Mach. Tools Manuf. 2020, 153, 103555. [CrossRef]

38. Wang, L.; Zhang, Y.; Chia, H.Y.; Yan, W. Mechanism of Keyhole Pore Formation in Metal Additive Manufacturing. Npj Comput.
Mater. 2022, 8, 22. [CrossRef]

39. Ertay, D.S.; Ma, H.; Vlasea, M. Correlative Beam Path; Pore Defect Space Analysis for Modulated Powder Bed Laser Fusion
Process. In Proceedings of the 2018 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 13–15 August 2018.
[CrossRef]

40. Du Plessis, A. Effects of Process Parameters on Porosity in Laser Powder Bed Fusion Revealed by X-ray Tomography. Addit.
Manuf. 2019, 30, 100871. [CrossRef]

41. Jost, E.W.; Miers, J.C.; Robbins, A.; Moore, D.G.; Saldana, C. Effects of Spatial Energy Distribution-Induced Porosity on Mechanical
Properties of Laser Powder Bed Fusion 316l Stainless Steel. Addit. Manuf. 2021, 39, 101875. [CrossRef]

https://www.mathworks.com/matlabcentral/fileexchange/22643-circle-fit-pratt-method
https://www.mathworks.com/matlabcentral/fileexchange/22643-circle-fit-pratt-method
http://doi.org/10.1109/ICCSP.2011.5739305
http://doi.org/10.1016/j.media.2010.03.005
http://doi.org/10.1088/0957-0233/22/11/115502
https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit
https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit
http://doi.org/10.1016/j.ijmachtools.2020.103555
http://doi.org/10.1038/s41524-022-00699-6
http://doi.org/10.26153/tsw/17015
http://doi.org/10.1016/j.addma.2019.100871
http://doi.org/10.1016/j.addma.2021.101875

	Introduction 
	Materials and Experimental Procedures 
	Registration Methodology and Results 
	Preprocessing of Thermogram Feature Dataset 
	Preprocessing of XCT Dataset 
	Preliminary Height Adjustment 
	Determination of the Surface Deformation 
	Estimation of the Surface Deformation History 
	Determination of a Deformation Adjustment Function 
	Volume Reconstruction Utilizing the Deformation Adjustment Function 

	Image Registration 

	Discussion 
	Conclusions 
	References

