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ABSTRACT

Thermographic photothermal super resolution reconstruction enables the resolution of internal defects/inhomogeneities below the classical
limit, which is governed by the diffusion properties of thermal wave propagation. Based on a combination of the application of special sam-
pling strategies and a subsequent numerical optimization step in post-processing, thermographic super resolution has already proven to be
superior to standard thermographic methods in the detection of one-dimensional defect/inhomogeneity structures. In our work, we report
an extension of the capabilities of the method for efficient detection and resolution of defect cross sections with fully two-dimensional struc-
tured laser-based heating. The reconstruction is carried out using one of two different algorithms that are proposed within this work. Both
algorithms utilize the combination of several coherent measurements using convex optimization and exploit the sparse nature of defects/
inhomogeneities as is typical for most nondestructive testing scenarios. Finally, the performance of each algorithm is rated on reconstruction
quality and algorithmic complexity. The presented experimental approach is based on repeated spatially structured heating by a high power
laser. As a result, a two-dimensional sparse defect/inhomogeneity map can be obtained. In addition, the obtained results are compared with
those of conventional thermographic inspection methods that make use of homogeneous illumination. Due to the sparse nature of the
reconstructed defect/inhomogeneity map, this comparison is performed qualitatively.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088102

I. INTRODUCTION

One of the main factors that govern the resolution limit of
thermographic nondestructive testing methods is the diffusive
nature of heat conduction in solids. This has an especially severe
impact on resolving defect/inhomogeneity structures that lie deep
below the surface of the object under test (OuT). As a general rule,
using well-established conventional thermographic testing methods,
defects can only be fully resolved as long as their lateral extension is
as large as they lie deep within the OuT. With the application of
photothermal super resolution (SR) reconstruction techniques, it
has already been proven that this limit can be overcome.

Super resolution imaging techniques have been successfully
applied in several fields where there are resolution barriers to over-
come. While geometrical super resolution techniques enhance the
spatial resolution of modern detectors to a sub-pixel accuracy,1,2

optical super resolution techniques allow us to overcome the classi-
cal Abbe diffraction limit of optical imaging systems.3,4 However,
currently established photothermal super resolution reconstruction
methods within the field of active thermographic materials testing
are restricted to the reconstruction of one-dimensional defect
structures5–7 or only approximate two-dimensional super resolution
by combining several one-dimensional illumination patterns.8
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Furthermore, in this context, it should be noted that in con-
trast to the aforementioned methods relying on the spatially struc-
tured heating of the OuT, there also exist reconstruction methods
working with temporally structured illumination, which allow for a
three-dimensional reconstruction of internal structures while also
trying to eliminate thermal diffusion effects.9,10

Within this work, we expand the experimental approach
behind laser-based photothermal SR reconstruction toward the
detection of two-dimensional defects. This experimental approach
is characterized by taking multiple independent measurements for
a set of equidistantly distributed positions where the OuT is heated
using a single round laser spot with a high power laser. For each of
those illuminations, an independent measurement of the tempera-
ture response of the OuT is recorded with an infrared camera. In
order to then reconstruct the internal defect/inhomogeneity pattern
from the acquired set of independent measurements and gaining
true two-dimensional information about the defect shape stripped
from the blurring-effects of thermal diffusion, two different numer-
ical methods for inverting the underlying severely ill-posed inverse
problem are proposed. Subsequently, both methods are experimen-
tally validated on a purpose-made additively manufactured sample
with internal defect structures suitable to benchmark the resolution
capabilities of each method.

II. MOTIVATION ON PHOTOTHERMAL SUPER
RESOLUTION RECONSTRUCTION

The temporal progression of the front surface (z ¼ 0) temper-
ature Tmeas of an OuT exposed to a localized external heat flux Q
can be modeled as the sum of the initial temperature distribution
on the OuT front surface at t ¼ 0 s and the two-dimensional
spatial convolution (denoted as �x,y) of the thermal point spread
function (PSF) ΦPSF and a heat source distribution a,

Tmeas(x, y, z ¼ 0, t) ¼ T0(x, y)þ ΦPSF(x, y, t) �x,y a(x, y): (1)

The thermal PSF resembles the kernel function in Green’s-function
like representation of the thermal diffusion differential equation.
The PSF can be calculated analytically for the special case of a
defect-free thin plate with thickness L as follows:6,11

ΦPSF(x, y, t) ¼ 2 Q̂
cpρ(4παt)

ndim=2
� e�

(x��x)2þ(y��y)2
4αt

�

�
X1
n¼�1

R2nþ1 e�
(2nL)2

4αt

!
�t It(t), (2)

where

cp is the specific heat capacity,
ρ is the bulk density,
α is the thermal diffusivity,
ndim is the dimensionality of the heat flow:

point-wise excitation: ndim : ¼ 3,
line-wise excitation: ndim : ¼ 2,
full-surface excitation: ndim : ¼ 1,

(�x, �y) is the coordinate centroid of the excitation area,
R is the thermal wave reflection coefficient (for typical metals

R � 1),
�t denotes convolution in time,
Q̂ is the amplitude of the external heat flux Q, and
It is the temporal structure of Q.

For the derivation of Eq. (2), it is assumed that the external heat
flux Q can be separated into its temporal structure given by It and
its spatial structure Ix,y �x,y aext according to Eq. (3),

Q(x, y, t) ¼ Q̂� Ix,y(x, y) �x,y aext(x, y) �t It(t): (3)

Typically, It with It(t) [ 0, 1½ � is a boxcar function with an
active interval from t [ [0, tpulse], while Ix,y(x, y) [ 0, 1½ � encodes
the intensity distribution of the external photothermal heating and
aext constitutes a distribution of Dirac delta impulses δi with a unit
impulse at each excitation position,

aext(x, y) ¼
X
i

δi(xi, yi): (4)

While the temporal structure of the external heat flux is already
considered within the PSF, the spatial structure is incorporated into
the heat source distribution a, which is defined as follows:

a(x, y) ¼ Ix,y(x, y) �x,y aext(x, y)þ aint(x, y)ð Þ: (5)

Here, the additional term aint represents the spatial distribu-
tion of the internal “apparent” heat sources. In typical OuTs, even
though there are no active internal heat sources present, the fact
that regions with internal defects/inhomogeneities show up as
higher temperature regions in Tmeas lets them appear in the data as
if they were independent heat sources (see Fig. 1). This is due to
the fact that they impede the local heat flow at their respective posi-
tions. It should be noted that there exist also scenarios in which
defective regions show a lower temperature for which aint(x, y) is

FIG. 1. Visualization of the components of the heat source distribution a: the
measured temperature data Tmeas can be modeled according to Eq. (1) as the
sum of the external heat source distribution aext—the external photothermal
heating—and the internal apparent heat source distribution aint—the temperature
deviations due to defects/inhomogeneities—convolved with the thermal PSF
encoding the physics of heat conduction as well as the material parameters and
geometry according to Eqs. (1) and (5). aext and aint are additionally shown as
dashed lines.
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negative (apparent heat sinks). This is, for example, the case if the
OuT includes inhomogeneities with a higher thermal effusivity
than its bulk material. Both variants are equally covered by the pre-
sented modeling approach.

Therefore, if the heat source distribution a can be recon-
structed for the OuT, then, in turn, also the defect/inhomogeneity
structure of the OuT is known, which, in general, makes the recon-
struction of a from Eq. (1) the overall goal of photothermal SR
reconstruction. aint can be described as a Dirac delta pulse distribu-
tion as follows:

aint(x, y) ¼
X
i

ζ i � δ(xi, yi), (6)

where ζ i [ 0, 1½ ½ serve as numerical weights in order to incorpo-
rate different defect signal strengths. These weights originate from
the model assumption that all defects/inhomogeneities viewed as
apparent heat sources feature the same PSF as the external heating
but depending on their cross section and depth attenuated by the
factor ζ i. Since ζ i cannot be easily separated from aint within this
modeling approach, by reconstructing the heat source distribution
a and, therefore, aint, no information about the defect cross section
in the depth plane can be gained. aint, therefore, only contains
the in-plane information on the cross sections of the contained
defects/inhomogeneities.

In order to solve the ill-posed problem as stated in
Eq. (1) for the heat source distribution a, nm measurements
with m [ {1, . . . , nm} are performed. For each measurement m,
the photothermal heating pattern aext is varied, leading to a system
of nm equations to be solved simultaneously,

ΦPSF(x, y, t) �x,y am(x, y) ¼ Tm
diff (x, y, t), (7)

with Tm
diff (x, y, t) ¼ Tm

meas(x, y, t)� Tm
0 (x, y).

Even though the external component aext from Eq. (5) is in
principle known as prior information, it was shown to be beneficial
to also simultaneously reconstruct the external component aext
besides aint, leading to a blind reconstruction. If conversely a non-
blind reconstruction approach is chosen, it is critical that the posi-
tion and intensity profile of the external heating for each measure-
ment is precisely known in order to not introduce reconstruction
artifacts. In contrast, for a blind reconstruction, this requirement
does not apply, reducing the overall experimental complexity.
However, in order to make it possible to separate aext and aint
without artifacts in a blind reconstruction context, it must hold
true that the sum of the external excitation over all measurements
is constant as demanded by Eq. (8),

Ix,y(x, y) �x,y
Xnm
m¼1

amext(x, y) � const: (8)

This condition is based on the fact that it can otherwise not be dif-
ferentiated if a deviation from the mean is caused by an interfer-
ence of a defect/inhomogeneity at that location or if it is caused by
the non-uniformity of the sum of the external excitation.

Furthermore, to decrease the computational complexity, it is
advantageous to eliminate the time dependency of Eq. (7) by only
considering a single time step teval. When choosing a suitable time
step, several factors have to be considered. In order to minimize
measurement artifacts from the photothermal heating, a time step
during the cooling phase teval . tpulse should be chosen. Due to the
exponential nature of the cooling process, an early teval leads to
higher SNR. Additionally, the thermal diffusion length of the
thermal wave Ldiff / t1=2 increases with time with the thermal dif-
fusivity α of the bulk material acting as the proportionality cons-
tant,

Ldiff (t) ¼
ffiffiffiffiffiffiffiffiffiffiffi
α � t

p
: (9)

Since photothermal SR is only able to gain in-plane information of
the contained defects/inhomogeneities, only the planar projection
of the defect/inhomogeneity distribution within the testing volume
spanned by the region of interest (ROI) and Ldiff can be recon-
structed. Therefore, choosing teval is a balance act between achiev-
ing sufficient SNR and maximum detection depth for internal
defects as is emphasized by Fig. 2.

III. EXPANDING TO 2D-RECONSTRUCTION

Currently, well-established laser-based photothermal SR
reconstruction methodology is restricted to reconstruction of
defects along a single spatial dimension.6,12 Here, the OuT is
heated using line shape laser spots or patterns consisting of several
laser lines either by scanning continuously over the ROI or by step-
wise scanning. Even though in this way only defects that vary only
in a single dimension can be detected, the method has proven to
highly increase the resolution limit of thermographic testing.
One factor of its success is based on the fact that one of the spatial
dimensions can be collapsed by summation leading to a dramatic
increase in SNR since all measured data in this collapsed dimension
are redundant, which greatly reduces the measurement noise,
which is not possible for typical two-dimensional defects.

Other approaches on achieving two-dimensional super resolu-
tion have been based on using movable slit-masks in conjunction
with photothermal heating with the use of flashlamps. Here, the
slit mask needs to not only be moved but also rotated to gain super
resolution in the second dimension and the information gain about
the second spatial dimension is discretized to the different rotation
angles of the slit mask.8 In order to expand the method to a two-
dimensional reconstruction approach and to be sensitive in both
spatial dimensions, a different heating strategy needs to be chosen.

If instead of scanning the OuT with laser lines a sequential
point-wise scanning approach is used, where the sample is itera-
tively scanned on an equally-spaced grid by a single laser spot,
2D-super resolution can be achieved. In this scenario, Ix,y can be
modeled as a top-hat round laser spot with a diameter of dspot.
An equal spacing between all neighboring measurement positions
can be achieved by arranging all measurements on a grid consisting
of equilateral triangles of side length rd (cf. Fig. 3). A square
ROI with area AROI,2D and side length LROI,1D can, therefore, be
covered by approximately nm,2D � ffiffiffiffi

3/
p

2� AROI,2D/r2d independent
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measurements:

nm,2D

nm,1D
�

ffiffiffi
3

p � AROI,2D

2� LROI,1D � rd
(10)

! nm,2D �
ffiffiffi
3

p

2
� nm,1D

2: (11)

In order to achieve sufficient uniformity according to Eq. (8), rd has
to be chosen sufficiently small compared to the spatial full width at
half maximum (FWHM) extension dFWHM of the PSF, which has a
direct effect on the amounts of independent measurements needed

to cover the whole ROI. If for a reconstruction along a single dimen-
sion nm,1D ¼ 200 measurements are to be taken, for a
2D-reconstruction, now nm,2D � 34 800 measurements are necessary
to achieve a similar resolution for a fixed spacing of measurements
rd .

The FWHM spot diameter dFWHM(t) for a PSF with ndim ¼ 2
is given by the following term considering the standard deviation
σ(t) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2α � t
p

of the PSF,

dFWHM(t) ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln (2)α � t

p
: (12)

Here, the time dependency can be exploited such that choosing a
late-enough teval will lead to a larger dFWHM and, therefore, a larger
necessary rd, decreasing the amount of measurements to be per-
formed to cover the ROI and increase the viability of the method.
However, this comes at the cost of lower SNR and a reduced resolu-
tion limit.

IV. NUMERICAL RECONSTRUCTION

The severely ill-posed fundamental equation of photothermal
SR reconstruction as stated in Eq. (7) is formulated as a set of con-
volution problems Φ �x,y am ¼ Tm

diff . Consequently, a suitable
deconvolution algorithm needs to be applied to obtain a recon-
struction of the internal heat source distribution arec and, therefore,
of the inner defect structure of the OuT. For a similar problem in
matrix vector product form Φ � am ¼ Tm

diff , this can be achieved by
applying the iterative convex optimization alternating direction
method of multipliers (ADMM) algorithm13 in conjunction with
‘2,1-norm and ‘2-norm regularizing terms to constrain the solution

FIG. 2. Selection of teval: for eliminating the time dimension, the reconstruction is only performed for a single time step teval. This time step has to be chosen carefully
with respect to the temperature signal strength (black line) for best SNR, the thermal diffusion length (red line), and the homogeneity requirement in conjunction with the
measurement density governed by rd, which is influenced by the width dFWHM of the thermal PSF ΦPSF (green line). The inset figures show the spatial extent of ΦPSF at
t/tdiff ¼ 0:045 and 0:065, respectively. All shown graphs are normalized with the maximum temperature Tmax ¼ max(Tmeas) or the OuT thickness L and are plotted against
the diffusion time tdiff ¼ L2/α to exclude the dependency on material properties and geometry.

FIG. 3. Change in heating strategy to facilitate two-dimensional photothermal
SR capabilities. In order to make achieving two-dimensional super resolution
possible, the heating pattern needs to be two-dimensional as well. Therefore, a
switch from line-wise to a point-wise step scanning on a measurement grid of
equilateral triangles is proposed.
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space,14,15

minimize :
arec

1=2 Φk � amrec � Tm
diff

��2
2 þ λ2,1 amrec

�� ��
2,1þλ2 amrec

�� ��2
2,

(13)

where areck k2,1 is the ‘2,1-norm defined as

areck k2,1¼
X
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x,y

jamrecj2
s

: (14)

λ2 and λ2,1 are numerical weights controlling the strength of the
regularizing terms in comparison to the least squares minimization
term 1=2 Φ � amrec � Tm

diff

�� ��2
2 and have to be empirically determined

for optimal reconstruction results. Currently, it is part of an
ongoing research, how to efficiently select the regularizer weights in
the context of photothermal SR reconstruction using machine
learning techniques.16,17

While the ‘2-norm constrains the amplitude of the reconstruc-
tion result, the ‘2,1-norm incentivizes the reconstruction of ( joint-)
sparse defect/inhomogeneity structures, which effect multiple mea-
surements. Since the defect/inhomogeneity structure of the OuT
does not change for all measurements and defects/inhomogeneities
are typically scarcely distributed within the ROI, this regularization
approach greatly increases the reconstruction quality.

Additionally, the ADMM algorithm introduces a penalty
parameter ρ (see detailed ADMM-implementations in Algorithms
1 and 2), which balances the effect of the least squares

minimization term against the regularizing terms. This parameter
can be determined programmatically using the L-curve method.18

Finally, the internal heat source distribution aint widened by
Ix,y can be extracted by summing over all measurements where the
external component aext is eliminated due to the homogeneity con-
straint as stated in Eq. (8),

nm � Ix,y(x, y) �x,y aint(x, y)þ const: ¼
Xnm
m¼1

amrec(x, y): (15)

Furthermore, the constant term in Eq. (15) originating from
Eq. (8) vanishes due the application of the ‘2-norm within the
ADMM algorithm as it will converge to zero over the performed
niter iterations.

Within Secs. IV A and IV B, two methods are proposed for
transforming the spatial convolution problem into a multiplicative
form, such that the aforementioned inversion via the ADMM algo-
rithm can be performed.19,20

A. Sparse matrix stacking

In order to transform the fundamental equation from a con-
volution problem into a multiplicative form to be able to use the
ADMM algorithm for inversion, first the spatial dimensions have
to be combined into one single dimension r [ {1, . . . , nx � ny} by
vectorizing,

vec(Φ [ Rnx�ny ) ¼ Φr [ Rnx �ny�1, (16)

vec(am [ Rnx�ny ) ¼ amr [ Rnx �ny�1, (17)

vec(Tm
diff [ Rnx�ny ) ¼ Tm

r [ Rnx �ny�1: (18)

After that, a convolution matrix operator h(�) can be intro-
duced. This operator constructs for an input matrix of shape Φr a
convolution matrix h(Φr) [ R2nx �ny�1�nx �ny such that

Φr �r amr ¼ Tm
diff , h(Φr) � amr ¼

0
Tm
r
0

2
4

3
5 ¼ Tm

r0: (19)

Here, Tm
r0 [ R2nx �ny�1 comprises the measured surface temperature

data Tm
r symmetrically padded with nx � ny/2 zeros. The convolu-

tion matrix h(Φr) constitutes a lower triangular matrix with
Toeplitz-structure and is, therefore, quite sparsely populated. Since
all nm measurements need to be considered simultaneously for the
reconstruction, the nm equations can be stacked on top of each
other as follows:

H � A ¼
h 0

h
0 h

2
4

3
5 �

a1r

..

.

anmr

2
64

3
75 ¼

T1
r0

..

.

Tnm
r0

2
64

3
75 ¼ TR0, (20)

with h ¼ h(Φr), H [ R(2nx �ny�1)�nm � nx �ny �nm , A [ Rnx �ny �nm , and
TR0 [ R(2nx �ny�1)�nm . Even though the dimensional size of the

ALGORITHM 1. Sparse Matrix Stacking Reconstruction.
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matrix H is orders of magnitudes larger than the original data size
of nx � ny � nm data points, it is as a diagonal matrix of sparse com-
ponent matrices very sparse itself (only � 1=2nm of the entries in
H contain a non-zero value), making it possible to be still effi-
ciently stored and handled on modern computer hardware.

In summary, the following minimization problem emerged:

minimize :
A

1=2 H � A� TR0k k22þλ2,1 Ak k2,1þλ2 Ak k22 (21)

for which the algorithm presented as Algorithm 1 can be applied
to solve for A and ultimately reconstruct the internal defect/inho-
mogeneity map as encoded in aint.

The computational complexity of Algorithm 1 is mainly dom-
inated by repeated matrix vector multiplications. Naïvely, this will
run in at most O((2nx � ny � 1)2 � nx � ny � n3m) time but due to the
high degree of sparsity involved, this establishes only a very conser-
vative upper bound.21

B. Minimization in the frequency domain

Another possible way to transform a spatial convolution
problem into a multiplicative form is to switch into the spatial fre-
quency domain. This can be achieved by means of a two-
dimensional fast Fourier transform (FFT) as follows:

ΦPSF �x,y am , ifft fft ifftshift ΦPSFð Þð Þ � fft amð Þ
� �

, (22)

where fft indicates the two-dimensional FFT in x and y, ifft its

inverse, ifftshift a function that swaps the first quadrant with third
and the second with the fourth quadrant of the input matrix, over-
lines designate taking the complex conjugate, and � indicates
element-wise multiplication (Hadamard product). In order to get
rid of the element-wise multiplication and transform the problem
to a matrix vector multiplication problem, the following substitu-
tion can be applied:

ifft fft ifftshift ΦPSFð Þð Þ � fft að Þ
� �
, diag vec fft ifftshift ΦPSFð Þð Þ

� �� �
� vec fft að Þð Þ: (23)

Since the constraints governing the selection of the regulariza-
tion terms for the problem inversion, like the sparse distribution
of defects/inhomogeneities, are only applicable in the spatial
domain, the problem has to be transformed back from the
spatial frequency domain in order to apply their effect. This
leads to one invocation of the fft and one of the ifft operation
necessary per iteration.

ALGORITHM 2. Frequency Domain Reconstruction.

FIG. 4. Section view at a depth of z ¼ 1:5mm of the OuT: the OuT is addi-
tively manufactured from 316L stainless steel. The ROI for the experiment is
marked as a dashed red box. A detailed map of the ROI with the locations of
the defective regions shown as red boxes is overlayed on top. The cubical voids
within the ROI have a side length of 2 mm and are fully covered by a defect-free
0.5 mm thick cover layer.
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The computational complexity of Algorithm 2 is mainly dom-
inated by several invocations of the FFT per iteration. It will run in
O(nx � ny � nm � log (nx � ny � nm)) time, which is significantly less
than the sparse matrix stacking minimization approach presented
before for most circumstances.

V. EXPERIMENTAL SETUP

In order to test the experimental approach in conjunction
with both proposed inversion algorithms as an extension to laser-
based photothermal SR reconstruction, a purpose-made sample
additively manufactured from 316L stainless steel has been exam-
ined. Within the ROI as shown in Fig. 4 lie multiple internal
defects in the form of cubical voids with side length 2 mm, filled
with unfused metal powder from the manufacturing process. The
square OuT features a side length of 58.5 mm and a thickness of
L ¼ 4:5mm, while its fused bulk material comes with a thermal
conductivity of k ¼ 15Wm�1 K, a density of ρ ¼ 7950 kgm�3, a
specific heat capacity of cp ¼ 502 J kg�1 K�1, and, therefore, an
inferred thermal diffusivity of α ¼ 3:76� 10�6 m2 s�1.22,23

The ROI is chosen such that it covers several pairs of defects
with a spacing of 0.5, 1, 2, and 4 mm between them. This allows
not only for testing if all defects are detected by the algorithm but
also if all defects can be detected as individual defects resulting in a
measure of the resolution capabilities of the method.

As a photothermal heating source, a Q̂max ¼ 500W fiber-
couple diode laser with a wavelength of λ ¼ 940 nm is used. With
this, the OuT front surface can be illuminated via reflecting off a
dichroitic mirror (see Fig. 5), which is highly reflective for the laser
wavelength but transparent for midwave infrared radiation. The
surface temperature is subsequently measured with a midwave
infrared camera with a detector size of npix ¼ 1280� 1024 pixel at
a spatial resolution of Δx, Δy ¼ 52 μm per pixel with a frame rate

of fcam ¼ 100Hz. Two linear translational stages are utilized to
move the sample with respect to the laser and allow for scanning of
the whole surface of the OuT.

VI. EXPERIMENTAL RESULTS

For a regular measurement grid of equilateral triangles of
side length rd ¼ 0:743mm across the ROI with nm ¼ 403 verti-
ces/independent measurement positions arranged in 7 rows with
54 or 53 positions each and subsequent reconstruction using the
sparse matrix stacking approach, the resulting reconstruction of
arec is shown in Fig. 7. At each grid point, a single measurement
has been recorded after an illumination with a laser spot with
spot size dspot ¼ 0:6mm at Q̂ ¼ 15W. To eliminate the time
dimension, an evaluation time of teval ¼ 500ms has been taken
into account. This corresponds to a thermal diffusion length of
Ldiff � 1:5mm.

The reconstruction result for applying the sparse matrix stack-
ing algorithm is shown in Fig. 7. For this reconstruction, the
ADMM-parameters λ2,1 ¼ 1570, λ2 ¼ 100, ρ ¼ 16, and niter ¼ 400
have been used. As can be seen, all defects have been resolved as
independent defects and the measurement noise has been success-
fully suppressed. The reconstruction of the exact defect geometry is
still to be improved. For reference, in Fig. 6, the measured data for

FIG. 5. Experimental setup: the OuT (middle) is heated by a fiber coupled
diode laser with interchangeable projection objectives (right) and a maximum
optical output power of Q̂max ¼ 500W via a dichroitic mirror (middle). This
mirror is highly reflective for the laser wavelength and transparent for midwave
infrared radiation. The surface temperature is recorded with a midwave infrared
camera with a detector size of npix ¼ 1280� 1024 pixel at a spatial resolution
of Δx, Δy ¼ 52 μm per pixel and a frame rate of fcam ¼ 100 Hz (left). Scanning
is achieved by utilizing two translational stages that move the OuT within the
image plane of the laser focus objective.

FIG. 6. Reference measurement for homogeneous illumination of the whole
OuT surface with a laser pulse with Q̂ ¼ 500W and a pulse length of tpulse ¼
500ms evaluated at teval ¼ 500ms. For the generation of these data, the same
setup as shown in Fig. 5 has been used.
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illuminating the whole OuT front surface homogeneously using the
same setup as for the point-wise illumination with Q̂ ¼ 500W and
a pulse length of tpulse ¼ 500ms are presented.

The reconstruction result for reconstructing arec within the
spatial frequency domain is shown in Fig. 8. Here, the
ADMM-parameters λ2,1 ¼ 27, λ2 ¼ 500, ρ ¼ 16, and niter ¼ 400
have been used to achieve the shown reconstruction results. With
reconstruction within the spatial frequency domain, a speedup of
approximately 50 times has been found for the reconstruction
within the given ROI, while this method is also much more sensi-
tive to perturbation, making it harder to find a suitable set of
parameters for the reconstruction.

In contrast to the sparse matrix stacking reconstruction result,
this method also reconstructs the edges of the illuminated area as
defects as can be seen near the left and right borders of the ROI.
This can be explained by the local violation of the necessary condi-
tion for super resolution reconstruction given in Eq. (8). The
sparse matrix stacking inversion method has been experienced to
show much less dependence on the smoothness of the external
excitation pattern. Even though both numerical inversion methods
mathematically approximate the true solution to the same recon-
struction problem, both methods show considerably different

results. This can not only be explained due to performing the
inversion either in the flattened spatial domain (sparse matrix
stacking) or the spatial frequency domain (FFT-based method) but
also by the high non-linearity and filtering properties of the used
solver in form of the ADMM algorithm and the applied regulariz-
ing terms. How to exploit those differences to improve the recon-
struction quality is still part of an ongoing research.

In order to better assess the resolution gain of the proposed
photothermal SR reconstruction methods compared to well-
established conventional methods, a qualitative comparison of dif-
ferent methods can be found in Fig. 9. Here, the reconstruction
results of both proposed photothermal SR reconstruction methods
is shown next to raw data acquired after homogeneous illumination
(cf. Fig. 6) as-is and after different post-processing steps. The
homogeneous illumination data are recorded within the same setup
as shown in Fig. 5. The additional post-processing steps shown
contain a difference thermogram where from the measured raw
data Tdiff , the temperature evolution of a region of the same OuT
without defects is subtracted. As a second post-processing method,
the amplitude and phase data for a pulsed phase thermography
(PPT) of Tdiff for an evaluation frequency of fPPT ¼ 0:1Hz (found
to feature the highest contrast for this dataset) are shown.24

FIG. 7. Reconstruction result for arec at teval ¼ 500ms reconstructing using the sparse matrix stacking method. For this reconstruction, the ADMM-parameters
λ2,1 ¼ 1570, λ2 ¼ 100, ρ ¼ 16, and niter ¼ 400 have been used. The top figure shows arec with white boxes overlayed at the locations where the defective regions are.
The bottom figure shows a sectional view of the data for yROI ¼ 2:5 mm. The light green shaded areas mark the defective region. For reference, the normalized conven-
tionally acquired data at the same coordinates from Fig. 6 are plotted as well.
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Since quantitatively comparing the increase in resolution
capability comparing the sparse reconstruction results gained from
photothermal SR reconstruction and dense measurement data
acquired from conventional methods is not trivially possible, we
limit ourselves to a qualitative comparison only where our main
criterion comprises the separability of closely spaced defects by the
method. As can be seen in Fig. 9, in the difference thermogram, as
well as a PPT analysis of Tdiff , all defects are detected, but the
smallest gap between defects (dgap ¼ 0:5mm) cannot be clearly
identified with the available SNR of the measurement. In this direct
comparison, the advantage of the sparse nature of the reconstruc-
tion of the photothermal SR reconstruction results can be clearly
identified. Here, all defects can be clearly separated.

VII. CONCLUSION AND OUTLOOK

Within this work, an experimental approach for expanding
the capabilities of laser-based photothermal SR reconstruction to
the detection of two-dimensional defects has been successfully
introduced. Two numerical inversion methods for the reconstruc-
tion of the internal defect/inhomogeneity structure of an OuT have
been proposed and their reconstruction performance has been
tested experimentally. Both proposed numerical methods have

proven to make it possible to detect even closely positioned defects
individually and both methods have provided an approximation of
the defect shape. While the proposed sparse matrix stacking inver-
sion method led to qualitatively better shape reconstruction, it took
almost 50 times more time to compute on modern computer hard-
ware, making it less suited for the reconstruction of large ROIs.
The reconstruction in the frequency domain has proven to be more
sensitive to the choice of regularization parameters and to imper-
fections in the measurements but takes less time to compute and is
more memory efficient. Both methods are still equally affected by
the lack of a suitable method for finding the best suited set weights
for the regularizing terms programmatically in a feasible amount of
time. Solving this issue and the improvement of the reconstruction
quality of the defect shape is still part of an ongoing research.16

As the presented experimental approach can be recreated
using pre-existing standard equipment, a simple adaptation for
existing industrial test processes is possible. Its capability of achiev-
ing super resolution further allows for the detection of defects
beyond the spatial resolution limit of the conventional methods
presented. In addition, the sparse nature of the reconstruction
results highly contrasts defective regions and allows for easy auto-
mation of the test result evaluation process. However, the experi-
mental prerequisite to perform a large amount of sequential

FIG. 8. Reconstruction result for arec at teval ¼ 700ms reconstructing within the frequency domain. For this reconstruction, the ADMM-parameters λ2,1 ¼ 27, λ2 ¼ 500,
ρ ¼ 16, and niter ¼ 400 have been used. The top figure shows arec with white boxes overlayed at the locations where the defective regions are. The bottom figure shows
a sectional view of the data for yROI ¼ 1:92mm. The light green shaded areas mark the defective region. For reference, the normalized conventionally acquired data at
the same coordinates from Fig. 6 are plotted as well.
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independent measurements with single laser-spot excitation to
cover larger ROIs is still to be improved for this method. While for
testing scenarios demanding high-defect detection resolution at
larger depths, the increased testing effort can be justified, e.g., for
high-performance parts for aerospace applications or for medical

diagnostics, for high-volume/low-cost testing scenarios, the experi-
mental complexity still needs to be improved. Here, the projection
of two-dimensional pixel patterns using the latest laser-projector
technology shows promising results to significantly reduce the nec-
essary number of measurements.25

FIG. 9. Defect detection performance comparison of the proposed photothermal SR reconstruction methods with conventional methods. From top to bottom: unprocessed
measured data Tdiff from Fig. 6 for the chosen ROI; difference thermogram showing the difference of the measured data and the measurement data for a different defect-
free ROI; frequency amplitude data for a frequency of fPPT ¼ 0:1 Hz for Tdiff processed by PPT; frequency phase data for a frequency of fPPT ¼ 0:1 Hz for Tdiff processed
by PPT; arec as reconstructed by photothermal SR reconstruction with the proposed sparse matrix stacking method; arec as reconstructed by photothermal SR reconstruc-
tion in the frequency domain. The white boxes in each plot indicate the true defect positions.
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