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Abstract: As metabolomics increasingly finds its way from basic science into applied and regulatory
environments, analytical demands on nontargeted mass spectrometric detection methods continue to
rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced
robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive
metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique,
and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation
continues to overcome technical limitations that have hindered the adoption of ESI for applications
in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups
remains costly in terms of time and required chemicals, as large panels of metabolite standards are
needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot
experiment, consisting only of a few measurements of a test sample dilution series and comprehensive
statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential,
two instrumental ESI ion source setups were compared, reflecting a common scenario in practical
method development. Two types of feature evaluations were performed, (a) summary statistics solely
involving feature intensity values, and (b) analyses additionally including chemical interpretation.
Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We
reflect on the advantages and shortcomings of both strategies in the context of current harmonization
initiatives in the metabolomics field.

Keywords: liquid chromatography-high resolution mass spectrometry; nontargeted analysis; method
development; method harmonization; quality control; feature statistics; chemical classification;
electrospray ionization

1. Introduction

Metabolomics, a bioanalytical approach originally devised to study metabolic changes
in biological model organisms, is now widely used in more applied fields of clinical diag-
nostics and pharmaceutical research [1,2]. Active adoption of metabolomics methodologies
also takes place in areas such as toxicology, where they are expected to enhance regulatory
frameworks [3]. With more “official” use and integration into routine analysis, method
harmonization and standardization play more and more important roles [4,5], resulting in
growing analytical demands and expectations toward nontargeted methods. It is commonly
agreed that reproducibility and robustness in nontargeted analysis need to significantly
improve, e.g., to allow long-term comparability in clinical diagnostics. Similarly, chemical
comprehensiveness, in terms of sufficient analytical coverage of the chemical space, requires
major enhancements to methods and instrumental setups [6]. To tackle these and related
analytical challenges, suitable evaluation strategies are required to compare the benefits
and drawbacks of methods and instrumental setups efficiently and systematically. Due to
the complexity and high dimensionality of nontargeted data, however, such evaluation is
not straightforward, and commonly accepted QC procedures are missing.
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Bioanalysis in metabolomics makes use of two major technologies, nuclear magnetic
resonance (NMR) and hyphenated mass spectrometry (GC-MS, LC-MS). NMR provides
structure elucidation and quantitative capabilities for biomatrices in situ but requires
relatively large sample amounts. GC-MS combines efficient chromatographic separation
with sensitive detection but is limited to small volatile compounds or compounds made
volatile by derivatization. LC-MS, by contrast, can detect larger metabolites natively
due to the use of soft electrospray ionization (ESI), coupled directly to the LC effluent.
Polar to medium polar molecules usually ionize well under ESI [7], with analyte response
depending mainly on the chargeability and active surface area of the molecule and less so
on molecular weight, resulting in a broad metabolite spectrum that can be analyzed.

Commercial LC-MS instruments and ESI ion sources, in particular, are continually
refined to enhance operational robustness and sensitivity, addressing many of the above-
named needs in nontargeted analysis. Technical enhancements apply to sprayer configura-
tion and arrangement of ion optics (reviewed in [8]). Also, interfaces featuring redesigned
gas sheaths and higher operating temperatures [9,10] have proven beneficial for improving
the limits of detection for a range of compound classes (e.g., [11,12]). Potential drawbacks
of applying additional heat and pressure to the ionization process include thermal degrada-
tion of labile analytes and amplification of background ions, resulting in no improvement
of effective signal-to-noise ratios [13]. Apart from an earlier study [14], the impact of
using different ion interfaces or changing LC-HRMS setups in related ways on nontargeted
measurements has not been studied in detail. More importantly, evaluation strategies
supporting the validation of analytical setups for long-term comparability of nontargeted
results are lacking. This question, however, is expected to become more and more relevant
with increased routine use of nontargeted analysis.

The goal of the present study was to investigate if a defined nontargeted test experi-
ment can efficiently guide and support method development and evaluation of different
instrumental setups. A minimal experiment was devised consisting of a few measurements
of a test sample and extensive data analysis of the feature space, ensuring practicality
and transferability. Targeted testing, comprising a large commercial metabolite library,
was carried out for comparison, representing a common but time-consuming and costly
procedure. Both strategies were exemplarily employed for evaluating two instrumental
setups for their performance in nontargeted metabolomics: (1) LC-HRMS using a standard
ESI interface as reference (REF); and (2) LC-HRMS equipped with a high-temperature
“IonBooster” interface representing an alternative setup (ALT) with potentially improved
performance. Results showed that similar conclusions about instrumental performance
could be drawn from both strategies, suggesting that feature-based evaluation procedures
can contribute to much-needed accelerated method development in nontargeted analysis.

2. Results

Selecting an optimal analytical method or instrumental setup for a given problem
is a crucial step in analytical chemistry. Usually, the answer can be obtained empirically
without much effort by generating and evaluating results from the different analytical
options. In nontargeted analysis, however, evaluating such results in an unbiased manner
is challenging. We were initially confronted with this problem when testing the ALT vs.
the REF ion source setup for LC-HRMS-based urine metabolomics, aiming at enhanced
ionization and reduced sample consumption. Identical sample amounts produced strik-
ingly higher intensities in the ALT setup, and three-dimensional feature plots; “feature”
referring to peaks defined by unique mass-to-charge [m/z] ratio and retention time [RT]
pairs; looked significantly more populated (Figure 1A,B). Analyses were repeated using
a different chromatography mode (reversed-phase chromatography, RPC) to ensure that
observations were not singular effects of the hydrophilic liquid interaction chromatogra-
phy (HILIC) method used first. Signal intensities in RPC were also consistently higher
using the ALT setup (Figure S1), suggesting a clear sensitivity advantage independent of
chromatography. However, despite the large offset in overall sensitivity, closer analysis of
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features revealed a significant subset of mass spectral features (8.6%) to be unique to the
REF setup (Figure 1C). This indicated selectivity differences between both setups, which
raised the question if overall metabolic profiles were ‘equivalent’ and could be compared,
e.g., if setups were changed within long-term studies. This question prompted us to explore
what information about selectivity could be derived from the feature space when analyzed
in detail.
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Figure 1. Demonstration of the initial problem. Two instrumental ion source setups (reference, REF;
alternative, ALT) were tested for nontargeted analysis of an identical biosample. Results indicated
large differences in overall sensitivity and feature landscapes (A,B). Despite lower sensitivity, a
significant subset of features (8.6%) was exclusively detected using the REF setup (C).

2.1. Evaluation of Selectivity

Differences in selectivity between analytical methods result in changes in metabolite
intensities that, in nontargeted analysis, can be recognized from altered intensity distri-
butions of the feature space. In the present case, the initial problem in conducting a fair
statistical evaluation arose from the overall difference in sensitivity between the setups.
Comparing samples at high concentrations resulted in visible overloading effects (signal
saturation) in the more sensitive setup. Comparing samples at lower concentrations, by
contrast, did not use the full ionization capacity of the less sensitive setup. We, therefore,
investigated if a dilution series of the biosample could be used to avoid this problem. Eight
sequential one-in-four dilutions of the original sample were prepared (1:1, 1:4, 1:16, . . . ,
1:16,384) and submitted to LC-HRMS analysis. Feature intensities were then analyzed for
‘robust’ fold-changes considering all concentration levels, as outlined in Figure 2A. Results
showed that feature intensities in the ALT setup were, on average, 4.3-fold higher (log2-fold
change = 2.11) than in the REF setup when HILIC was used and 2.3-fold higher when RPC
was used (Figure 2B,C). A total of 76–83% of the features had a higher response in the ALT
setup, while for 17–24% of the features, the REF setup was more sensitive. As the feature
space of nontargeted analyses can be compromised by both analytical and data analysis
issues (see Section 3), we conducted a parallel targeted analysis of a metabolite standards
library. Out of 604 metabolites, 303 and 322 exhibited acceptable peak shape using the
HILIC and RPC methods, respectively. Determining peak intensities for the molecular ions
([M+H]+, [M−-H]−) of these compounds, we obtained positive fold-changes for the ALT
setup similar to the nontargeted evaluation (Figure S2). While the absolute magnitude
of changes was somewhat lower than in the nontargeted data, the same trend of higher
average intensity gains using the HILIC method (2.4-fold) compared to using the RPC
method (1.8-fold) was found for the ALT setup. This indicated, regarding instrumental
setup, that the ALT setup performed better, that benefits were particularly high using the
HILIC solvent system, and regarding evaluation based on nontargeted feature data, that
conclusions drawn from this approach were well in line with targeted data.
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Figure 2. Evaluation of selectivity based on nontargeted data. Following analysis of a biosample by
LC-HRMS at different concentrations levels, feature intensity values were extracted and expressed as
log2-fold changes (logFC) between the two instrumental setups (ALT, REF), using the calculations
outlined in (A): repeated measurements intensity values were median-summarized, expressed as
log2-fold changes and again median-summarized. These ‘robust’ log-fold changes ALT vs. REF
were visualized for the HILIC (B) and RPC (C) methods, respectively. Percentages of features with
enhanced intensity in one of the setups are indicated beside the histograms. Abbreviations: c1,n,
concentration level; ij,m, intensity value for concentration level (j) and technical replicate (m); rj,
log2(ij,ALT/ij,REF) = logFC; R, robust logFC.

2.2. Evaluation of In-Source Fragmentation

While the proposed calculations effectively reduce analytical variation, we realized
that other factors such as in-source fragmentation could potentially vary between setups.
Such issues are not considered in purely feature intensity-based statistics but can potentially
distort results. For example, if a higher proportion of molecular ion species is affected by
in-source fragmentation in one of the setups, more fragments appear as additional features
in the feature table. This results in an overestimation of analyte number and thus method
performance. We examined if such issues can also be detected based on nontargeted data,
a step requiring features to be deconvoluted and combined into ‘compounds’. Various
approaches exist for this purpose (e.g., [15]), mostly relying on the chromatographic corre-
lation of related ions. Here, we chose a modified approach. We applied findMAIN [16] to
identify m/z relationships of typical ESI ionization products ([M+H]+, [M+Na]+, [M+K]+

etc.) in the feature data. Components robustly supported by multiple adducts were then
submitted to chromatographic deconvolution, adding correlated in-source fragments to
the compound spectrum (see Section 4). Based on the compound spectra, sometimes also
termed ‘reconstructed’ or ‘MS1′ spectra, the relative intensity of fragments of the total
spectral intensity was determined as demonstrated in Figure 3A. This value allows for
estimating the degree of in-source fragmentation. Evaluation for all spectra acquired on the
REF setup showed that relative fragment intensity varied considerably between spectra,
ranging between approx. 5 and 90% in most of the spectra (Figure 3B). This was likely due
to the different nature and thermal stability of analytes. The average relative intensity was
40% and 55% for the HILIC and RPC methods, respectively. For the ALT setup, ranges,
as well as averages, were similar with 46% and 49%, respectively, suggesting in-source
fragmentation to be similar across setups. For comparison and to validate the approach,
we also analyzed MS2 spectra acquired in the data-independent “broad-band CID” mode.
Broad-band CID induces MS/MS-like fragmentation but does include precursor isolation
so that spectra need to be deconvoluted exactly as MS1 spectra. As expected, such spectra
exhibited much higher relative fragment intensities, averaging at 90% and 98% depend-
ing on chromatography (Figure 3C). We also examined spectra of metabolite standards
for comparison to address uncertainties associated with nontargeted data analysis. Tar-
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geted evaluation of spectra, based on intensity ratio estimation as before (Figure 3A) but
here including only confirmed adducts and fragments, revealed similar average values
as in the nontargeted approach (30–42%; Figure 3D). The variation in relative fragment
intensity across spectra was slightly smaller (12–72%). The absence of instrumental setup-
specific differences in in-source fragmentation was clearly confirmed for the RPC method
(40% vs. 42%), while for the HILIC method, the ALT setup differed somewhat from the REF
setup (42% vs. 30%). This was possibly due to the different number of spectra available for
statistical analysis for this combination of setup and chromatography (285 vs. 324). Still,
nontargeted data seemed to provide good approximations of in-source fragmentation.
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Figure 3. Evaluation of in-source fragmentation based on nontargeted data. (A) Exemplary MS1

spectrum (tryptophan, M = 204.0899) demonstrating the evaluation approach. In-source fragments
were defined relative to the molecular ion that was inferred from adduct relationships. Summed
fragment intensity was expressed relative to total intensity of annotated adducts (see arrows).
(B) Summary of relative fragment intensity as a measure of in-source fragmentation across all
spectra. Instrumental setup (REF, ALT) and chromatographic methods (HILIC, RPC) were com-
pared as indicated. The number of analyzed spectra (from left to right) was n = 582/649/576/627.
(C) Verification of the estimation approach by data-independent MS2 spectra, known to exhibit a
higher degree of fragmentation due to the use of collision-induced dissociation (CID). Summary over
both chromatography methods, n = 1158/1276/1121/1245. (D) Complementary targeted evaluation.
LC-HRMS MS1 spectra of known metabolite standards were analyzed. Only fragments supported by
chemically plausible sum formulas were considered. n = 285/324/324/340.

2.3. Evaluation of Ion Suppression

We next investigated if nontargeted data analysis also allowed conclusions on ion
suppression, a frequent problem in ESI analysis of complex samples, and a problem
potentially affecting instrumental setups to different extents [17]. Ion suppression is caused
by different analytes or other components of the analytical matrix competing for ionization
and can strongly reduce the linear dynamic range (LDR) attainably. This, in turn, hampers
the identification of significant differences between biological samples. In nontargeted
analysis, which lacks an absolute concentration scale, the true LDR in terms of analyte
concentration range for which a linear signal response is observed is unknown and can
at best be estimated on a relative scale. To attempt such an estimation, we analyzed the
linear portion of the feature intensities obtained over the different dilution steps, technically
by finding consecutive stretches of defined response ratios and fitting linear regressions
through the longest stretch for each feature (see Section 4 for details). Another regression
was fit to intensity values “above” (if any) and values within the first half of the linear
stretch, assuming the presence of any ion suppression effects to cause a flattening in the
response curve (Figure 4A). Applying this analysis to all 24,413 features of the HILIC
subset resulted in valid LDR estimates (long enough stretches) in 11.3% and 27.7% of the
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cases for the REF and ALT setups, respectively. Summarizing slope changes by retention
time, data suggested that the ALT setup was more affected by ion suppression than the
REF setup in the feature-dense retention time range between 0 and 200 s (Figure 4B). Less
clear differences were found for the later elution range (200–300 s). For validation, we
compared these findings to a conventional assay of matrix effects using a post-column
infusion of chemical standard compounds over a T piece and monitoring signal changes
during a chromatography run. This assay similarly indicated higher signal suppression
for the ALT setup in the early RT range (Figure 4C). Interestingly, most major suppression
events, visible as downward spikes at approx. 25, 65, 95, 125, and 145 s (Figure 4C) were
mirrored by similar events in the estimated data. Thus, estimation results appeared to
represent ion suppression accurately. In addition, equivalent results for the RPC data were
in line with expectations, showing the strongest suppression estimate near the column
break-through as is typical for RPC and confirming more pronounced suppression in the
ALT setup (Figure S4).
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(C) Comparative assay of ion suppression using post-column infusion of chemical standards via a T
piece. Summed intensities of 17 standard compounds expressed as log10-fold change vs. blank and
averaged over 5 s RT windows.

2.4. Evaluation of Chemical Comprehensiveness

We continued by exploring how potential differences in selectivity between instru-
mental setups could be analyzed in more detail and in a chemically more meaningful
way. Feunang et al. (2016) [18] introduced ClassyFire, an algorithm generating chemical
taxonomies for arbitrary chemical structures. The resulting chemical taxonomies consist
of chemical classes at different hierarchical levels such as “kingdom”, “superclass”, and
“subclass”. We hypothesized that categorizing all identifiable components within the
feature space into such chemical class levels might reveal potential chemical bias in one
setup compared to the other, information that would be immensely helpful during method
development. Classifying features obviously requires prior feature identification, which is
one of the biggest challenges in metabolomics. However, we reasoned that approximate
identification might be sufficient for our purpose, as compounds with similar mass spectra
would likely belong to the same chemical class. We tested the feasibility of this idea using
the targeted dataset. Identifying and classifying spectra of 578 metabolites resulted in
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83% correct classifications at the superclass level (e.g., “Organic acids and derivatives”),
78% correct classifications at the class level (e.g., “Carboxylic acids and derivatives”), and
71% at the subclass level (e.g., “Amino acids, peptides, and analogs”) (Figure S4). This
relatively high percentage of correct assignments, especially at the higher ontological levels,
encouraged us to similarly evaluate the nontargeted dataset. Here, the procedure consisted
of identifying deconvoluted spectra (see Figure 3) with MS-FINDER [19] and applying
ClassyFire to the results (Figure 5A). Between 333 and 541 spectra, depending on instru-
mental setup and LC method, were successfully processed. Feature intensities summed
by chemical class indicated that using the REF setup, organic acids were the dominant
compound class, followed by organoheterocyclic compounds, benzenoids, and lipids ac-
counting for 21.7%, 12.1%, and 11.2% of total intensity, respectively. In line with expected
chromatographic selectivity, polar organic acids were more abundant in HILIC, while lipids
made up a higher percentage in RPC. Summed intensities of these major compound classes
did not change substantially in the ALT setup, except for organic nitrogen compounds
(10.3% vs. 3.7%) (Figure 5B). A more detailed investigation of the raw data revealed that
mostly amines and quaternary ammonium salts contributed to this increase (Figure S5),
suggesting that differences in chemical comprehensiveness, albeit small, can be detected
based on nontargeted data.
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Figure 5. Evaluation of chemical comprehensiveness based on nontargeted data. (A) Workflow
used summarize feature intensities by chemical class. (B) Comparison of relative abundances of
chemical classes as detected with the two instrumental setups (REF, ALT). Symbols represent summed
(log-) intensities of all features belonging to a class. Colors indicate median polarity (water-octanol
partition coefficient; logP) of chemical classes, while symbol shape indicates higher total intensity
in HILIC (4) or RPC (5), respectively. Abbreviations correspond to ClassyFire “superclasses” (in
order of decreasing intensity): Oa, organic acids and derivatives; Oh, organoheterocyclic compounds;
Oo, organic oxygen compounds; Ben, benzenoids; Lip, lipids and lipid-like molecules; On, organic
nitrogen compounds; Nu, nucleosides, nucleotides, and analogs; Alk, alkaloids and derivatives; Phe,
phenylpropanoids and polyketides; Os, organosulfur compounds. Detailed results in Table S1.

3. Discussion

In metabolomics, sustained efforts are made to improve reproducibility and chemical
coverage of metabolic screening methods. Strategies for ‘global metabolomics’ comprise
improvements at all steps of the analytical workflow, including sample preparation, chro-
matography, ionization, MS and MS/MS technique, as well as data post-processing [20,21].
Evaluating alternative analytical methods or data analysis procedures against each other
requires suitable test systems that identify all relevant benefits and drawbacks of each
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method. In the case of targeted analysis of a few metabolites, test approaches are relatively
straightforward: a selection of target analytes is analyzed under identical analytical condi-
tions as the biological sample, often employing isotope dilution techniques to eliminate
matrix effects. For nontargeted methods, evaluation approaches are more complicated. One
strategy is to add a set of internal standards representing major metabolite classes under in-
vestigation (e.g., amino acids, nucleotides, steroids) and to determine analytical recoveries
for this standard set. This approach was used, for instance, to compare metabolite extrac-
tion efficiencies for different protocols applied to a given biological matrix (e.g., [22]). Some
approaches do not add standards but compare the recovery of all identified endogenous
metabolites, e.g., as obtained by GC-MS analysis [23]. Similarly, standardized reference
materials (SRMs) such as NIST SRM for human plasma (SRM 1950) [24] were used to
compare the detection of endogenous metabolites across laboratories [25]. SRM 1950 offers
the advantage that concentrations of many endogenous metabolites are known; however,
its use is relatively costly, and comparable SRMs for other matrices do not exist.

Restricting method evaluation to previously identified, biologically plausible com-
pounds or to standards added to analysis avoids the problems connected to raw feature
analysis (redundancy, technical artifacts) but also results in a failure to capture effects in
unannotated biological signals. Thus, a significant percentage of m/z information remains
unconsidered. The analyses performed here aimed at maximum unbiasedness and thus
did not exclude any features except sporadic ones by working on robust median values of
multiple concentration levels. That way, a maximum of acquired data is analyzed, resulting
in a broader and more robust database for evaluation. While some method developers may
favor a more targeted optimization of compound classes that are particularly relevant to
the research questions, e.g., TCA cycle intermediates in cancer research, the majority of
biomarker and discovery workflow developments should benefit from a ‘global’ strategy
as presented here.

To test the strategy, we aimed to compare ESI ion source performance, a special case
which, to the best of our knowledge, only a few authors have attempted so far. Pandher et al.
(2012) [14] compared heated vs. non-heated ESI based on all human plasma features
with coefficients of variation (CV) below 25% across technical replicates of biological
origin. That approach aimed at excluding sporadic peaks, often resulting from chemical
or electronic noise, to obtain more robust estimates of changes in feature numbers. Here,
we expanded this approach in several ways. First, we included multiple concentration
levels of the sample to not only improve robustness in feature number estimation but
also to account for the large instrumental offset in sensitivity observed. Second, we tested
if increased in-source fragmentation and ion suppression differed between the setups,
two factors with a potentially strong effect on feature number and intensity. As a third
difference, we categorized features into chemical classes, aiming at characterizing potential
selectivity differences in a chemically more meaningful way. Our findings regarding ion
suppression (Figure 4) and chemical bias (Figure 5) suggest that these questions should
be considered in method comparisons involving ionization aspects. Other authors have
addressed ESI performance in the context of the design of experiments aimed at systematic
optimization of ion source settings [26,27] or in the context of developing strategies aimed
at normalizing ionization efficiency [28]. These studies, however, were different in intention
and methodology from the present work and will not be discussed further.

Nontargeted approaches can only be as accurate as the weakest link in the data analysis
toolchain. For example, issues in peak detection, which still plague current preprocessing
software [29], may lead to false-positive peaks and misinterpretation of the presence or
absence of compounds. Chromatographic deconvolution algorithms often misinterpret in-
source fragments as intact molecules, resulting in wrong annotations [30]. As a consequence
of these and related issues, compound identification in current nontargeted workflows must
always be considered putative [31]. These limitations directly affect the applicability of
nontargeted approaches to method optimization, including the workflow evaluated here as
an alternative to targeted method evaluation strategies. We were aware of the limitations in
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peak processing and compound identification and tried to attenuate the effect of analytical
artifacts wherever possible, for example, by limiting the analysis to features reproducible in
replicate measurements and by calculating intensity fold-changes robustly using multiple
concentration levels. Still, the partially diverging findings on in-source fragmentation
(increased in targeted, no change in nontargeted) probably reflect limitations in peak
picking and chromatographic deconvolution. While in the targeted assay, the different
ionization products and fragments of each target compound were precisely quantifiable,
analysis in the nontargeted case had to rely on deconvoluted spectra. These mass spectra
are obtained from MS1 ion traces, and in crowded chromatographic regions, deconvolution
is known to become error prone. Further work is required to improve algorithms and
to determine optimal noise and correlation thresholds, ideally in an automated manner.
Recent progress in machine learning approaches, e.g., allowing “auto-deconvolution” of
chromatography data [32], has the potential to make nontargeted data analysis considerably
more robust and user-friendly, facilitating more widespread adoption.

Detecting chemical bias based on nontargeted analysis proved particularly challenging
as it involves many preprocessing steps. At the same time, it is probably the analysis that
provides the most valuable information to method developers. We showed previously that
correct identification on a sum formula level can be obtained for approx. 75% of analytes
in multiplex metabolite analysis resembling metabolite screening conditions [16]. Here,
we obtained a similar rate of correct chemical classification (83% at the superclass level)
for a large set of metabolite standards. The misclassification rate of at least 17% is not
negligible; however, it is unlikely that it affects the evaluation of chemical bias/selectivity,
as misclassifications are equally distributed over all features independent of the intensity of
distribution. Nonetheless, alternative chemical classification strategies that do not depend
on prior compound identification are potentially better suited for the purpose and will be
explored in the future. For example, structural inference from MS2 fragments as performed
by some annotation approaches [33,34] could prove advantageous.

Taken together, we tested in a small pilot experiment a nontargeted LC-HRMS method
combined with feature-based statistics as an alternative to costly targeted evaluation.
The approach successfully identified one of the tested instrumental setups as superior
for the given analytical problem. Conclusions on selectivity, in-source fragmentation,
ion suppression, and chemical bias were largely in line with complementary targeted
evaluation, demonstrating that important analytical performance characteristics can be
derived from the nontargeted feature space alone. We conclude that metrics based on
the nontargeted feature space hold great potential and should be used more routinely,
not only for method development but also for quality assurance and inter-laboratory
comparisons. In regulatory environments, defined nontargeted test experiments could
additionally involve the use of SRMs and ideally also reference datasets to boost robustness
in nontargeted analysis. Efforts in the nontargeted community need to step up to promote
the use of such materials and datasets and to make SRMs widely available for a broad
range of biological matrices.

4. Materials and Methods
4.1. Preparation of Test Sample and Chemical Standards

As a biological test sample, the urine of a healthy volunteer was split into aliquots
of 200 µL, transferred to microfuge tubes, centrifuged for 5 min at 21,000× g, and dried
by vacuum rotation. Immediately before LC-MS analysis, samples were reconstituted in
200 µL 75:25 (v/v) acetonitrile/methanol for HILIC analysis or 20% methanol for RPC
chromatography. Samples were spiked with 4 µL pharmaceutical mix 17 (Neochema,
Bodenheim, Germany; composition see Table S2) for quality control (QC) purposes. After
another centrifugation step, samples were serially diluted in 8 steps in a ratio of 1:4 with the
respective sample diluent. Aliquots of each dilution were transferred to screw-cap HPLC
glass vials and placed into the autosampler. Pure sample diluent served as blank.
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The commercially available MSMLS metabolite library containing 604 unique com-
pounds (Sigma, Darmstadt, Germany) was analyzed as targeted control. Metabolite stan-
dards (5 µg) were reconstituted by adding 100 µL 5% methanol or 100 µL 3:3:1 (v/v/v)
chloroform/methanol/water, respectively, to each well of 96-well plates according to the
manufacturer’s instructions. A total of 15 to 24 metabolites were combined into 28 dif-
ferent master mixes, aliquoted, and dried down in an Alpha 2–4 vacuum rotator (Christ,
Osterode, Germany). The concentration of each metabolite was 6.6 µg mL−1. For LC-MS
analysis, two aliquots of each master mix were reconstituted in HILIC or RPC sample
diluent, respectively, and injected into the LC-MS system.

4.2. LC-HRMS Analysis

A high-resolution quadrupole time-of-flight (QqTOF) mass spectrometer (Impact II;
Bruker Daltonik GmbH, Bremen, Germany) was coupled to an ultra-performance liquid
chromatography (UPLC) system (ACQUITY H-Class; Waters, Eschborn, Germany). As ion
sources, the standard Apollo-II or the high-temperature “IonBooster” source were used,
representing the REF and ALT setup, respectively.

Two chromatography methods were used. A hydrophilic liquid interaction chromatogra-
phy (HILIC) method was established using a buffered solvent system (A: 50% acetonitrile +
10 mM NH4COOH, pH 3.0 [HCOOH]; B: 75% acetonitrile + 10 mM NH4COOH, pH 3.0
[HCOOH]) and a 75 mm × 2.1 mm × 1.7 µm BEH Amide column (Waters, Eschborn,
Germany). The gradient was programmed as follows: 0 min 1% A, 0.3 min 1%, 5.3 min
65%, 5.31 min 99%, 5.7 min 99%, 5.71 min 1%, 7.5 min 1%. A flow rate of 0.8 mL min−1 was
used, 0.5 mL min−1 of which were discarded post-column using a T piece to remain within
the optimal working range of the standard ion source. The second method employed the
reversed-phase (RPC) mode, using a 75 mm × 2.1 mm × 1.8 µm HSS-T3 column (Waters
GmbH, Eschborn, Germany) and H2O/acetonitrile each with 0.1% formic acid as mobile
phases. Gradient conditions were: 0 min 99% A, 0.3 min 99%, 5.5 min 50%, 5.6 min 1%,
6.5 min 1%, 6.6 min 99%, 7.5 min 99%. Injection volume was 5 µL for the biological sample,
0.2 µL and 1 µL for metabolite standards in positive mode, and 1 µL and 5 µL for metabolite
standards in negative mode.

QqTOF analyses were carried out using a scan rate of 8 s−1, a scan range of 30–1000 m/z,
a funnel 1 RF of 200 Vpp, a funnel 2 RF of 200 Vpp, a hexapole RF of 60 Vpp, an ion energy
of 5 eV, a collison energy of 500–800 Vpp, a transfer time of 35–75 µs and a pre-pulse
storage of 2 µs. Broad-band collision-induced dissociation (bbCID) mode used MSE-like
alternating low (8 eV) and high (40–100 eV) collision energies. Ion source temperatures and
gas flows were chosen according to the manufacturer’s recommendations for intermediate
LC flow rates (0.3 mL min−1). For ESI(+) mode, these were as follows (IonBooster settings
in brackets): capillary voltage 4500 V (1000 V), endplate offset −500 V (−400 V), nebulizer
pressure 2.5 bar (4.1 bar), dry heater 200 ◦C (200 ◦C), dry gas [N2] 8 L min−1. For ESI(-) mode,
settings were identical except for capillary voltage (ESI: 3500 V, IB: 1000 V). Settings only
applicable to IonBooster were charging voltage (300 V) and vaporizer temperature (350 ◦C).

Mass calibration was performed against an ion series produced by sodium formate,
spiked into the LC effluent at the end of each chromatographic run.

4.3. Matrix Effect Assay

An intermediate dilution of the biological sample (level 3, 1:16) without addition
of internal standards was analyzed using the above HILIC method. Pharmaceutical
mix 17, diluted 1:200 in acetonitrile/methanol 3:1, was infused post-column using a sy-
ringe pump and T piece. The infusion flow rate was 60 µL min−1, while the LC flow rate
was 0.3 mL min−1 as described. Changes in signal intensities were monitored based on
extracted base peak chromatograms (BPC) of the 17 target masses ([M+H]+ ± 1 mDa). As a
blank reference, pure mobile phase A was used.
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4.4. Feature Analysis
4.4.1. Peak Detection

Raw Bruker (.d) files were calibrated in the vendor software (DataAnalysis) and
exported to mzML files using msconvert (https://proteowizard.sourceforge.io/tools.shtml)
accessed on 22 June 2021. Peak detection and alignment over samples were performed in
R [35] using the xcms package [36]. Peak detection parameters in xcms were set as follows:
method centWave, ppm 15, peakwidth (4, 12), prefilter (3, 300), noise 100.

4.4.2. Peak Alignment

Features were aligned using xcms (method linear, bw 2). Alignments were verified by
overlaid BPCs of QC compounds. For all subsequent evaluations (Sections 2.1–2.4), features
were required to be present in all four replicate measurements of at least one concentration
level of one instrumental setup (minfrag 1 with sample groups defined accordingly).

4.4.3. Chromatographic Deconvolution

Ions of the same compound, including molecular peaks, isotopes, adducts, fragments,
etc., were grouped into pseudospectra using an iterative procedure. First, peaks with similar
retention times were combined into time groups using the hierarchical clustering function
in R. In each time group, the combination of adducts explaining the greatest proportion
of intensity was identified with findMAIN [16], and all other peaks chromatographically
correlated to these adducts were assigned to the spectrum. The peaks were removed from
the time group, and the procedure was repeated for the remaining peaks until no further
combination of at least three adducts was found.

4.4.4. Identification and Classification

Deconvoluted spectra (Section 4.4.3) were batched-processed in MS-FINDER [19] as
described [16]. MS-FINDER results were read back into R, and SMILES codes of identified
compounds were submitted to ClassyFire [18] using the provided Ruby API. Invalid results
occasionally returned by ClassyFire (approx. 5% of the queries) were discarded. Class fre-
quencies and associated signal intensities were summarized using standard R functionality.

4.4.5. Linear Regression Analysis

An R function was implemented to analyze ion suppression effects based on feature
intensities. Intensity values of a feature were arranged in order of increasing sample
concentration and log2-transformed. These values were analyzed for consecutive stretches
exhibiting defined positive log2-fold changes (here: 1.5–8). If one such stretch reached or
exceeded a defined minimum length (here: 3), 2 linear regression models were fit to the
intensity values using standard R functionality (function ‘lm’), the first one to the longest
identified stretch (s1) and a second one to the stretch spanning the first intensity value
(highest concentration) to the center intensity value of s1. Slopes were extracted from both
models (a1, a2), and their difference (∆a) was calculated and returned by the function. In
case no stretch reached or exceeded the minimum length, a “missing value” was returned,
and the feature was not considered in the overall analysis. After applying the function
to all features, ∆a values were averaged over 5 s retention time windows and visualized
as shown.

4.4.6. Further Analyses

Venn diagrams were produced using the VennDiagram R package.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050426/s1, Figure S1: Comparison of total intensity
signals; Figure S2: Evaluation of selectivity based on targeted data; Figure S3: Evaluation of ion sup-
pression based on nontargeted data for the complementary reversed-phase (RPC) subset; Figure S4:
Test of chemical classification based on targeted data; Figure S5: Exemplary changes in selectivity

https://proteowizard.sourceforge.io/tools.shtml
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as detected by chemical classification of nontargeted data. Table S1: Chemical classification of the
nontargeted dataset. Table S2: Composition of Pharmaceutical Mix 17. Zip file containing raw data.
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