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Abstract: The Directed Energy Deposition process is used in a wide range of applications including
the repair, coating or modification of existing structures and the additive manufacturing of individual
parts. As the process is frequently applied in the aerospace industry, the requirements for quality
assurance are extremely high. Therefore, more and more sensor systems are being implemented
for process monitoring. To evaluate the generated data, suitable methods must be developed. A
solution, in this context, was the application of artificial neural networks (ANNs). This article
demonstrates how measurement data can be used as input data for ANNs. The measurement data
were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and
a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement
data series was presented. The developed method was then applied to generate a data set for the
quality prediction of various geometries, including weld beads, coatings and cubes. The results
were compared to ANNs trained with process parameters such as laser power, scan speed and
powder mass flow. It was shown that the use of measurement data provides additional value. Neural
networks trained with measurement data achieve significantly higher prediction accuracy, especially
for more complex geometries.

Keywords: DED; artificial neural network; data preparation; quality assurance; process monitoring

1. Introduction

In recent years, additive manufacturing has increased in relevance due to function-
and weight-optimized designs, and the individualization of products in combination with
shorter product life cycles [1]. For these reasons, additive manufacturing processes such as
Directed Energy Deposition (DED) are becoming more and more important in industrial
applications [2]. With DED, metal geometries can be rapidly built up by locally welding a
powder or wire material onto substrates or existing components [3].

Various factors influence the welding result in DED: laser power, scan speed, spot
diameter and the feed rate of the filler material are the main factors to consider. In addition,
the working distance to the substrate, the amount of shielding and carrier gas, the cooling
times and the preheating phases can also affect the quality of the produced component [4].
Additive manufacturing processes are primarily used in the aerospace industry, as they
are still expensive production processes [5]. Quality standards are consequently high.
To increase economic efficiency, expensive post-process quality checks must be reduced.
Data-driven quality assurance is a possible approach for this. The aim is to ensure compre-
hensive documentation of the process. In this context, each production step is evaluated by
algorithms that analyze sensor data to provide evidence of the product’s quality [6].

Artificial neural networks (ANN) represent a tool for digital quality assurance in
the DED process. They map complex processes in the form of a black box and learn to
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predict target values based on defined input data [7]. The structure of neural networks
consists of different layers: the input layer, the hidden layer or layers, and the output layer.
Each layer consists of neurons that are connected by weights. The ANN can be designed
associatively (the input data are related to the output data) or abstractly (predictions about
unlearned samples) [8].

Existing studies for the application of ANNs in the DED process focus either on the
prediction of optimal welding parameters [9,10], process monitoring and the prediction of
measurement data [11,12], or the correlation of quality characteristics. There is currently
high research potential, particularly regarding the correlation of component properties,
as previous investigations only consider tracks and do not provide results on coatings
or additive components. Moreover, process signals are not yet widely used to correlate
quality characteristics using ANNs. S. Saqib et al. [13] show, in their work, that ANNs can
predict the weld geometry based on laser power, feed rate, powder mass flow and focus
position with an accuracy of 96.3%. Mondal et al. [14] achieved an accuracy of nearly 96%
for the prediction of track width and burn-in depth with the use of an ANN. The track
height could only be predicted with an accuracy of 72% [15]. Another approach for using
ANNs in the DED process is the prediction of optimal welding parameters. Guo et al. [16]
demonstrated how the weld bead geometry and hardness can be used as input to predict
parameter combinations of laser power, velocity and powder mass flow. The trained neural
network achieved an accuracy of around 90%.

The accuracy of ANNs always depends on the given input data that are used for
the training and test runs. In particular, extrapolations of target variables outside the
considered data range are almost impossible with the current models [17]. On the one
hand, this is caused by the limited number of data points used and, on the other hand, it
is caused by the static input parameters in the form of welding parameters. Studies show
that ANNs can process all kinds of information as input data. Therefore, in addition to
welding parameters, prepared process signals can be used to increase the performance and
the robustness of the algorithms. This approach is already being practiced in other welding
processes [18] and should now be transferred to the DED process. One main task is the
preparation of the data and the associated selection of relevant features [19].

In the DED process, a variety of sensors can be used for process monitoring. Most
of them are optical systems that detect emissions in a specific wavelength range. They
are comparatively easy to handle and are inexpensive [20]. Essential information for the
evaluation and control of a build-up process is often obtained from the temperature and its
distribution, as well as the melt pool geometry.

Generated measurement data consist of dynamic curves. To train an ANN, static
features must be extracted from those curves. This procedure is known as feature extraction
and can be realized in different ways [21]. In addition to manually selecting common and
simple mathematically and physically explainable features, automated feature extraction
carried out, for example, by using the python package tsfresh, has become increasingly
popular in recent years [22].

Until now, there have been few studies in the literature on the consideration of mea-
surement data by ANNs for quality assurance in the DED process. Ren et al. [23] show, in
their work on the aluminum alloy Al7075, how promising this approach is. They use an
Artificial Intelligence (AI) technique based on the process data from emission spectroscopy
to predict the component quality. In this context, the importance of data preparation and
appropriate feature extraction is demonstrated. However, it is also shown that there is no
standardized procedure.

This study investigates the influence of measurement data on the accuracy of ANNs
in the DED process. In addition to welding parameters, various measurement data from
different sensors are used as a data basis. A combination of different sensors offers the
possibility to create a large information base for different quality characteristics. It is
necessary to identify significant features from dynamic measurement series to make them
usable in the ANN application. The preparation of data, especially measurement data, is



Appl. Sci. 2022, 12, 3955 3 of 13

an important and critical step in data analysis for ANNs, and has a significant impact on
ANN accuracy. In the context of this work, focus is placed on feature analysis, as methods
for the practical application case have not been sufficiently represented in the state of the
art so far. Furthermore, based on the evaluated features, ANNs are trained and validated
for three different geometries. The results are compared with an ANN based on welding
parameters alone. Finally, the added value of measurement data in ANNs for the DED
process is evaluated.

2. Materials and Methods
2.1. Experimental Procedure
2.1.1. Process Setup

The experimental tests were performed on a TRUMPF TruLaserCell 7020 with a 2 kW
Yb: YAG disk laser and a wavelength of 1030 nm. The processing head was equipped with
a coaxial ring jet nozzle that had an ideal working distance to the substrate of 9 mm. The
nickel alloy Inconel 718 was used as substrate material and a filler material. It is a widely
used material in gas turbines and turbochargers, as well as in additive manufacturing
applications [5]. The substrate plate had a dimension of 300 × 300 × 10 mm3. Sets of
50 weld beads, 50 coatings and 50 cubes were built. The parameter combinations were
randomly selected as recommended in [10]. The process window is shown in Table 1. Based
on the results of the weld beads, it was ensured that the process window for coatings and
cubes guaranteed at least sufficient material bonding with the substrate.

Table 1. Process window.

Lower Limit Upper Limit

Laser power (P) 200 W 1000 W
Scan speed (v) 200 mm/min 1000 mm/min

Powder feed rate (m) 3.5 g/min 21 g/min
Working distance (w) 7 mm 11 mm

2.1.2. Sensors

Measurement data were generated by a pyrometer, a CCD camera, an emission spec-
trometer and a laser scanner. The measurement setup is shown in Figure 1.
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Pyrometers allow conclusions to be drawn about the temperature of an object based
on the measurement of infrared radiation. The material-specific emissivity must be con-
sidered [20]. The use of this sensor system in DED is known from a variety of publica-
tions [24,25]. In this work, the quotient pyrometer Sensortherm Metis H311 was used
in a coaxial configuration. A material emissivity of 1.02 was determined for the alloy
Inconel 718.

A CCD sensor (CCD = Charge-Coupled Device) generates an electrical signal propor-
tional to the amount of incoming light and converts it into digital video signals. In the
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DED process, this enables an observation of the melt pool [4]. In the context of this work,
the monochrome CCD camera module CF 8/5 MX was mounted on the focusing optics
of the laser system. The recorded images were processed by a self-developed computer
program. In the first step, the contour of the melt pool was extracted. Based on this,
geometric parameters could be measured. In this work, information about the diameter
and its change over the process time were used.

Welding processes such as laser beam welding emit process light in the visible, infrared
and ultraviolet spectra. Specific changes in this process light can indicate welding defects.
We used a process observer from Plasmo GmbH, which enables the detection of these
changes [26].

Methods of laser position detection are based on the principle of laser triangulation.
They are usually applied for weld tracking, distance measurement and the detection of
simple contours [27]. In this work, the scanControl 2500 laser scanner from Micro Epsilon
was used after the build-up process to measure geometric dimensions.

2.1.3. Data Preparation

Data preparation in the field of AI is carried out to create a data set suitable to train
artificial neural networks, for instance. In this work, in addition to the process parameters,
measurement data were made available as inputs. The Python package “tsfresh” was
applied to automatically extract several hundreds of features from the measurement data.
They had to be analyzed, and the number of features had to be considerably reduced to
make sure that only relevant information was given into the network. Figure 2 represents
the procedure applied in the context of this work.
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As can be seen in Figure 2, univariate analysis and correlation matrices were used as
tools to select the ideal features from those originally extracted with tsfresh. The aim was
to significantly limit the number of input neurons in each case.

2.1.4. Artificial Neural Networks

For each geometry, an ANN was trained and evaluated, with and without consid-
eration of the measurement data, using the open-source software Python, as well as its
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machine learning framework PyTorch. Depending on whether the measurement data
were considered or not, the number of input neurons was determined by the number of
relevant features according to the feature analysis or the number of process parameters.
Moreover, a single hidden layer with 5 neurons was chosen. In the past, the number of
hidden layers and neurons has been mostly determined using a trial-and-error method.
There has been a constant attempt by researchers to replace this time-consuming method
with exact approaches to optimize the number of hidden layers and neurons. Nevertheless,
in this case, a trial-and-error approach was sufficient, since the data set used to train the
ANN was comparatively small and the goal was to compare neural networks with the
same design for different input data, instead of optimizing a single ANN for a specific use
case. The number of neurons in the output layer was always 3, as the quality categories
of all data points were converted into numerical values: good (2), medium (1) and poor
(0). Thus, setting the number of neurons in the hidden layer to 5 also ensured that it was
between the number of neurons in the input and output layers.

In addition to the topology of the networks, the activation function, the loss function
and the optimization algorithm are essential hyper-parameters that influence the function-
ality of ANN. This work was based on the comparatively simple and often-used activation
function, Rectified Linear Unit [28]. Furthermore, because a categorical target variable was
used, the common loss function Cross-Entropy Loss was applied in the training phase to
determine the error between the predicted and actual quality categories. As it has proven
successful in other applications, especially in classification tasks, the Adam optimizer was
selected to update the weights between the neurons [29]. The validation was performed
using the train-and-test approach. In this method, the data sets are divided up. In this
work, the data were divided up into training, test and validation data, with a percentage
ratio of 70/10/20.

3. Results and Discussion
3.1. Welding Results

Fifty samples of each geometry (weld beads, coatings and cubes) were produced. It
was ensured that a large random variation would provide a good data base for the artificial
neural networks. For this reason, approximately the same ratio was generated from each
category (good, medium, poor). Figure 3 exemplifies one sample from each geometry
and category.

Quality characteristics are different for individual applications and geometries. In
practice, additively manufactured components are often compared with cast components.
In this case, a visual inspection according to DIN EN 13018 [30] was used for quality
assessment. This includes surface defects such as cracks, shrinkage cavities, gas pores or
non-metallic inclusions, as well as a dimensional inspection. Typical defects in the DED
process are pores, fine holes, poor bonding, spatter and microcracks in a layer. Due to the
multilayer structure, these can lead to deviations in the shape of the entire structure, as
well as to a change in the melt bath properties.

Categorization is one way of combining various target variables. The machine operator
often decides, based on experience, if the welding result is sufficient or not. This procedure
was used to evaluate the results of this work. The categories were selected in consultation
with practice users. To ensure objective validation, the categorization was performed
independently by three different operators. In the case of results that could not be classified
unambiguously, a consensus was reached. The aim here was to reflect practice as closely
as possible.
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3.2. Data Preparation

The importance of good data preparation is well known [19,23], but there is no stan-
dardized procedure for data preparation yet [21]. It is often an iterative process to figure out
how to create the best database for an ANN, especially in the early phase of model develop-
ment. By applying the approach shown in Figure 2 on all the geometries, and by analyzing
the obtained results, it could be verified as suitable for feature extraction and analysis in
DED applications. The individual methods are explained in the following paragraphs.

The first step of the data preparation is the import of measurement data as time series.
Next, an automated feature extraction algorithm (tsfresh) is applied to obtain discrete values
from the individual measurement series. It is already established in other applications [22].
Thus, about 800 features are calculated for each sensor and there are about 3200 feature
values for each data point. Theoretically, a network could process this large amount of
information, but it is not useful for practical applications. On the one hand, a high number
of input values would make a larger data set necessary to identify correlations between
input and output. On the other hand, redundant information is included, which would
hinder and impair the training of the ANN. Therefore, a reduction in features is necessary.
Simple and plausible physical and mathematical quantities that can be easily explained are
desirable for the later evaluation. These include, for example, deviations from the mean
value and linear trends. At the same time, however, the characteristics should reflect the
relationship between the input and output variables as well as possible. In this context,
complex quantities that are not obvious or easily physically explainable, such as Fourier
coefficients, are also identified.

With a univariate analysis, a simple procedure is applied to individually examine the
influence of each feature on the target value and to calculate individual scores. The higher
the score, the more significant the influence of the according feature on the output variable.
Regarding the correlation statistics, a differentiation is made between numerical and cate-
gorical inputs: an ANOVA is carried out for numerical features, whereas Chi2 is required
for categorical features. This distinction is important for determining the significance of
the respective feature. The significance indicates the strength of the relationship between
the feature and the target variable. In the context of this work, a ranking of features was
created, and the 10 highest-listed features were retained, while the rest were no longer
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considered. To realize this kind of sortation, the desired feature quantity, as well as a
specific significance level, can be used as a criterion.

Next, the remaining features of all the measurement data series are brought together
and compared in a correlation matrix. Such a matrix examines the correlation of two char-
acteristics to each other without considering the target value. The correlation is represented
by numbers from −1 to +1. For −1 there is a strong anti-proportional correlation between
two features, while for 1, the correlation is strongly proportional. The closer the number is
to 0, the lower the correlation. If a considerable correlation is found between two features,
the feature with the lower significance based on the univariate analysis is removed. Again,
depending on the specific situation, the sortation can either be executed by defining a
specific number of final features or by defining a threshold for the correlation value. In
the context of this work, all correlations with an absolute value greater than 0.5 were
reviewed and checked. The goal is to reduce the number of redundant features that provide
little additional information gain. The correlation matrix is applied in two stages. First,
the correlation matrix is applied to the features of a single sensor. Subsequently, with a
minimized number of features, a total correlation analysis is carried out with respect to the
features of all sensors.

In the last step, another univariate analysis with respect to the target variable is
performed including all the selected features, as well as the process parameters such as
laser power, powder mass flow and scan speed. Based on this last univariate analysis, the
final input data set is generated. The described feature extraction was performed for each
geometry individually.

3.3. Feature Analysis

The feature analysis performed on the measurement data of the weld beads resulted in
a total of 7 input variables. An overview of the identified features, ranked by significance,
is shown in Table 2.

Table 2. Relevant features for weld bead categorization.

Weld Bead

Feature Parameter/Sensor

1 Longest strike above mean Laser scanner
2 Count below mean Laser scanner
3 Median Pyrometer
4 Change quantiles Emission spectrometer
5 Laser Power Parameter
6 Linear Trend Emission spectrometer
7 Powder mass flow Parameter

Two features of the laser scanner have the highest information content: the longest
strike above mean and the count below mean. The first feature indicates the length of the
longest sequence of values that are higher than the mean value of the time series. The
second feature describes the number of values in a measuring sequence that are smaller
to the mean value. Therefore, both values reflect whether a weld bead shows a uniform
course. Possible defects such as an increase at the ends or a dip in the middle of the weld
bead can be identified by the selected features. The uniformity of a weld bead can also be
described by the course of the ratio between the bead width and bead height; these are
target values that are often examined as quality characteristics [13].

The median temperature measured by the pyrometer is also of high significance. If
it is too low, not enough powder is melted. In contrast, excessive power is applied if the
temperature exceeds a certain limit. This can, on the one hand, lead to tarnishing, and on
the other hand, to powder melting irregularly. The quotient of laser power and powder
mass flow defines the melted powder mass. Thus, both process parameters are considered
to be important features.
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For the Plasmo sensor system, the change quantiles and linear trend are significant
features. Change quantiles describes the average change of measured values in a certain
frequency range. The linear trend represents a linear regression of the measurement series
and indicates that the overall trend of measured values is important. Both features can
be explained in physical terms by considering the sensor’s functionality; changes in the
emitted process light indicate irregularities in the process.

The measuring data of the process camera were not considered due to low significance.
The reason for this is the comparatively short welding time for a weld bead. Moreover, at
the beginning and end of a welding process, a process glow occurs that falsifies the results
of the applied image-processing algorithm. A substantial lengthening of the weld bead
would be inappropriate given the effort.

The relevance of features depends on the geometry that is built up. For the coatings,
the feature analysis identified different significant features than for the weld beads. The six
relevant features of the coatings are listed in Table 3.

Table 3. Relevant features for coating categorization.

Coating

Feature Parameter/Sensor

1 Sum values Laser scanner
2 Count above mean Emissions spectrometer
3 Powder mass flow Parameter
4 CWT Coefficient CCD Camera
5 Entropy Pyrometer
6 Scan speed Parameter

As with the weld beads before, the laser scanner also provides the most important
information for coatings. In this case, sum values are the integral over the cross-sectional
area of the coating. The feature contains information about the size and height and, thus,
the dimension of the coating. One explanation for the strong quality correlation is the
non-uniform deposition of the coatings if their heights exceed a certain limit.

The second most significant feature for coatings was extracted from the measurement
data of the Plasmo sensor system. The count above mean indicates the number of values in
the measurement series that are higher than the average value. These amplitudes are caused
by increased light reflections and process lightning. They either occur if the introduced
laser power is too high or if the powder is melted irregularly. In both cases, poor coatings
with a strong tarnish or wavy surface are the consequence. The identified feature of count
above mean takes both cases into account.

The CWT coefficient (CWT = continuous wavelet transformation) extracted from
the melt-pool diameter measurement series is also considered significant. It is a way to
represent the changing characteristics of non-stationary signals by decomposing the signal
into wavelets. Wavelets are oscillations that appear in a short time section. Thus, stationary
recurring parts of a signal can be detected. In the context of coatings, the CWT coefficient
correlates with the uniformity of recurring subsections in the measurement data during the
deposition of individual weld beads. It can be concluded that there is a correlation between
the melt-pool diameter development of the individual beads and the overall quality of
the coating.

The entropy of the temperature data recorded by the pyrometer describes the complexity
of the temperature curve. It is a measure of randomness for data series and contains informa-
tion about the information gained with every new data point in the series with respect to the
previously recorded points. Therefore, a high entropy of the temperature data indicates an
unsteady temperature curve and, thus, irregularities in the whole build-up process.

For coatings, all the extracted features are connected to laser power distribution and
the general uniformity of the deposition process. Since laser power was already covered by
features extracted from the measurement data, it was not included as an explicit feature. As
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for the weld beads, the quotient of laser power and powder mass flow defined the melted
powder mass. Thus, powder mass flow was added as a feature. Moreover, the energy per
unit length, defined as the ratio of laser power and scan speed, was a key factor for the
deposition of coatings. The consideration of the process parameter of scan speed, therefore,
seems reasonable.

After variations in the significance of features from weld beads and coatings were
observed, a different feature distribution was also obtained for the cubes. An overview of
the nine relevant features is listed in Table 4.

Table 4. Relevant features for cube categorization.

Cube

Feature Parameter/Sensor

1 Change quantiles Emission spectrometer
2 Complexity Laser scanner
3 Fourier coefficient Laser scanner
4 Time reversal Emission spectrometer
5 Partial autocorrelation Laser scanner
6 Fourier coefficient Pyrometer
7 Number crossing 1 CCD Camera
8 Change quantiles Pyrometer
9 Linear trend CCD Camera

First of all, it can be noted that for additively manufactured components such as cubes,
the significance of process parameters is no longer relevant. All the selected features are
obtained from the measurement data series of the different sensors.

The most important information is provided by the measurement data of the Plasmo
sensor. As for the beads, change quantiles were selected as an important feature. In
addition, the feature of time reversal contains information about the curve of the data
series as well, since it is a measure of symmetry. Therefore, the emitted process light and
its change over time is a good indicator for the quality of complex additive structures.
Moreover, information about the build strategy is included in the measurement data and
can be obtained from changes in the process light curve. For instance, the application of a
frame structure can be distinguished from a filling zig-zag movement, where the afterglow
of each weld bead was detected.

The features extracted from the laser scanner are essential indicators for the quality
of cubes, as well. Complexity, a Fourier coefficient and the partial autocorrelation are
significant features. In the present case, complexity refers to the detected surface roughness
of a cube. For example, a low complexity indicates only minor geometric irregularities
in the coating of a cube and, thus, a good surface shape. The Fourier coefficient refers
to the cross-sectional area of a cube. In general, it describes the degree of recurrence of
trigonometric functions in the data series. In this particular case, it refers to the pattern of
weld beads in the top layer and their distinctiveness. In contrast, partial autocorrelation
identifies the dependency between values of a measurement series at different times,
and provides information about the predictability of a data point based on previous or
subsequent points. Since this feature was extracted from the total height of the cubes, it
indicates their overall geometric structure. For additive components, dimensional accuracy
is of high importance. Thus, it is reasonable that three different features, related to the
surface roughness, cross-section and absolute height of the cubes, are selected.

For the temperature measurement data, a Fourier coefficient and change quantiles are
relevant. The Fourier coefficient refers to a pattern structure in the temperature curve that
is related to recurring parts due to the repetitive application of individual tracks and layers.
Furthermore, a high change quantile value indicates strong temperature fluctuations and,
therefore, an irregular process. Moreover, the part quality is influenced by the build-up
strategy. For instance, if the cooling time between layers is below a certain threshold,
overheating during the build-up can occur.
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The process camera with the features of number crossing 1 and linear trend also
provides important information on the quality of the cubes. Number crossing 1 defines how
many times the curve of the melt-pool size undercuts the value 1 or approaches 0. In this
context, that undercutting can be equated to no melt pool being detected. This can be due
to a deposition pause between single weld beads or layers. In this case, number crossing 1
is a measure of the number of individual weld beads in the whole cube. Another possible
reason is a strong process irregularity that prevents the image processing algorithm from
detecting a melt pool. In contrast, the linear trend considers the melt-pool diameter change
over time. If the size of the weld pool increases, the weld bead geometry changes, which
has a direct effect on the geometry of the cube. If the melt-pool diameter decreases, the
distance between the component and the nozzle increases, not enough energy is introduced,
and the powder is no longer melted. Cubes with significantly lower overall height and a
smoothed surface are the result.

In summary, the extracted features vary depending on the geometry. The more
complex the manufactured structures are, the more important the measurement data
become. Thus, it can be concluded that in the case of additive components such as cubes,
the significance of process parameters is extremely low. When compared to the extracted
and analyzed features, they no longer provide any significant information for the ANN.
In the following section, the importance of selected features for quality prediction will be
explained.

3.4. Additional Value of Process Data

Based on the previous results, one ANN based only on process parameters and one
ANN based on the selected features were created, trained and validated for each of the
different geometries. A total of 20 training and test runs were executed for each ANN. The
accuracies of the individual runs can be taken from Figure 4.
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In a single run, the prediction accuracy of an ANN trained with a small data set is not
very meaningful due to a possible unfavorable distribution of the training and test data.
The average accuracy after multiple runs reduces the risk of a falsified statement about the
network’s prediction accuracy.
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In general, the accuracies are below the values of similar publications in the litera-
ture [9–12]. There are two main reasons for this. Firstly, previous research usually uses
continuous parameters as target values. In most cases, the effects of process parameters on
bead width and bead height are predicted. The prediction accuracy calculation for continu-
ous target values is generally performed by evaluating the relative error. Depending on the
process, the kind of target value, and the used data set, these deviations are never large
so that the general accuracy of the ANN is correspondingly high [13]. Secondly, it must
be noted that the previous studies consider only weld beads. There is no transferability of
the results to additive components. The quality characteristics of a weld bead can already
be predicted well with a statistical test design [31]. The categorization considered in this
work is, therefore, much more complex. In such cases, there is only the possibility of being
right or wrong. Apart from that, it is not considered that all wrong classifications were off
by just one category. Furthermore, a categorical evaluation of produced parts can already
cause discussions among different operators. While the criteria for the respective quality
categories are defined in principle, such an evaluation is also always subjective.

The accuracy of the ANN based on process parameters decreases significantly with the
complexity of the geometries; while for weld beads an accuracy of 70% could be reached,
the accuracy drops to 60% for cubes. It is assumed that the predictions become even less
accurate for relevant additive components, which usually have much higher degrees of
complexity. This is primarily caused by the fact that the varied process parameters do not
contain sufficient information to make correct quality predictions. The build-up strategy
plays an especially major role in additive manufacturing. Since the build-up strategy is not
given to the network as an input variable, the information is missing to correctly predict the
quality category. Simply adding new aspects such as the build-up strategy as new training
parameters and including them directly in the training phase is not practical, because the
additional effort and time taken to produce sufficient training data would be too high.

The integration of measurement data is a practical way of providing the network
with varying and flexible information about the build-up process. It has been shown that
with the selected features, the quality of all the considered geometries can be consistently
predicted with an average prediction accuracy of 80%. Using geometry-dependent selection
of features from the measurement data, specific information on the individual building
processes can be collected and made available to the ANN. This includes information
about changes in the process, as well as information about the dimensional accuracy of
components. This way, the ANN can recognize an unsteady process or a failed build-up.

4. Conclusions

In this work, the added value of measurement data in the application of an ANN was
demonstrated. For this purpose, a procedure for the extraction and analysis of features
from a dynamic measurement data series was presented. Conclusions pertaining to the
extracted measurement data characteristics and the weld quality were discussed for each
geometry individually. The added value of the procedure was validated, and the following
conclusions can be drawn:

- ANNs are only as good as the data set provided. It is essential that sufficient informa-
tion is available to describe the target values adequately. Previous work has always
used process parameters as input data. In the present work, this was sufficient for
predicting the quality category of weld beads. With increasing complexity of the
geometry, the process parameters became less and less significant due to a lack of
information about the welding process.

- Measurement data provide essential information about the welding process. To use
measurement data for an ANN, the focus must be put on data preparation. This
includes a suitable feature extraction method to convert dynamic measurement series
into static characteristic values.

- A variety of tools are available for feature extraction, depending on the application.
In the present case, the Python package tsfresh, univariate analyses and correlation
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matrices were successfully used. In this context, it must be considered that the feature
analysis is dependent on geometry, as well as on the target value.

- The comparison of the ANN with and without the consideration of measurement
data shows a clear added value regarding the integration use of sensors. This way,
especially complex additive manufactured components can be evaluated significantly
more effectively.

- The described feature extraction and analysis method is suitable to reliably identify
relevant features.
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