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1. Introduction 
The main objective of the nPSize project is to improve the measurement capabilities for nanoparticle 

size based on both measurement methods traceable to SI units and new reference materials. In WP 3 

two basic approaches have been used in order to develop measurement procedures resulting in 

traceable results of the nanoparticle size distribution: physical modelling for the methods used in the 

project (TSEM, SEM, AFM and SAXS) and machine learning. 

 

Physical modelling 

In this part, the physical models associated with different shape measurements for the techniques 

TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the 

resulting signal as measured by the individual methods. Uncertainties and traceability associated with 

each model were investigated and evaluated. In the following, the progress on these physical models is 

reported for each individual method. 

 

Machine Learning modelling 

The aim of this part is to use machine learning to enable automatic measurement of nanoparticle 

shape from expert a-priori information only. No physical model will be used as a-priori information in this 

task so that Task 3.1 and Task 3.2 can be carried out in parallel without interfering with each other.  

The accuracy and traceability of the size results obtained by each technique will be analyzed and 

compared with the physical modelling (A3.1.5). A machine learning database will then be used to create 

automatic detection algorithms. 

 

2. Scanning Electron Microscopy in Transmission Mode (TSEM) 
To characterize the size of a nanoparticle, the decisive parameter is the threshold of the TSEM signal 

at the boundary of the particle. Simulated relative threshold values are required to be able to set the 

threshold values of experimental grey value micrographs. TSEM images have been modelled for 

spherical, cylindrical, cubic, and bipyramidal nanoparticles of various materials under well-known 

measurement conditions.  

The Monte-Carlo simulations that are used to generate artificial TSEM micrographs are based on the 

modeling of electron scattering in solid matter. Elastic scattering processes are modeled by Mott cross 

sections, which are provided as tables by ELSEPA. Inelastic scattering processes are dealt with in the 

framework of dielectric function theory. For the physics of electrons interacting in the three materials, 

gold, silica, carbon, PTB has used the most recent JMONSEL tables and for TiO2, PTB is currently 

developing the inelastic scatter tables. Furthermore, all accessible experimental parameters such as 

electron beam divergence and width, geometry and material of the nanoparticle, and detector geometry 

are considered in the simulations. The Monte Carlo simulation for TSEM has been implemented into the 

Geant4 framework using its Monte Carlo engine and its geometry/material library to take into account 

the variety of differently shaped nanoparticles. This implementation has been validated for spherical 

particles by comparisons with JMONSEL, developed by NIST, for which PTB thanks John Villarrubia, 

NIST. 

Obtaining a complete scan for a micrograph by running the Monte Carlo for each pixel is very costly 

in terms of computation time. Therefore, for each set of experimental parameters, the transmission yield 

as function of thickness is simulated by running the Monte Carlo simulation without scanning. 

Transmission yields are recorded whilst stepping through the material for each thickness by counting 

the electron trajectories passing the different thickness lines. In a subsequent and independent software, 

such a yield curve is input for a program (implemented in python) that generates three-dimensional 

particle geometries from which height maps are derived and which converts the heightmap into a yield-

map using the yield curve. The finite width of the beam is included by convolving the yield-map with a 
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Gaussian distribution representing the widened beam finally resulting in the micrograph as TSEM signal. 

Fig. 2.1 illustrates this efficient simulation strategy.  

 
Fig. 2.1: Efficient simulation of TSEM micrographs by running a Monte Carlo simulation to 

obtain a yield curve and subsequently scanning a complex geometry of a nanoparticle 

 
 

To validate the fast efficient simulation method, relative threshold values characterizing the particle 

boundaries obtained by the Monte Carlo running on the center and at the boundary of the particle (for 

which we assume an uncertainty of about u(Srel)=0.025) are compared with the relative threshold values 

obtained by the efficient method as described in Fig. 2.1. 

If the finitely wide and divergent beam falls on the boundary of the particle, a small fraction of those 

trajectories that are outside the particle enters into the particle side wall due to the divergence of the 

beam. This effect is visible in case of particles with straight vertical sidewalls, if the complete Monte 

Carlo simulation is employed, but omitted by the efficient simulation method. This effect, however, is 

negligible for curved particle boundaries as can be seen in Fig. 2.2 (left) showing relative threshold 

values for cubic particles with a chamfer size of 20% of the particle size in comparison of cubes with 

sharp edges. Fig. 2.2 (right) shows an example of nanocubes and nanorods of gold simulated for a 

TSEM detector of 10.5 mrad acceptance angle. 
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Fig. 2.2: Simulation of relative yield threshold values of gold nanoparticles for a detector of 10.5 

mrad acceptance angle. Left: cubic nanoparticles, right: nanorods 

 

At vertical sidewalls, as with cubic nanoparticles, the value for the relative yield threshold is 0.5 if 

there no beam divergence effect causes trajectories outside the particle to enter the particle for both 

with and without chamfer (black crosses, red circles) in Fig. 2.2 left, otherwise the threshold value 

decreases with increasing size of sidewall giving more divergent trajectories the possibility to enter the 

particle sidewall. For curved sidewalls, the red curve in Fig. 2.2 right being obtained by the efficient 

method agrees very well with the blue crosses (Fig. 2.2 right) which are obtained by the complete Monte 

Carlo. Furthermore, the left diagram of Fig. 2.2 shows that the threshold values of rods depend on both 

the diameter of the nanorod and the beam width, see dashed curves in comparison with red curve. 

If the value of the nanoparticle size is approximately the value of the beam width or smaller, no 

reasonable boundary threshold can be determined. This limit is the structure resolution of the 

measurement process and can be stated to be at the particle size where the relative threshold curves 

have their maximum.  

 

3. Physical modelling for Scanning Electron Microscopy (SEM)  
To determine the equivalent diameter Deq of the particles by SEM technique, different segmentation 

methods can be used. However, the lack of reference particles and knowledge on dimensional 

properties of the electron beam introduces a high uncertainty to this measurement. These unknowns 

then make the modeling of the experimental beam difficult. An inverse method is thus proposed. This 

consists of simulating several profiles for different sets of experimental input parameters and then 

proceeding by identification between the experimental measurements (obtained profiles) and the library 

of simulated profiles. 

A Monte Carlo algorithm (JMONSEL) was implemented. This includes various physical models of 

electron-sample interaction that can be used to model the secondary electron signal as a function of the 

beam position on the sample: i) Mott cross section for elastic scattering, ii) input tables provided with 

JMONSEL for inelastic scattering of electrons in gold, silica and silicon. In this way, the SEM signal can 

be simulated (cross-sectional profile over a spherical particle) by varying various parameters such as 

sample geometry (particle size), chemical composition (gold or silica), and size (standard deviation) and 

energy of the incident Gaussian electron beam.  

For all the JMONSEL simulations carried out here, a schematic view of the studied configuration is 

given in Figure 3.1 : a sphere (silica or gold), with radius R and center coordinates (0, 0, -R) is placed 

on a silicon substrate assumed to be infinite. 
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Figure 3.1: Representation of the sample geometry used for all JMONSEL simulations. 

A 5 nm thick native oxide layer is modeled on the surface of the substrate. The substrate, consisting 

exclusively of silicon, is decomposed into two parts: 

- A "deep" region, beyond 100 nm from the surface, where all electrons with an energy lower than 

50 eV are immediately excluded from the simulation. Indeed, at this depth, these low energy 

electrons cannot come out of the material and be collected by a detector. 

- An "active" region, between 0 and 100 nm, where all electrons are included into the simulation. 

A perfectly Gaussian electron beam, with average energy E0 and standard deviation σ is applied  on 

the sample surface from an initial position (-x0, 0, -h) with h >> R, h being the height of the starting point 

of the electron beam and x0 > R. N trajectories are modeled at this position, then the electron beam is 

shifted with [
+𝛥𝑥
0
0

]. As a result, the new beam coordinates are (-x0 +Δx, 0, -h). For each position, the 

secondary electron yield δ is calculated according to the number of electrons of energy < 50 eV having 

struck the detector(s). This operation is repeated several times in order to simulate the electron 

trajectories over the interval [-x0, x0] and thus to build up the secondary electron intensity profile along 

the particle.  

For each set of parameters, a secondary electron profile, plotted along the NP, was generated by 

the Monte Carlo algorithm and stored in a database. For silica particles, three accelerating voltages 

(corresponding to the energy of primary electrons) have been simulated: 2 kV, 3 kV and 5 kV. For each 

energy, three series of measurements for three different beam sizes (standard deviation of the electron 

beam equals to 1 nm, 3 nm and 5 nm) were performed. Each series of measurements corresponds to 

the simulation of the cross-sectional profile of a nanoparticle with a radius ranging from 5 nm to 50 nm, 

in steps of 0.5 nm (91 profiles). Cross-sectional profiles are carried out by simulating on 121 points the 

yield of secondary electrons along the particle in steps of 1 nm (Figure 3.2).  
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Figure 3.2 : Cross-sectional profile (normalized) of a silica particle with a radius of 20 nm. 
Simulation performed with a beam size of 3 nm and an incident electron energy of 3 keV. 

Thus, 819 profiles were simulated and stored in a database for silica particles. Regarding gold 

particles, a series of measurements (91 profiles) with incident energy of electrons set at 3 kV and 

standard deviation of electron beam equal to 3 nm was simulated. 

From these profiles, it is possible to determine the theoretical position of the threshold to be applied 

on the SEM images to obtain R, the particle radius. For this, in order to match the SEM signal, expressed 

in gray levels, with the signal obtained on JMONSEL defined as a secondary electron yield, all the 

profiles were normalized. The position of the threshold as a function of the particle radius for silica and 

gold with a beam size (σ) of 3 nm and an accelerating voltage of 3 kV is shown in Figure 3.3-a. 
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Figure 3.3: a) Position of the threshold to be applied as a function of the particle radius for silica 
and gold particles with an electron energy of 3 keV and a beam size of 3 nm.  
b) Position of the threshold to be applied as a function of the particle radius and beam 
size for silica particles with an incident electron energy of 3 keV.  
c) Position of the threshold to be applied as a function of the particle radius and the 
energy of the incident electrons for silica particles with a beam size of 3 nm. 

We can see in Figure 3.3-a that the position of the threshold to be applied depends on the chemical 

composition of the particles. For example, for a particle with a radius of 30 nm, the threshold to be 

assigned is close to 0.5 (mid-height) for silica, 0.6 (above mid-height) for gold. Moreover, for silica 

particles, the position of the threshold depends strongly on the size of the particle. Moreover, for the 

same particle size, the position of the threshold varies according to the energy of the incident electrons 

(Figure 3.3-b) and the beam size (Figure 3.3-c). 

A second algorithm was then developed on the Matlab software to determine which profile in the 

database best fits the measured SEM profile. With this method, two measurands are determined. The 

first one is the size of the assumed Gaussian electron beam represented by its standard deviation σ. 

The second is the radius R of the particle (output parameter) resulting from the comparison between the 

experimental profile and the library of simulated profiles (Figure 3.4).  



page 8 of 20 
 

 

Figure 3.4: General principle of the method. A profile in secondary electrons collected along a scan 
line passing through the center of the particle is compared with a series of profiles 
generated by the Monte Carlo method by varying the couple R (radius of the particle) and 
σ (beam size). The unknown parameters R and σ are then deduced according to the 
simulated profile showing the best match with the one obtained experimentally. 

However, to save time, the experimental profile corresponding to signal measured at the center of 

the particle on the SEM image is only handled to determine the parameters σ and R associated with this 

profile from the library. For a refined identification of R and regarding near spherical nanoparticles, a 

thresholding of the image is then performed. The threshold position is then evaluated from the set of 

parameters (accelerating voltage, chemical composition of particle, σ and R) in the database giving the 

best correspondence with the experimental profile (Figure 3.5).  

 

Figure 3.5: Approach applied to measure the dimensional properties of a nanoparticle with Monte 
Carlo simulation:  
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1 - A particle is extracted from the SEM image and the associated thumbnail is created.  
2 - On this particle, the secondary electron intensity profile passing through the center of 
the particle is extracted.  
3 - The extracted profile is compared with the whole library of simulated profiles to 
determine R and σ.  
4- These two parameters are used to determine the threshold to be applied.  
5- The dimensional parameters are calculated from the binary image. 

This method has an advantage, as usually a single threshold is applied to the entire image. In our 

case, a more suitable threshold is determined for each thumbnail. In a first step, this makes it possible 

to get rid of the intensity variations corresponding to the substrate. Moreover, the threshold is fitted to 

the dimensions of the particle and the imaging parameters used. 

This method was implemented to determine the dimensional properties of the silica samples 

produced by the CEA teams in the nPSize project (samples nPSize 8, 9, 10 and 11). The results from 

this method were compared with the automatic segmentation method "Active Contour", widely used 

whose principle is to search for inflection points around the particle to extract its contour. Results are 

presented in Table 1. 

Table 1: Area equivalent modal diameter evaluated using Monte Carlo library and Active Contour methods for silica samples 
nPSize 8, 9, 10 and 11. The uncertainty for Active Contour method is calculated following method describes in [Crouzier et al. 
Meas. Sci. Technol. 30(8), 2019]. Since beam width is a measurand in the Monte Carlo library method, the same procedure 
was used to calculate the uncertainty associated with this method without adding the uncertainty associated with the beam 
size.  

Sample Nominal diameter / nm Area Equivalent modal 
diameter “Monte Carlo 
library” / nm 

Area Equivalent modal 
diameter “Active 
Contour” / nm 

nPSize 8 1st mode 30 20.4 ± 0.4 (k = 1) 21.0 ± 1.8 (k = 1) 

nPSize 8 2nd mode 60 63.9 ± 0.7 (k = 1) 64.4 ± 1.8 (k = 1) 

nPSize 9 1st mode 30 34.1 ± 0.5 (k = 1) 34.8 ± 1.8 (k = 1) 

nPSize 9 2nd mode 60 62.4 ± 0.9 (k = 1) 63.2 ± 1.8 (k = 1) 

nPSize 10 50 47.7 ± 0.7 (k = 1) 48.4 ± 1.8 (k = 1) 

nPSize 11 30 60.5 ± 0.9 (k = 1) 61.7 ± 1.8 (k = 1) 

 

 

4. Physical modelling for Atomic Force Microscopy (AFM) 
Because the selected nPSize particles have nominal dimensions that are comparable to the AFM 

probe size, the geometry of the features in the raw measurement data are partly resulting from the probe 

shape. Especially the lateral dimensions are dilated by the probe shape, so particle width and shape 

properties in general, cannot be accurately extracted from raw AFM data without correcting for effects 

from the probe shape. The accuracy of the correction process has been investigated by first simulating 

the measurement process of a nano particle array with a spherical probe, fig. 4.1, and subsequently 

correcting the dilated measured data with the same probe, fig. 4.2.  
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Figure 4.1. Simulated nano particle array and calculated measurement field when the simulated 

array is scanned by a spherical AFM probe. 

 

 
Figure 4.2. 2D representation of the simulated field from fig. 4.1 with subsequently recovered 

field after correction for the probe shape. The bottom graph shows the difference 
between the original and recovered field. 

 

The difference between the original and recovered field are at the sub-nanometer level 

demonstrating the validity of the approach. However, the selected system is nearly ideal without 

measurement noise and with well-known particles and probe shape. Further investigations are ongoing 

to study the effect of more complex particle and probe shapes. 
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Practical implementation and validation of probe shape correction 

In supporting the normative activities within the nPSize project, VSL and SMD have participated in 

the VAMAS/TWA 2 project 24: ”Guidelines for Shape and Size Analysis of Nano-particles by Atomic 

Force Microscopy“. Within this project, samples of spherical silica nano particles with a nominal height 

of 100 nm and two tip characterizers were distributed for a round robin test. The participants were asked 

to provide the particle height, particle width and a cross-sectional profile of the probe shape to allow for 

the correction of the raw nanoparticle profile data. In order to optimize the comparability of the 

measurement process between the participants to types of probes were included. In effect participating 

this activity was welcomed as it could be used to further develop, test and validate AFM probe-sample 

models within the nPSize project and additionally providing input for normative activities. 

Since the probe-sample interaction results in dilation of the actual nano particle as illustrated above, 

accurate reconstruction of the particle width requires detailed knowledge of the probe shape. The 

measurement process for spherical particles and the obtained profile is illustrated below. 

 

 
Figure 4.3 Schematic view of the probe-sample interaction resulting in dilation of the particle 

profile (green line). The profile full width at ground level (red indicators) is dilated by the 
probe width at approximately half the nanoparticle height. The profile full width at half 
maximum (blue indicators) is not clearly related to a specific probe characteristic. 

 

The analysis of profiles to extract particle width is usually based on the measured full width a half 

maximum (FWHM) of the profile. However, as can be seen in figure 4.3, the FWHM of the profile is not 

related to a clear property of the probe shape. Correction of the measured curve for the probe shape in 

order to determine the particle width is therefore not clear. In contrast, the full width at ground level 

provides a more accurate measurand to enable correction for the probe shape: at ground level the 

apparent width of the particle is dilated by the full width of the probe, estimated at approximately half the 

height of the particle. Therefore, correction of the measured full width at ground level with the probe 

width estimated at half the particle height should result in the best possible estimate for the actual particle 

width and should be similar to the particle height for a spherical particle. Our probe shape correction will 

therefore be based on the full width at ground level and the estimation of the probe width at half the 

height of the nanoparticle. 

The measurements on the silica particles revealed a height of about 116 nm, figure 4.4, This implies 

that the probe width has to be determined at about 60 nm from the top of the probe in order to enable 

reconstruction of the particle width.  
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Figure 4.6 AFM image of the silica 100 nm reference sample measured and the cross-section 

profiles for each particle (right). 

 

Measurements were performed on two types of tip characterizers on order to reconstruct the relevant 

part of the probe shape to enable correction of the raw nanoparticle data. The first characterizer was a 

sample with randomly oriented sharp structures. The measurements on this tip characterizer were 

analyzed by a blind reconstruction model to extract the probe shape for the two probes, Probe1 and 

Probe2, see Figures 4.5 and 4.6. 

  
Figure 4.5 AFM measurement (left) on the tip characterizer with Probe1 

 and reconstructed shape. 

 

  
Figure 4.6 AFM measurement (left) on the tip characterizer with Probe2 

 and reconstructed shape. 
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From these reconstructed 3D shapes, the probe profiles along the horizontal scan direction through 

the maxima were calculated, as shown in figure 4.7. Note that the reconstructed profiles are not 

sufficiently high to accurately determine the probe width at half the height of the nanoparticle, i.e. at 

about -60 nm. Extrapolation is possible as indicated by the red lines, but this does not seem to be an 

accurate method.  

 

  
Figure 4.7 Reconstructed profile of the probe along the fast scan direction for Probe1 (left) and 

Probe2 (right). The probe width at half the nanoparticle height was calculated by 
extrapolating the profiles (dotted red lines). 
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In order to more accurately determine the probe width at about 60 nm from the top of the probe, 

measurements on a 1D line structure with straight edges and sufficient height were performed, see 

figure 4.8. As with all structures measured by AFM, the measured profiles are again dilated with the 

probe shape. Since these line structures are assumed to have almost straight edges, the edge regions 

contain information about the probe shape, whereas the details in the upper and lower levels mostly 

contains information of the line sample itself. In order to extract the probe shape from the edge regions 

it has to be determined what regions of the upper level data has to be excluded.  

 
Figure 4.8 AFM image on the line structure. 

 

The difficulty in the probe shape extraction on a 1D line structure is finding the exact regions that 

have to be excluded from the top of the profiles in order obtain an accurate reconstruction of the probe 

shape. In addition of just eliminating the regions of maximum values we also used the angle of the profile 

normal, i.e. the elevation angle, to determine which points to exclude from the profiles. However, this is 

still a somewhat arbitrary process since there is no clear criterion for when to exclude certain values. 

We do, however, already have some information about the probe shape that was reconstructed from 

the first tip characterizer measurements, see figure 4.7. Since the top region of this tip characterizer 

reconstruction is more accurate compared to the rest, it was decided to use the width at 10 nm below 

the top, see figure 4.7, as a criterion for the reconstruction of the probe shape from the line structure 

measurements. The width at 10 nm below the top of the probes was estimated as 34 nm for Probe1 and 

24 nm for Probe2 resulting in the following reconstructions, see Figures 4.9 and 4.10. 

 
Figure 4.9 Processing of the measurement on the line sample for the Probe1. 

 The average profile (left) was diluted with the red points shown in the center graph to 
provide a probe profile (right) with a width of 34 nm at 10 nm below the top (blue 
markers). The red markers on the right show the probe width at half the height of the 
silica nanoparticles. 
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Figure 4.10 Processing of the measurement on the line sample for Probe2.  

The average profile (left) was diluted with the red points shown in the center graph to 
provide a probe profile (right) with a width of 24 nm at 10 nm below the top (blue 
markers). The red markers on the right show the probe width at half the height of the 
silica nanoparticles. 

 

Since the line structures are much higher than the corrugation of the first tip characterizer, the 

reconstruction of the width of the probe at half the particle height is more accurate using data from the 

line structures compared to the values from the extrapolated profiles using the tip characterizer only. 

The analysis on the line sample for the two probes resulted in an average probe width at half the 

nanoparticle height of 81.0 nm for Probe1 and 57.3 nm for the Probe2 and these values were used to 

correct the dilated profiles. 

In Table 1 the results of the measurements and probe shape correction are summarized. The 

uncertainty of the analysis is based on the standard deviations resulting from the spread in the particle 

heights and the spread in the determination of the probe width. Firstly, it can be observed that the 

measurements with both probes result in a consistent average particle height. Secondly, the correction 

of the raw profiles with the calculated probe width at half the nanoparticle height results in a particle 

width that is consistent with the measured particle height as should be expected for spherical particles. 

Finally, the correction of the full width a half maximum is included to indicate that this result is not 

representative for the actual particle width. 

Table 1 Results for the correction of the probe shape for the values of the full width at ground level and the full width at half 
maximum, compared to the measured average height of the particles. 

Probe Silica height Probe width  
at half nanoparticle 

height 

Silica full width  
at ground level  

Silica full width  
at half maximum 

   uncorrected corrected uncorrected corrected 

 /nm /nm /nm /nm /nm /nm 

Probe1 116.0 ± 2.7 81.0 ± 1.0 194.5 ± 4.4 113.5 ± 4.4 151.9 ± 3.9 70.9 ± 3.9 

Probe2 115.8 ± 2.5 57.3 ± 3.1 174.3 ± 2.7 116.9 ± 2.7 135.4 ± 1.8 78.1 ± 1.8 
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5. Physical modelling for Small Angle X-Ray Scattering (SAXS) 
A software tool was created to simulate the scattering from arbitrary form factors on the basis of the 

Debye scattering equation. This tool was then used to conduct a study to develop a simple protocol for 

the analysis of scattering curves for nanoparticle with complex shapes with a narrow size distribution. 

The chosen simulated shapes with increasing complexity were spheres, rods, cubes, octahedra and a 

hypothetical highly complex structure in the shape of a smurf, see figure 5.3.  

The resulting scattering curves were then fitted with an ensemble of spheres using the Monte Carlo 

fitting algorithm implemented in McSAS. The resulting size distribution was then manually analyzed by 

a SAXS expert to guess the shape of the simulated ensemble. The expert was able to work out the 

simple shapes (spheres, rods, discs) from the size distribution, and correctly guessed the highly complex 

particles as a “complex shape,” but was unable to identify the cubes and octahedra. Based on this 

experience, a procedure for identifying the scattering from complex shapes was suggested. The whole 

procedure is depicted in the flow chart in the figure below. 

 

 

Figure 5.3: Flow chart to determine the nanoparticle shape from the SAXS scattering curve, 
assuming narrow size distributions 
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6. Machine Learning 
 

Background 

Pollen's technologies aim to improve and fasten metrology for nanomaterials. As the design and shape of these 

objects varies at lot from customers and users, we propose a set of tools based on machine learning and deep 

learning. These solutions allow to automatize the metrology based on the expertise of the user. For the scope of 

this project, we develop deep learning techniques for metrology of nanoparticles.  

We propose two complementary approaches: 

• one for the detection of objects in the image  

• a second for the analysis of the detected objects.  

Before presenting deep learning techniques, it is useful to have in mind the classic techniques, or “non” deep 

learning techniques, to understand the added value of this latter: classic developments of new algorithms are driven 

by new use cases. I.e. if we want to analyze spherical particles of a certain type with a certain acquisition procedure, 

we need to develop an algorithm dedicated to this case. With a different case, a new algorithm needs to be 

developed as well. And so on.  

Then, machine learning techniques began to gain interest as the core idea is to create an algorithm that is able to 

adapt itself to new data. The algorithm uses annotations: image annotation is the human-powered task of 

annotating an image with labels. Once the algorithm is set up, new cases can be managed thanks to new 

annotations. The main advantage of annotations is that they can be provided by users that are not expert in image 

processing and machine learning. Machine learning is working by extracting features from the data which are used 

then to perform the task (object detection, segmentation, ...). These features can be as simple as lines or edges, 

up to more complex such as wavelets or textures. In classic Machine Learning, the features are designed by humans 

which can be subjectivity depending on the variability of use cases we want to cover. Indeed, the designed features 

may contain bias and thus work better in some use cases. 

Consequently, researchers started to develop more flexible machine learning with the deep learning principles. The 

idea behind deep learning techniques is to let the algorithm learn how to extract the features by itself.  

 

 

Figure 6.1: Differences between classic machine learning and deep learning.  
Red boxes are part of the pipeline that are learnt1. 

 

 
1 Ref: https://www.college-de-france.fr/media/yann-lecun/ 
UPL7915574462521283497_lecun_20160204_college_de_france_lecon_inaugurale.pdf 
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Deep learning aims to propose a set of operations that can be ordered as wanted to provide any kind of output. The 

list of challenges that can be solved by this way are: 

• image processing with segmentation,  

• object detection,  

• classification, 

• and also natural language processing, time series analysis...  

The main common characteristic is the large quantity of data needed for the training of these models.  

The first challenge of these models is the design of an architecture. The large variety of operations available is both 

an advantage (allowing to design any kind of architecture), but this large space of possibilities makes it difficult to 

create functional architectures.  

The second challenge concerns the training of such models. Those have on average millions of parameters that 

can be tuned to provide a result. As any model, optimization is performed to find the optimal ones. But performing 

optimization in a such large space of parameters is difficult as the chances to fall into a local minimum are important.  

In addition, the current theory around all this kind of optimization is still new and under construction as the field is 

moving fast. 

 

Figure 6.2: Presentation of a deep learning pipeline.2 

 

To understand a better the working of neural networks, we will present some classic layers and how to assemble 

them. First there are two main concepts, neurons and layers.  

• A layer is composed of a certain number of neurons  

• and neurons are responsible to perform different operations.  

Layers are then linked together to form a network. The first classic layer is the fully connected layer. The idea of 

this layer is to link each neuron from a layer to each other neuron to the next layer.  

Another type of widely used layer is the convolutional layer. This time each neuron is a filter which is learnt such 

that convolutes the output of the previous layer to generate a set of filtered maps.  

 
2 Ref: https://medium.com/@RaghavPrabhu/ 
understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148 
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Figure 6.3: Differences between fully connected and convolutional layers.3 

 

Presentation of the algorithm developed by Pollen for nPSize 

The goal of the object detection part is to provide the user a way to define his/her objects and be able to find it back 

in images. For this purpose, we developed a system where the user builds a database by selecting examples of 

objects to train a model. Classic approaches require at least thousands of examples to train a model, which is 

limiting for a user that cannot afford to annotate this amount of data. On the other hand, the user is not an expert in 

image processing thus (s)he doesn’t want to tune a large number of parameters that have unknown effect (for 

her/him). For these reasons, our proposal lies on the need for the algorithm to be robust with a few examples or 

with a simple way to increase the database.  

Our approach considers discrimination of the objects from background based on features extracted on the image. 

To build such a classifier, it is required to have both examples of objects and background.  

Positive examples are easy to define for a user, but examples of background can be misleading. We propose the 

user an automatic way to retrieve negative examples in the image based on his annotation of the objects.  

Then, regarding deep learning features, as most users have small annotated database, we propose a method that 

relies on deep learning features already trained instead of training them with the data of the user.  

In the literature, it is widely admitted that such features are robust enough to propose good performances. Indeed, 

it is understandable that edges from cars and dogs images are not that far from edges in microscopy images. In 

addition, a line or a corner in natural images are similar to lines and corners from nanostructures. Then based on 

these features we perform the detection of the objects at different scales to capture objects with different sizes. 
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nPSize10_Monomodal_silica 
_10%_TEM 

 

   

 

 
3 Ref: https://www.oreilly.com/library/view/learning-tensorflow/9781491978504/ch04.html 
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               Figure 6.4: Use of already trained deep learning algorithm, 
with detection of objects at different scales with different sizes 

 

Traditional approaches for the detection of edges are based on the computation of gradient or other transition 

functions. The issue with such approaches is that some edges will activate this definition but are not of interest. 

This is usually balanced by applying some priors on shapes.  

With machine learning and more specifically deep learning, we can select the edges of interest through the 

annotation, so that only the edges that carry information on objects would be retrieved. In practice, this advantage 

is balanced by the fuzziness of the proposed contour. Because of the different steps of convolution, the response 

of the network to edges it not as clear as it is with mathematical models. We are going to apply post-processing 

steps in order to retrieve thinner contours corresponding to the real needs of metrology.  

In the previous examples (see figure 6.4), the thickness of the edges returned by deep learning is more than 1 pixel, 

with the consequence that measurements can be degraded or variable. 

 

Conclusions and Outlook 
All the components are in place for the next steps:  

• use physical models to annotate (cf 6. Machine Learning) databases  

• use annotated databases to run deep learning algorithms 

• benchmark the different methods: 

o manual measurements  

o physical model measurements,  

o deep learning measurements 
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