Supporting information

Automation and Standardization – a coupled approach towards reproducible sample preparation protocols for nanomaterial analysis

Jörg Radnik ^{1,*}, Vasile-Dan Hodoroaba ¹, Harald Jungnickel ², Jutta Tentschert ², Andreas Luch ², Vanessa Sogne ³, Florian Meier ³, Loïc Burr ⁴, David Schmid ⁴, Christoph Schlager ⁵, Tae-Hyun Yoon ^{6,7}, Ruud Peters ⁸, Sophie M. Briffa ⁹, and Eugenia Valsami-Jones⁹

S.1. Microprinting of nanoparticles for electron microscopy analysis

The principle of the developed technique is to print nano- or pico-droplets of nanomaterial suspensions on substrates such as TEM grids. For this, Cu TEM grids deposited on clean microscopy glass slides were printed with a 4x4 array of 0.35-0.4 nL droplets, using a NanoPlotter 2.0 (GeSIM GmbH) piezoelectric printer equipped with NanoTips J piezoelectrical pipette tips (Figure S1). As part of the ACEnano project, focus was set on particles already in suspension, whereas an additional step to suspend nanomaterials would also allow the use of powder samples.

Figure S1: Picture of the Nanoplotter device at CSEM equipped with 4 piezoelectric pipette tips and microscopy image of the TEM grid with overlapped 4x4 printing array.

To enable the acquisition of useful EM images, several requirements must be met. As for the standard EM preparation method, impurities must be removed from the nanomaterial samples so as to not dominate the acquired image. For this cleaning procedures similar to standard sample preparation techniques such as dialysis or centrifugation/re-suspension can be used. On the one hand nanomaterials must form no more than a monolayer on the substrate so that each nanoobject can be individually identified and quantified. On the other hand, nanomaterial density as deposited must be sufficient to enable efficient data acquisition of a statistically relevant number of nanomaterials qualitative and quantitative characterization.

While the automation of dispensing nanomaterials on suitable substrates present major advantages such as high throughput and quantitative measurements, it gives rise to new challenges. Agglomeration and aggregation in suspension must be prevented to avoid clogging the piezoelectrical pipette tips. More importantly, the drying of the printed droplets must be controlled to avoid formation of agglomerates / aggregates and "coffee rings". However, as for standard methods, cleaning procedures will involve similar bias to the printed sample. In the present work, to minimize alteration of the

nanomaterials, particle suspensions were only modified by dilution with ultrapure water. Droplet drying has been tuned by varying temperature and humidity. Figure S2 shows STEM-in-SEM images of a single microprinted droplet of 100 nm latex NPs. It evidences that printing at a concentration of 4.5 x 1010 nanoparticles per ml and drying at 21 °C with 55% relative humidity led to the formation of a printed spot of few tenths of micrometre in diameter with a "coffee-ring" with high particle density and inner surfacee with low particle density.

Figure S2: Zeiss Supra 40 high magnification T-SEM micrographs of a micro-printed 100 nm latex nanoparticles at concentration of 4.5 x 1010 NP/mL. a) Low magnification micrograph showing an entire 400 pL droplet after microprinting, b) magnification on the edge of the printed droplet evidencing particle agglogmeration in the shape of a"coffee ring", c) and d): magnification in the center of the droplet showing mostly individual particles homogeneously distributed with low density.

During the ACEnano project, the development of the microprinting of nanoparticles made the present technique very promising for increasing the use of imaging as a standard analysis method. However, several challenges remain for its broad application. Further optimisation of the particle concentration in suspension and optimisation of the droplet drying process on the substrate are necessary to avoid agglomerates and coffee rings as shown in Figure S2. In addition, improvement of the alignment technique using computer assisted detection of alignment markers would increase precision and speed of printing. Further improvements would involve printing of even smaller droplets, which in turn would enable faster imaging of entire drops and the printing of 1 drop per TEM grid cell leading to more than 100 different samples on one single TEMgrid.

S.2 Standards concerning sample preparation and links

Standard life Link/summara

ISO TR 20489:2018	Nanotechnologies – Sample preparation	https://www.iso.org/standard/68198.html
	for the characterization of metal and	Commission (i.e. masters to and
	metai-oxide nano-objects in water samples	size-fractionation (i.e. pretreatment and size-fractionation) for analytical
		measurements applied to surface and
		drinking water containing relevant amounts of metal and metal oxides
ISO TR 19716:2016	Nanotechnologies - Characterization of	https://www.iso.org/standard/66110.html
	cellulose nanocrystals	
		Methods for the characterization of
		cellulose nanocrystals including sample
		data analysis
ISO TS 21346:2021	Nanotechnologies – Compilation and	https://www.iso.org/standard/70638.html
	description of sample preparation and	
	dosing methods for engineered and	Characteristics to be measured of
	manufactured nanomaterials	individualized cellulose nanofibril in
		suspension and powder form and their
		preparation, measurement and data
		analysis procedures
ISO TS 21356:2021	Nanotechnologies – Structural	https://www.iso.org/standard/70757.html
	characterization of graphene – part 1:	
	graphene from powders and dispersion	Sequence of methods for the
		graphene, bilayer graphene, and graphene
		nanoplatelets from powders and liquid
		dispersions. A range of measurement
		techniques is presented after the isolation
		of individual flakes on a substrate which
		provided properties like thickness, lateral
		alignment and specific surface area
		Measurement protocols, sample
		preparation and data analysis routines are
		provided
100 20570 4 2010	Surface chemical analysis – Guidelines to	https://www.iso.org/standard/68833.html
15O 20579-4:2018	sample handling, preparation and	Information is identified to be reported in
	related to the history, preparation.	a datasheet, certificate of analysis, report
	handling and mounting of nano-objects	or other publication regarding the
	prior to surface analysis	handling of nano-objects in preparation
		for surface chemical analysis
CENT 15 17979	Negatadualasi Cil	
CEN 15 17273	INanotechnologies – Guidance on	nttps://www.en-standard.eu/pd-cen-ts-
	objects in complex matrices	on-detection-and-identification-of-nano-
	objects in complex matrices	objects-in-complex-matrices/
		Requirements for sampling and treatment
		of complex matrices like liquid
		environmental compartments, waste
		obtain a liquid dispersion with sufficiently
		high concentration of the nano-objects of
		interest. The selected analysis methods are
		based on a combination of size
		classification and chemical composition
		analysis (FFF, EM and sp-ICP-MS).

S.3. Conditions of the AF4-MALS analysis

Sample information

Sample: pyr. SiO2 suspension, 100 mg/L suspended in eluent after manual and automated preparation Injection volume: 100 μ L (10 μ g injected mass) Eluent: 0.2 % NovaChem

AF4-MALS setup

AF4: Postnova AF2000 MultiFlow equipped with a Postnova PN1650 Smart Stream Splitting Module MALS: Postnova PN3621 MALS

- 532 nm Laser
- 80% Laser power
- data fitting via random coil model, 19 active angles (12°-156°)

AF4-fractionation conditions

Sample introduction

- 0.2 mL/min injection flow
- 2 min delay time
- 7 min injection time
- 0.5 min transition time

Flow conditions

- Cross flow profile (see Figure S3)
 - 1.5 mL/min initial cross flow field
 - 0.2 min constant cross flow field
 - 10 min power decay cross flow field (exponent 0.1) to 0.1 mL/min
 - 35 min constant cross flow field at 0.1 mL/min
- 0.5 mL/min channel flow
- 50% slot-outlet

Figure S3: Cross flow profile that was used for the fractionations