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Abstract: Irregularities of the track are a main cause of train-induced ground vibration, and track
maintenance is of great importance. Although geometric irregularities at the wheel-rail contact are
widely used, other types of irregularities, such as stiffness irregularities, irregularities from different
track positions and irregularities in the wave propagation, were analysed in the present study. The
track behaviour was investigated by a multi-beam-on-soil model. This track model is coupled with a
vehicle model to calculate the vehicle–track interaction. The track model was also used for the track
filtering, which transfers a track support error to the equivalent rail irregularity or, conversely, the
sharp axle pulse on the rail to a smoother pulse on the soil. In the case in which this filtering varies
randomly along the track, the pulses of the moving static load induce a certain ground vibration
component (“the scatter of axle pulses”). This effect was calculated by the superposition of axle
pulses in the frequency domain and by a stochastic simulation. Simultaneous vehicle, track and soil
measurements at a certain site were used to evaluate the different excitation and ground vibration
components. The agreement between calculations and axle-box and soil measurements is good. The
ground vibrations calculated from rail irregularities and corresponding dynamic loads, however,
clearly underestimate the measured ground vibration amplitudes. Only the static load that is moving
over a varying track support stiffness can produce the important mid-frequency ground vibration
component by the scatter of axle pulses.

Keywords: train-induced ground vibration; geometric vehicle and track irregularities; stiffness
variation; multi-beam track model; track filtering; dynamic axle loads; static axle loads; layered soil

1. Introduction

Irregularities are the main source if excitation of train-induced ground vibrations,
which are in the frequency range of 4 to 100 Hz (maximal 250 Hz). Irregularities can be
divided into vertical, horizontal, rotational and gauge errors; vehicle and track irregulari-
ties; and low-frequency alignment errors and high-frequency roughness errors, where the
areas of interest of the present article are underlined. The irregularities are presented as
wavelength or wavenumber spectra. Some normative alignment spectra from US, China,
France, and Germany are presented and compared in [1]. Measurement examples of track
errors are given, for example, in [2,3]. The track errors in the present article are based on
own axle-box measurements at a ground vibration measurement site [4]. The article is
focused on the mid-frequency range of 8 to 30 Hz, which is usually the dominant ground
vibration in the mid and far field.

In ground vibration analysis, different numerical models of the railway track and the
soil have been established: the wavenumber-domain models [5–8], finite/infinite-element
models [9–12] (SBFEM), boundary-element models [13,14], and 2.5D coupled wavenumber-
domain (finite or boundary-element) models [5,15–17]. The present contribution is based
on frequency-wavenumber methods and their approximations; see Appendix A. The
additional method of superposition of axle pulses was also used in [18] for trans-Rayleigh
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trains that are moving faster than the waves in the soil; however, these are not included in
the present contribution.

When the theoretical models are compared with measurements, the geometric irreg-
ularities at the wheel–rail contact are used as the excitation in most cases. Moreover, the
irregularities from the US standard [2], which are quite high, are often used. For some
model verifications, the irregularities are measured [5,8,17,19] mainly by hand-driven trol-
leys, which are suitable for roughness and for which the results must be extrapolated to low
frequencies. In [19], a low-frequency method was used in addition to the high-frequency
roughness measurement and the combined results showed an almost unique curve. Axle-
box measurements [4,5] provide results for a wide frequency range and include track and
vehicle irregularities that can be distinguished by their different frequency characteris-
tics [20]. In all these cases, the inertial forces of the wheelset running over the irregularities
are understood as the excitation of the ground vibration.

In addition to track and vehicle irregularities, the following irregularities can be
distinguished: rail unevenness or roughness [21] and wheel unevenness or roughness,
which are both at high frequencies above 50 Hz and are not covered in this article; low order
wheel out-of-roundness between 10 and 50 Hz [22]; geometric track alignment or level
errors, geometric track support errors and track support stiffness variations usually below
30 Hz [23–25]; and deterministic track stiffness variation with sleeper-distance frequency
above 50 Hz [26]. All these irregularities generate dynamic axle loads when an axle (the
unsprung mass) passes over these irregularities [27]. An additional effect follows from
the passage of a static load over a track with an irregular track support (irregular ballast,
irregular soil, irregular sleeper contact). The randomly varying track support stiffness was
analysed experimentally in [28–30], and it is known that the track support can strongly
vary up to hanging sleepers. In the case of varying track stiffness, the ground vibration is
generated in a different way by the irregular transfer of the static load to the ground.

The structure of this article is as follows. First (Section 2), the importance of the
mid-frequency ground vibration component is illustrated by measurements at two sites.
In Section 3, all theoretical methods are described, namely, the track analysis by a multi-
beam-on-soil model, the vehicle–track interaction for the force transfer functions, the
track filtering for geometric track support errors, a two-step linear perturbation analysis
for the support stiffness variation, and the regular and irregular superposition of the
axle pulses on all sleepers by a stochastic simulation. In Section 4, the calculated force
transfers and ground vibrations for all excitations are presented. Finally, the detailed results
(acceleration, irregularity, and force spectra, and ground vibration amplitudes and spectra)
of a measurement site are compared with the calculations in Section 5.

2. Experimental Motivation by the Dominant Frequency Range of Railway-Induced
Ground Vibration

This article was motivated by experimental observations of railway-induced ground
vibration. The ground vibration was measured by geophones (velocity transducers), filtered
and amplified, digitised with a frequency of 2 kHz in a 72-channel measurement system.
An instrumented impact hammer was used for artificial excitation and yields the force
signal to evaluate transfer functions (Section 5.2).

Two examples are shown in Figure 1—the passage of standard passenger trains at site
N with soft clayey soil (shear wave velocity vS = 150 m/s), train speed vT ≈ 100 km/h, and
at site H with sandy, medium stiff soil (vS = 225 m/s) and a train speed of vT ≈ 160 km/h.
A third site W is analysed in Section 5.3, where a special passenger train was run with
specific train speeds between 63 and 160 km/h, at least three times for each speed. The
standard trains were measured 10 to 15 times with slightly varying speed.



Appl. Sci. 2022, 12, 1463 3 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 22 
 

range from 4 to 256 Hz. The response can be roughly divided into three frequency ranges. 
The low frequencies have only small amplitudes (except sometimes the first measurement 
point). The high frequencies have a strong attenuation with distance so that the further 
distances have small amplitudes. The mid-frequency range from 8 to 30 Hz has a weak 
attenuation and has therefore the greatest amplitudes in some distance. Therefore, the mid 
frequencies are the most important frequency range in most situations, and the analysis 
of the present contribution is focused on this important mid-frequency range. 

 
(a) (b) 

Figure 1. Train induced ground vibration, (a) at site N, (b) at site H, at distances x = □ 3, ○ 5, ∆ 10, + 
20, × 30, and ◊ 50 m [20]. 

3. Frequency Domain Methods of Calculation 
3.1. Simple Vehicle and Multi-Beam-on-Soil Track 

The dynamic stiffness KV of the vehicle can be approximated by the mass mW of the 
wheelset and the circular frequency ω as: 𝐾 (𝜔) = −𝑚 𝜔  (1)

The minor effects of more detailed vehicle models have been discussed in [31]. 
Many track systems have been calculated by the combined finite-element boundary-

element method [32] or by a faster multi-beam-on-soil track model in the frequency-wave-
number domain (Figure 2) as follows. The track model consists of n beams that represent 
the rails and track slabs, and which are described by the bending stiffnesses EIj and the 
masses per length mj’ in the diagonal matrices EI and M, and by a stiffness and damping 
matrix K and C representing rail pads, sleepers, the ballast and any isolation element. The 
multi-beam system fulfils the set of differential equations for the displacements u and the 
load (per length) F’T: 𝐄𝐈 ∂ 𝐮∂𝑦 + 𝐌 𝜕 𝐮∂𝑡 + 𝐂 ∂𝐮∂𝑡 + 𝐊𝐮 = 𝐅′  (2)

This equation is transformed to the frequency-wavenumber domain with wave-
number ξ: (𝜉 𝐄𝐈 − 𝜔 𝐌 + i𝜔𝐂 + 𝐊)𝐮(𝜔, 𝜉) = (𝜉 𝐄𝐈 + 𝐊 (𝜔, 𝜉))𝐮(𝜔, 𝜉) = 𝐅 (𝜔, 𝜉) (3)

where KTS(ω,ξ) = KT(ω) + KS(ω,ξ) is the dynamic track–soil stiffness matrix. The track stiff-
ness KT(ω) is calculated by transfer matrices for each support element [33], and the soil 
stiffness KS(ω,ξ) = kS(ω,ξ)enTen is added to the last diagonal element. The soil stiffness 

Figure 1. Train induced ground vibration, (a) at site N, (b) at site H, at distances x = � 3, # 5, ∆ 10,
+ 20, × 30, and ♦ 50 m [20].

The train induced ground vibrations of site N and site H are shown in Figure 1 for
the distances between 3 and 50 m as one-third octave band spectra of the whole frequency
range from 4 to 256 Hz. The response can be roughly divided into three frequency ranges.
The low frequencies have only small amplitudes (except sometimes the first measurement
point). The high frequencies have a strong attenuation with distance so that the further
distances have small amplitudes. The mid-frequency range from 8 to 30 Hz has a weak
attenuation and has therefore the greatest amplitudes in some distance. Therefore, the mid
frequencies are the most important frequency range in most situations, and the analysis of
the present contribution is focused on this important mid-frequency range.

3. Frequency Domain Methods of Calculation
3.1. Simple Vehicle and Multi-Beam-on-Soil Track

The dynamic stiffness KV of the vehicle can be approximated by the mass mW of the
wheelset and the circular frequency ω as:

KV(ω) = −mWω2 (1)

The minor effects of more detailed vehicle models have been discussed in [31].
Many track systems have been calculated by the combined finite-element boundary-

element method [32] or by a faster multi-beam-on-soil track model in the frequency-
wavenumber domain (Figure 2) as follows. The track model consists of n beams that
represent the rails and track slabs, and which are described by the bending stiffnesses EIj
and the masses per length mj’ in the diagonal matrices EI and M, and by a stiffness and
damping matrix K and C representing rail pads, sleepers, the ballast and any isolation ele-
ment. The multi-beam system fulfils the set of differential equations for the displacements
u and the load (per length) F′

T:

EI
∂4u
∂y4 + M

∂2u
∂t2 + C

∂u
∂t

+ Ku = F
′
T (2)
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Figure 2. Track model consisting of rail, rail pad, sleeper, sleeper pad, ballast, ballast mat, ballast
plate and continuous soil.

This equation is transformed to the frequency-wavenumber domain with wavenumber ξ:

(ξ4EI−ω2M + iωC + K)u(ω, ξ) = (ξ4EI + KTS(ω, ξ))u(ω, ξ) = F
′
T(ω, ξ) (3)

where KTS(ω,ξ) = KT(ω) + KS(ω,ξ) is the dynamic track–soil stiffness matrix. The track
stiffness KT(ω) is calculated by transfer matrices for each support element [33], and the soil
stiffness KS(ω,ξ) = kS(ω,ξ)en

Ten is added to the last diagonal element. The soil stiffness
kS(ω,ξ) is calculated as a wavenumber integral and can be approximated by a Winkler
approach kS*(ω) = kW + iωcW (see Appendix A).

The dynamic track stiffness KT(ω) between the axle load FT and the corresponding
rail displacement uR can be calculated from the wavenumber integral:

1
KT(ω)

=
uR

FT
(ω) =

1
2π

∫ ∞

−∞
e1

T
(

EIξ4 + KTS(ω, ξ)
)−1

e1dξ (4)

The force FS on the soil follows from the displacement uS of the soil and the soil
stiffness kS as:

FS(ω) = kSuS(ω, ξ = 0) = kS(ω, ξ = 0)en
TKTS(ω, ξ = 0)−1e1FT = HT(ω)FT(ω) (5)

The base vector e1 stands for the top of the track, the base vector en stands for the
bottom of the track (the soil).

3.2. The Vehicle-Track Transfer Functions

The dynamic stiffness KT(ω) of the track is coupled with the dynamic stiffness KV(ω)
of the vehicle to analyse the combined vehicle–track system. The force FT that acts on the
track is calculated as:

FT(ω) = − KV(ω)KT(ω)

KV(ω) + KT(ω)
s(ω) = HV(ω) s(ω) (6)

for the geometric vehicle–track irregularities s(ω). In the case of a varying track stiffness
KT(x) (see Section 3.4), a similar transfer function HV*(ω) for the effective track irregularities
s*(ω) yields:

FT(ω) = − KV(ω)KT0

KV(ω) + KT(ω)
s∗(ω) = HV

∗(ω) s∗(ω) (7)

The only difference is that the static track stiffness KT0 is used in the numerator [34].
Equation (7) holds also for the effective irregularity sD* due to the stiffness variation on
and between the sleepers.
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In general, the influence of the track mass must be introduced by the force transfer
function HT(ω) = FS/FT(ω) in Equation (5) from the top to the bottom of the track. Finally,
the force FS on the soil, which excites the ground vibration, can be calculated as:

FS(ω) = HT(ω)FT(ω) = HT(ω)HV(ω)s(ω). (8)

For the standard ballast track and the interesting frequency range (8–30 Hz), the track
transfer HT(ω) is almost 1, so that the force on the track is nearly the force on the soil
FT ≈ FS = F (the dynamic axle load).

3.3. Irregularities at the Vehicle-Track Interface

The mostly referenced causes of train-induced ground vibrations are geometric ir-
regularities of the vehicle and the track, which are most simply described as geometric
irregularities s at the interface between wheel and rail. Irregularities can also come from
other positions in the track [23], and, most importantly, from the track support. Moreover,
irregularities are not only geometric irregularities, but can also be due to a stiffness varia-
tion. All irregularities can be transformed to effective irregularities at rail level s*, sR and
the dynamic loads follow with the vehicle–track transfer function (6), (7). The effects of the
geometric or stiffness variation of the track support are presented in the next section.

3.4. Irregularities of the Track Support and Track Filtering
3.4.1. Geometric Irregularities of the Track Support

At first, the track is excited by a harmonic irregularity of the soil surface:

sS(ξ) = sSeiξxen. (9)

The response u to this excitation is also a harmonic function, which can be calculated
in wavenumber domain according to [24]:(

EIξ4 + KT0(ξ)
)

u + KS0(u(ξ)− sS(ξ)) = 0 (10)

KT0 is the static support stiffness inside the track beams and KS0 is the static support
stiffness under the track beams. No external force is present and only the difference u-sS
yields a force KS (u−sS) between the track and the soil. The solution is:

u(ξ) = (EIξ4 + KT0(ξ) + KS0(ξ))
−1

KS0(ξ)sS(ξ)

u(ξ) = (EIξ4 + KTS0(ξ))
−1

enkS0(ξ)sS,
(11)

and the effective track irregularity sR at the rail level is:

sR(ξ) = e1
T
(

EIξ4 + KTS0(ξ)
)−1

enkS0(ξ)sS = HsT(ω = ξvT)sS (12)

This equation holds in the wavenumber domain and also in the frequency domain if
the relation ω = ξvT with train speed vT is used.

3.4.2. Random Variation of the Track Support Stiffness

Another possible excitation of railway-induced ground vibration is due to the variation
of the track support stiffness as:

kS = k0 + k1 exp(iξVy) (13)
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with a constant mean stiffness k0. The stiffness variation k1 yields a track response in
combination with the static train load F0, and:

EI
∂4u
∂y4 + (K0 + K1(y))u = F0e1δ(y) (14)

is the differential equation for the displacements u along the track. The solution is estab-
lished by a two-step linear perturbation analysis as u = u0 + u1 [23,24]. Finally, the effective
track irregularity s* at the rail level is achieved by the transfer function:

s∗
k1/k0

(ω) = − F0k0

2π

∫ ∞

−∞
e1

T(EIξ4 + K0)
−1

enen
T(EI(ξ − ξV)

4 + K0)
−1

e1dξ = HkT(ω = ξVvT) (15)

3.5. Superposition of Axle Pulses from Passing Trains

The additional effect of moving static loads is analysed by the pulses on the track.
Each wheelset yields a pulse on each sleeper, and all responses of the soil to these pulses
are superposed in the frequency domain. First, the general method is described, which can
also be applied to a regular track. The case of an irregular track with a varying support
stiffness is then solved numerically by a stochastic simulation.

3.5.1. Regular Track Support

The passage of the static train loads is represented by a number of impulses at a line
of discrete excitation points yj. The passage of a train yields impulses F0dt on the track due
to the static axle load F0. The length dt of the impulse follows from the distance dy of the
discrete excitation points and the train speed vT as dt = dy/vT. The impulse on the rail is a
Dirac function δ(t). The bending stiffness of the track filters out the high frequency content
of this infinitely sharp impulse. This is expressed by the filter function (Figure 3a):

HF(ω = ξvT) =
FS
FR

= e1
T
(

EIξ4 + KTS0

)−1
enks =

sR
sS

= HsT(ω = ξvT) (16)
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The filter function for the force is the same as the filter function (12) for the geometric
track support irregularities due to reciprocity. In the case of a standard ballast track, the
filter function is reduced to:

HF(ω = ξvT) =
kS

EIξ4 + kS
=

1

1 + (ω/ω0)
4 (17)

where the cut-off frequency ω0 is ruled by the bending stiffness EI of the track, the support
stiffness kS of the ballast and soil, and the train speed vT according to:

ω0 ∼
4

√
kS
EI

vT (18)

For a ballast track and a train speed of 160 km/h, a frequency of f 0 = 13 Hz is used.
The impulses at different places yj are applied at different times tj = yj/vT. The delay

time tj is included in the frequency domain as the factor:

exp
(
−iωtj

)
(19)

Then the response at a distance x from the track to the sequence of impulses due to a
single axle is given as the spectral density:

u(x, ω) = HF(ω) F0dt
+n/2

∑
j=−n/2

HS
(
x, yj, ω

)
exp

(
−iωtj

)
(20)

for the displacements and:
v(x, ω) = iωu(x, f ) (21)

for the particle velocities. HS(x, yj, ω) is the transfer function of the soil and is calculated by
an infinite integration in the frequency-wavenumber domain (see [35] and Appendix A)
and summed for the n+1 excitation points yj. The response of a whole train follows by the
multiplication of (21) with the axle-sequence spectrum (Figure 3b):

X( f ) =

∣∣∣∣∣2nB

∑
k=1

Fk
∗ exp(−iωTk)

∣∣∣∣∣ ≈ √nBXA( f ) =
√

nB2
∣∣∣∣cos

(
π f

2lB
vT

)∣∣∣∣ (22)

where nB (=20) is the number of bogies and 2lB (=2.5 m) is the axle distance in the bogie.
The spectrum X(f ) of all axles with arrival times Tk and relative static loads Fk* (=1) can
be approximated with the axle-distance spectrum XA(f ) of a single bogie in the frequency
range of interest (8–30 Hz). The axle-sequence spectrum XA(f ) has two characteristic
minima, which are shifted in frequency with train speed.

The results are presented as one-third of octave band spectra that follow from the
spectral densities (20), (21) as:

v(x, fT) = 2

√√√√ lo

∑
l=lu

v2(x, fl)

nT

√
d f d fT (23)

where fT is the centre frequency of the one-third of octave band, and fl are the nT frequencies
of the spectral density within one-third of the octave band (lu < l < lo). One-third of the
octave bands dfT are proportional to the frequency dfT = 0.23f and the linear frequency
band df = 0.5 Hz is used as the reference.

3.5.2. Randomly Varying Track Support

A soft or stiff track support has an influence on the load distribution of the track. A soft
track support yields a wide load distribution, whereas a stiff track support yields a narrow
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load distribution. The distribution of the load along the track simultaneously means a
distribution of the load in time. The impulses from the static axle loads are sharper for a
stiff track support and smoother for a soft track support. The random variation of the track
support stiffness is now included in the model in a simplified manner by modifying the
width of the impulse. The width of the impulse is expressed in the filter function (17) of the
track. A soft track support shifts the filter frequency f 0 to a lower value. The random track
support stiffness is realised in the calculation by a random support stiffness and hence a
random filter frequency of the track. The stiffness for each excitation point is calculated as:

kS
(
yj
)
= k0(1 + q rand(j)) (24)

where k0 is the average value and q is the percentage of the variation, and rand(j) are equally
distributed random numbers between −1 and +1. A total of 100 realisations of the stiffness
distributions were analysed and the average of the response is presented.

The other calculation parameters are the distance of the track points dy = 0.6 m,
the number of the track points n = 168, and the length of the track L = 100 m. As the
homogeneous soil has only a weak attenuation with distance, the train passage does not
start with a zero amplitude. To avoid any boundary effect, a Hanning window

hH(y) = cos2
(πy

L

)
(25)

is used.

4. Theoretical Results

The results of this section are based on a standard ballast track. The relevant param-
eters are the bending stiffness of the rail EI = 6.4 Nm2, the mass per length of the rail
m’ = 60 kg/m, the stiffness of the rail pad kR = 3 108 N/m or infinite, the sleeper mass
mS = 340 kg, the sleeper distance d = 0.6 m, the ballast height hB = 0.3 m, and the shear
wave velocity of the soil vS = 200 m/s and the ballast vS = 300 m/s. The standard vehicle
parameters of interest are the wheelset mass mW = 1500 kg and the axle distance within a
bogie 2lB = 2.5 m. The standard train has 40 axles with a static axle load of F0 = 100 kN on a
train length of 250 m.

4.1. Transfer Functions of the Vehicle-Track Interaction

First, the most important vehicle–track–soil transfer function FS/s = HT HV is presented
for the variation of some vehicle and track parameters. The vehicle–track–soil transfer
function is strongly influenced by the unsprung mass of the vehicle, the wheelset mass
(Figure 4a). The dynamic axle loads are proportional to the wheelset mass for frequencies up
to 64 Hz. For this frequency range, the transfer function increases strongly with FS/s ~ f 2.
If soft under-sleeper pads are added to the track (Figure 4b), resonances can be seen at
frequencies between 16 and 64 Hz. Above these resonance frequencies, the dynamic
axle-loads can be reduced to less than one-tenth of the values of a standard ballast track.
Vehicle–track resonances, however, do not occur for the standard ballast track in the
frequency range of interest.
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Figure 4. Transfer functions of vehicle–track interaction (dynamic axle loads due to irregularities)
(a) for different wheelset masses mW = + 1000, ∆ 1500, # 2000, and � 3000 kg, — 1500 kg with
HT(f ) = 1, and (b) for different under-sleeper pads with stiffness of kP = × 10, + 20, ∆ 40, # 80,
and � 160 × 106 N/m.

4.2. Transfer Functions of the Track Filtering

The track filtering functions for the geometric and stiffness-induced track support
irregularities are shown in Figure 5. Figure 5a shows that the low-frequency geometric track
support irregularity sS is passed directly through the track to give the rail irregularity sR,
yielding a transfer value of sR/sS = 1. Frequencies higher than 12 Hz (in case of a standard
ballast track and train speed of vT = 160 km/h) are reduced considerably because of a
strong cut-off effect. The ballast tracks with soft sleeper pads have lower cut-off frequencies
down to 8 Hz and, therefore, a stronger track filtering effect with lower effective track
irregularities.
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Similar observations are made for the stiffness-induced track support irregularities in
Figure 5b, but the cut-off frequencies are somewhat higher, between 12 and 20 Hz, and the
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low-frequency transfer values depend on the stiffness of the track. The low-frequency force
amplitudes are smaller for the softer sleeper pads.

4.3. Quasi-Static Ground Response

First, the effect of the axle pulses on a regular track support is examined. A train with
speed of 160 km/h and three homogeneous soils with shear wave velocities of vS = 150,
200 and 300 m/s are considered. The train passage is presented as one-third of the octave
band spectra of the particle velocity for the distances x = 3, 5, and 10 m in Figure 6a–c.
The moving static loads induce very low-frequency vibrations in the neighbourhood of
the railway line. The main amplitudes of this quasi-static solution are below 12 Hz at 3 m,
below 6 Hz at 5 m, and below 3 Hz at 10 m. The spectra strongly decrease with frequency
and with distance. This means that the regular response to the static loads is limited to the
low-frequency near field of the track (see also [36–38]), except for trans-Rayleigh-trains in
very soft soils [18]. The quasi-static ground vibration amplitudes are also reduced in a stiffer
soil (Figure 6c). The typical spectra of the different distances can be used to easily identify
the quasi-static component in the following calculations. In measurements, there may be
some additional low-frequency maxima and minima due to special train configurations.
Note that the low-frequency quasi-static solution was calculated from axle impulses of
higher frequency content. The result is very similar to a calculation based on the static
transfer function of the soil [37]. Obviously, the higher impulse frequencies, which come
from different track points, perfectly cancel each other.

4.4. The Effect of Axle Pulses on a Randomly Varying Track Support Stiffness

Next, the train was run over an irregular track support and the ground vibration
spectra are shown in Figure 6d–f. Once again, the passage of static loads generates the
quasi-static response of the soil. The typical spectra can be observed below 8 Hz. For
frequencies above 8 Hz, a big difference between the regular and irregular track support
is obvious. Whereas the quasi-static component tends to zero, the varying track support
stiffness generates a new ground vibration component with considerable amplitudes. The
low-frequency quasi-static and the mid-frequency response are clearly separated by a
minimum at around 8 Hz. There is a second minimum at 25 or 32 Hz, so that the mid-
frequency ground vibration component can be identified by a typical maximum region
between these minima. This characteristic is related to the axle-sequence spectrum XA(f )
of a bogie. The mid-frequency component also has a completely different attenuation
with distance. In contrast to the strong attenuation of the quasi-static component, the
mid-frequency part has a rather weak attenuation.

The mid-frequency stochastic ground vibration component is generated as follows.
The static axle load runs over different excitation points of the track that have different
stiffnesses. If the track is stiffer, the impulse is shorter and has a wider bandwidth. If
the track is softer, the impulse is longer and the bandwidth is narrower. Therefore, low
frequencies of the impulse are similar for all excitation points, but the amplitudes around
the bandwidth vary considerably. The impulses from neighbouring excitation points
cannot perfectly cancel each other. The remainder of the superposition constitutes the new
mid-frequency ground vibration component (which is called “the scattered axle pulses”).

Figure 7a–d shows the one-third octave band spectra for q = 3, 10, 30 and 50% varia-
tion of the track support stiffness. The mid-frequency range strongly increases with the
percentage of the stiffness variation. At the end for 50% variation, the mid-frequency am-
plitudes are as high as for the nearest quasi-static response. The stochastic mid-frequency
component is only moderately higher for a softer soil (Figure 6d). Another variation in
Figure 7d–f shows the influence of the track stiffness on the mid-frequency component. The
bending stiffness EI of the track is increased from the rail to 10 EI and 100 EI, where 100 EI
is approximately the stiffness of a 0.5 m thick concrete plate. The mid-frequency amplitudes
are clearly reduced by a stiff plate, to less than one-tenth. The stiff plate results in a wider
distribution of the static load along the track. This means a smoother impulse, which has
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lower frequencies and lower amplitudes. Thus, a new ground vibration component was
found, but also a possible mitigation strategy for this component.
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Figure 7. Train passage with vT = 160 km/h over an irregular track and a soil with vS = 200 m/s,
irregularity q = (a) 3%, (b) 10%, (c) 30%, (d–f) 50%, track stiffness (a–d) EI ballast track, (e) 10 EI,
(f) 100 EI slab track, one-third of the octave band spectrum at distances x = � 3, # 5, ∆ 10 m.

5. Calculated and Measured Results at a Specific Site

At a site near Würzburg, simultaneous vibration measurements of the train, the track
and the soil were performed at three different track sections for different train speeds [4].
The axle-box measurements and the hammer and train-induced ground vibrations near the
ballast track are used here to compare theoretical predictions with measurements.

5.1. Wheelset Accelerations from Axle-Box Measurements and Corresponding
Irregularities and Forces

First, the measured axle-box accelerations are shown in Figure 8a for five train speeds.
The spectra are almost constant with frequency. The only exception is for the lowest speed
of 63 km/h where an increase at 32 Hz can be related to the sleeper passage excitation.
The accelerations are strongly increasing with train speed, and an amplitude factor of 10
is observed for train speeds between 63 and 160 km/h. Four different axle boxes were
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measured and all four measurement points give very similar results. Only the out of
roundness at 8, 10, 12, or 16 Hz is specific for each wheel.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22 
 

 
Figure 8. Measured (a–c) and calculated (d–f) vehicle–track interactions at site W for train speeds vT 
= □ 160, ○ 125, ∆ 100, + 80, and × 63 km/h; wheelset acceleration (a,d), effective irregularities (b,e), 
dynamic axle loads (c,f). 

5.2. Measured and Calculated Transfer Functions of the Soil 
The transfer functions of the soil at this site were measured by hammer impacts and 

sensor distances between 3 and 30 m (Figure 9a). A soil model was fitted to these transfer 
functions, which consists of a layer of height h = 11 m, a shear wave velocity vS1 = 270 m/s 
and an underlying half-space of vS2 = 1000 m/s. The theoretical transfer functions of this 
layered situation are presented in Figure 9b, which show all the same characteristics as 
the measured transfer functions. The low-frequency amplitudes are small because of the 
stiff half-space, whereas the high frequencies have the greater amplitudes of the softer 
layer. Between these two different amplitude ranges, a strong increase in amplitudes can 
be found, which is followed by a moderate resonance at 12.5 Hz. 

Figure 8. Measured (a–c) and calculated (d–f) vehicle–track interactions at site W for train
speeds vT = � 160, # 125, ∆ 100, + 80, and × 63 km/h; wheelset acceleration (a,d), effective ir-
regularities (b,e), dynamic axle loads (c,f).

The measured wheelset accelerations aW are divided by ω2 to yield displacements
(Figure 8b). These wheel displacements are the same as the effective irregularities s in this
frequency range; see [31]. The irregularities are strongly decreasing with frequency. The
accelerations aW multiplied by the wheelset mass of mW = 1500 kg are almost identical to the
excitation forces F acting on the track (Figure 8c), with small deviations at low frequencies
due to bogie contributions [31]). Therefore, the forces are almost constant with frequency
and strongly increasing with train speed in the same way as the accelerations.
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Corresponding results are calculated with the transfer functions of Section 3.2 and the
following irregularities sS of the subground and sW the combined unevenness of wheel
and rail:

sS = sS1(λ/λ1)
2 with sS1 = 0.02 mm at λ1 = 1.2 m

sW = sW1(λ/λ1) with sW1 = 0.01 mm at λ1 = 1.2 m
(26)

The stiffness variation is assumed to be constant at k1/k0 = 20%, and the stiffness
variation by the sleeper passage is included as an effective irregularity of sD = 0.012 mm.
The resulting effective irregularity at rail level is shown in Figure 8e. For the train speed of
100 km/h (curve ∆), the following components can be observed. At low frequencies, the ge-
ometric track support irregularities dominate, but also strongly decrease with sR ~ f−2. The
transfer function HsT for the geometrical track support irregularity has a cut-off at about
8 Hz and, therefore, the effective irregularity s* from the support stiffness variation domi-
nates at about 12 Hz. This component is initially constant with frequency and the cut-off
of the corresponding transfer function HkT is at about 20 Hz, from where the stiffness
component also decreases until the wheel and track unevenness sW is dominant at 25 Hz.

In the next step, the decreasing irregularities have to be multiplied by the increasing
vehicle–track transfer functions (6) and (7). The resulting axle-load spectra in Figure 8f are
almost constant with frequency. The amplitudes increase with increasing train speed as
F~vT

2. The dynamic load is about F ≈ 0.4 kN for 100 km/h and reaches F ≈ 1.0 kN for
160 km/h.

The measurements and calculations of the train–track interaction are in good agree-
ment in all details: the irregularities are strongly decreasing with frequency, and the
accelerations and forces are constant in frequency and strongly increasing with train speed
A~vT

2, and have the same amplitude of 1.0 kN for 160 km/h.

5.2. Measured and Calculated Transfer Functions of the Soil

The transfer functions of the soil at this site were measured by hammer impacts and
sensor distances between 3 and 30 m (Figure 9a). A soil model was fitted to these transfer
functions, which consists of a layer of height h = 11 m, a shear wave velocity vS1 = 270 m/s
and an underlying half-space of vS2 = 1000 m/s. The theoretical transfer functions of this
layered situation are presented in Figure 9b, which show all the same characteristics as
the measured transfer functions. The low-frequency amplitudes are small because of the
stiff half-space, whereas the high frequencies have the greater amplitudes of the softer
layer. Between these two different amplitude ranges, a strong increase in amplitudes can
be found, which is followed by a moderate resonance at 12.5 Hz.

The transfer functions in Figure 9a,b hold for a point load. A number of point loads of
a 1 kN amplitude per axle and one-third octave band were superposed stochastically to
obtain the transfer function for a train load (the response to a standard train load, Figure 9c).
The characteristics are the same as for the point load. The near field has almost the same
amplitude, whereas the far field of the train load has higher amplitudes. This leads to a
weaker attenuation with distance and a narrower band of transfer functions.

Another representation is given for the results at a 30 m distance. Figure 9d shows the
spectra for different train speeds vT, which are calculated by different dynamic loads of
F = 0.155 to 1.0 kN per axle and one-third octave band. The curves are regularly shifted
vertically upwards proportional to the dynamic axle load.
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Figure 9. Transfer functions for the soil at site W, distances x = � 3, # 5, ∆ 10, + 20, × 30 m,
(a) measured from hammer impact, (b) calculated for a point load, (c) calculated for a standard
train load; (d) response to constant train loads between 0.15 and 1 kN per one-third octave band
representing train speeds of vT = � 160, # 125, ∆ 100, + 80, and × 63 km/h.

5.3. Ground Vibrations from Static or Dynamic Axle Loads and from Measurement

Now the ground vibrations from train passages are predicted and compared with
the measurements. The response at different distances from the track (for a train speed of
160 km/h) and the response for different train speeds (at a distance of 30 m) are shown in
Figure 10. Theoretical responses are shown for the dynamic loads from irregularities in
Figure 10a,b and for the static loads on a varying track support. In addition to the transfer
functions HS of the layered soil, the axle sequence XA Equation (22) of the bogies is included
in both cases.

The wave field for the dynamic loads (Figure 10a) is very similar to the transfer
functions in Figure 9c, as the dynamic loads are (almost) constant and at 1 kN for 160 km/h.
In addition to the characteristics of the layered soil, the maximum at 12.5 Hz is increased
slightly because of the axle sequence spectrum. The different train speeds (Figure 10b) have
different axle sequence spectra, so that the regular pattern of Figure 9d is lost. The strict
order of the train speeds can only be found at the highest frequencies. A clear maximum
occurs only for 125 and 160 km/h.

The measured train-induced wave field (Figure 10c) shows the small low-frequency
amplitudes of the deeper stiff soil and the strong increase at about 10 Hz. The maximum
at 12.5 Hz is more pronounced than for the transfer functions (Figure 9c) as the curves
of all distances come close together. The high-frequency amplitudes are approximately
those of the upper layer. The curves of different train speeds (Figure 10d) show clearly
elevated responses for 125 and 160 km/h, whereas the train speeds below 100 km/h induce
only smaller ground vibrations. The ground vibrations from dynamic loads in Figure 10a
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and b are clearly smaller than (less than half) the ground vibration from measurements in
Figure 10c,d.
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at 12.5 Hz is more pronounced than for the transfer functions (Figure 9c) as the curves of 
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Figure 10. Comparison of measured and calculated ground vibrations; wavefield at distances x = � 3,
# 5, ∆ 10, + 20, × 30 m for the maximum train speed of 160 km/h (a,c,e), and for different train
speeds of vT = � 160, # 125, ∆ 100, + 80, × 63 km/h at a distance of 30 m (b,d,f), calculated with
geometric track irregularities (a,b), measured at site W (c,d), and calculated by a varying track support
stiffness (e,f).

The ground vibrations from the static loads are presented in Figure 10e,f. In the near
field, the quasi-static component can be found between 4 and 6 Hz. All other amplitudes
are the result of the varying track support stiffness. The maxima at 12.5 Hz are increased
by the pulses of the static axle loads, and they are much higher than for the dynamic loads
in Figure 10a,b. The minima are almost at the same frequencies (8 Hz and 20/25 Hz) for
the static loads, the dynamic loads and the measurements. The minima are strongest for
the static pulse loads, which have an extra reduction in addition to the minima from the
axle sequence and the low frequency reduction in the layering. The maximum, on the other



Appl. Sci. 2022, 12, 1463 17 of 22

hand, is increased by the static pulse loads in addition to the nearby (moderate) maxima of
the axle sequence and the resonance of the layering. Because of these effects, the static loads
yield the highest near-field amplitudes at 12.5 Hz, and at 30 m, they generate a maximum
(Figure 10f), which is clearly higher than the maximum of the dynamic loads (Figure 10b)
and nearly reaches the amplitude of the measurements (Figure 10d).

These measured and calculated results show that the elevated mid-frequency vibra-
tions can be better explained by the randomly varying track support than by the dynamic
loads from the irregularities. The importance of the axle pulses on an irregular track and
soil (the scattering of axle pulses) for the ground vibration near railway lines was indi-
cated by more experimental results of BAM [31,37,39], and in [40] measurements of other
researchers were re-sampled and collected from, for example, [14,17,19,41,42].

6. Conclusions

The excitation of ground vibrations by different irregularities of the railway track was
analysed, considering the widely used geometric irregularities at the wheel–rail contact,
stiffness irregularities, irregularities from different track positions and irregularities in
the wave propagation. Formulas were given in the frequency-wavenumber domain, and
example transfer functions (the force on the soil related to the specific irregularity) were
calculated. The transfer functions show the increasing influence of the wheelset mass
and the reducing influence of soft track elements (e.g., sleeper pads). The latter yield
cut-off frequencies of 8 to 16 Hz and resonance frequencies of 16 to 50 Hz. Whereas most
irregularities generate dynamic axle loads, static (gravity-induced) loads of the vehicle have
some special effects. The static loads are moving constant loads, which were calculated
as the very low-frequency quasi-static component of the near-field ground vibration. In
the case where the track support stiffness varies randomly along the track, the results
for the moving constant loads were calculated by the frequency-domain superposition
of axle pulses and a stochastic simulation. This computation yields, in addition to the
regular quasi-static component, a strong stochastic mid-frequency component because of
the “scatter” of the axle pulses.

Experimental results of simultaneous vehicle, track and soil measurements were
presented and compared with the theoretical results for the dynamic and static loads.
Effective track irregularities, dynamic axle loads and ground vibration at different distances
and for different train speeds were analysed. It was found that the dynamic loads that
are evaluated from the measured axle-box accelerations are not great enough to generate
the measured ground vibrations. The stochastic component of the moving static load,
however, can generate the higher measured ground vibration amplitudes. This indicates
that a static load moving over a varying track support stiffness can produce an important
ground vibration component by the scatter of axle pulses.
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Abbreviations

a amplitude vector
b width of the track
C damping matrix of the multi-beam track model
df frequency step
dfT one-third octave frequency band
dt time step
dy load step
e1 base vector (top of the track)
en base vector (bottom of the track)
EIj bending stiffness of track beam j
EI matrix of bending stiffnesses
f frequency
fT one-third octave frequency
f0 cut-off frequency of the track
F force, axle load
F′ force per track length
F0 static axle load
FS force on the soil
FT force on the track
F′T force vector (forces on different track beams)
h height of the soil layer
Hzz transfer function of the homogeneous half-space in wavenumber domain
HH transfer function of the homogeneous half-space in space domain
HF filter function of the track
HkT transfer function for the stiffness irregularity
HsT transfer function for the stiffness variation of the track support
HS transfer function of the soil for a point load
HSS transfer function of the soil for a strip load
HT force transfer of the track
HV vehicle-track transfer function
HV* vehicle-track transfer function for stiffness-induced irregularities
kP stiffness of the sleeper pad
kR stiffness of the rail pad
kS dynamic stiffness of the track support
kS* dynamic stiffness of the Winkler support
k0 average static stiffness of the track support
k1 stiffness variation of the track support
KT dynamic stiffness of the track at the wheel-rail contact point
KV dynamic stiffness of the vehicle at the wheel-rail contact point
K0 average static stiffness of the track
K1 stiffness variation of the track
K stiffness matrix of the multi-beam track model
KS dynamic stiffness matrix of the soil
KT stiffness matrix of the track
KTS stiffness matrix of the track-soil system
lB half the distance between two axles in a bogie
mW mass of the wheelset
mj’ mass per length of track beam j
M mass matrix
n number of loading points
nB number of bogies in a train
p stress distribution across the track
q percentage of the variation in the support stiffness
s (geometric) irregularity
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s* equivalent irregularity
sD equivalent displacement variation due to sleeper distance excitation
sR irregularity at rail level
sS irregularity at the track support
sW irregularity of the wheel
t time
tj loading time of position j
t stress vector
u displacement vector
uR displacement of the rail
uS displacement of the track support
v particle velocity (of the soil)
vS shear wave velocity of the soil
vS1 shear wave velocity of the layer
vS2 shear wave velocity of underlying half-space
vT train speed
X axle-sequence spectrum of the train
XA axle-sequence spectrum for two axles of a bogie
x coordinate normal to the track
y coordinate along the track
yj coordinate of the loading point j
δ Dirac function
λ Wavelength
ξ Wavenumber
ξx wavenumber normal to the track
ξy wavenumber along the track
ξV wavenumber of the stiffness variation
ω circular frequency

Appendix A. Frequency-Wavenumber Domain Methods and Their Approximation for
Dynamic Track and Soil Behaviour

The dynamic behaviour of a layered soil is algebraically calculated in the frequency-
wavenumber domain. The resulting vertical compliance Hzz of the soil surface is used
twofold. The compliance for a point-load (the wave field as a function of distance r and ω)
is established by the integral [35]

HS(r, ω) =
u(r, ω)

F(ω)
=

1
2π

∫ ∞

0
Hzz(ξ, ω)J0(ξr)ξdξ (A1)

where J0 is the Bessel function. The transfer function HS(ω,r) of the wave propagation
through a layered soil can be approximated by the transfer function HH(ω,r,vS) of the
homogeneous soil and the frequency-dependent wave velocity vS(ω) (the dispersion of
the soil) [40]. Figure A1 shows the good agreement between the exact and approximate
transfer functions for the wave propagation in a soft layer on a stiffer half-space.
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Figure A1. Transfer function of a soil with vS1 = 125 m/s, vS2 = 350 m/s, h = 4 m, D = 2.5% at
distances x = � 4, # 8, ∆ 16, + 32, × 64 m, (a) exact, (b) approximated solution.

For a harmonic strip wave excitation along the railway track (y-direction)

t(x, y) = a exp
(
iξyy + iωt

)
for |x| < b/2 (A2)

the displacements across the track–soil interface (x-direction)

uS
(

x, ξy, ω
)
=

F′
(
ξy, ω

)
2π

∫ +∞

−∞
Hzz(

√
ξx2 + ξy2, ω)p(ξx)exp(iξxx)dξx (A3)

are calculated, where the wavenumber transform of the uniform load distribution across
the track width b

p(ξx) =
sinξxb/2

ξxb/2
(A4)

is used. Moreover, the average displacement

uS
(
ξy, ω

)
=

1
b

∫ +b/2

−b/2
u S

(
x, ξy, ω

)
exp(iξxx)dx (A5)

across the track is calculated. Finally, the soil compliance for a strip load

HSS
(
ξy, ω

)
=

uS
(
ξy, ω

)
F′
(
ξy, ω

) =
1

2π

∫ +∞

−∞
Hzz

(√
ξx2 + ξy2, ω

)
p2(ξx)dξx (A6)

is established. The inverse
kS
(
ξy, ω

)
=

1
HSS

(
ξy, ω

) (A7)

is the soil stiffness, which is used for coupling the soil with the track.
TThe stiffness of the soil can be approximated by a Winkler soil as

kS
(
ξy, ω

)
≈ kS

∗(ω) = kW + iωcW (A8)

Figure A2 shows the comparison of the track stiffness calculated by the wavenumber
method and by the Winkler approximation. The agreement between these two results and
the results of the combined boundary-element/finite-element method [32] is good.
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