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Abstract: In this work, a conceptual framework is suggested for analyzing thermorheologically simple
and complex behavior by using just one approach. Therefore, the linear relation between master
time and real time which is required in terms of the time-temperature superposition principle was
enhanced to a nonlinear equivalent relation. Furthermore, we evaluate whether there is any relation
among well-known existing time-temperature equivalent formulations which makes it possible to
generalize different existing formulations. For this purpose, as an example, the power law formulation
was used for the definition of the master time. The method introduced here also contributes a further
framework for a unification of established time-temperature equivalent formulations, for example
the time-temperature superposition principle and time-temperature parameter models. Results show,
with additional normalization conditions, most of the developed time-temperature parameter models
can be treated as special cases of the new formulation. In the aspect of the arrow of time, the new
defined master time is a bended arrow of time, which can help to understand the corresponding
physical meaning of the suggested method.

Keywords: time-temperature superposition principle; time-temperature equivalent formulation;
bended arrow of time

1. Introduction

In many physical and engineering applications the fundamental need exists in terms
of extending the experimental region—e.g., prediction of long-time properties from tests
conducted in a shorter time range. Besides the time span, further independent influencing
variables can be relevant as well, for example, stress/strain, ambient pressure, or radiation.
Instead of time dependence, a frequency dependence can occur such as the frequency
dependence of viscoelastic moduli of polymers. To extend the experimental region, usually
the process temperature is changed and so processes proceed accelerated or decelerated.
Further accelerating variables are applied to maintain short time ranges in experiments, for
example, use rate, voltage, radiation, or pressure, see ESCOBAR and MEEKER [1].

In the field of thermorheology, time and temperature are the two fundamental variables
and a state variable—e.g., strain, rupture- and yield-stress of materials, is usually described
by a function f (t, ϑ), where t represents the time and ϑ represents the absolute temperature.
Regarding the effect of temperature, for nonmetallic materials with viscoelastic behavior (for
example for polymers and elastomers), the time-temperature dependence is often described
using the time-temperature superposition principle (TTS), which has been developed
since the 1950s, see FERRY [2], SCHWARZL and STAVERMAN [3] and FINDLEY and LAI [4].
Although the time-temperature superposition principle was developed historically for
nonmetallic materials, see MARKOVITZ [5] and TOBOLSKY and ANDREWS [6], effective
applications of TTS for various classes of materials and processes have been used and
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confirmed. In a previous work by the authors, the TTS was applied successfully for the
description of the relaxation behavior of a type of metal seals, see QIAO, HERBRICH and
NAGELSCHMIDT [7].

In contrast to the developments of TTS, for metallic materials especially for analyses
of fatigue and durability, for example regarding creep-rupture, many time-temperature
parameter models have also evolved since the 1950s as representatives for the equivalent
effect of time and temperature. In general, a time-temperature parameter model (TTP)
considers the two independent variables time and temperature for isostate conditions
( f = const.). Therefore, experimental data are depicted and analyzed in the plot of
logarithmic time scale versus inverse absolute temperature or absolute temperature to
identify equivalent conditions. Indisputably, fundamental works are these of LARSON and
MILLER [8], MANSON and HAFERD [9], ORR, SHERBY and DORN [10] et al.

To get an overview about the concept, the development and the application of TTP,
more detailed studies are recommended, for example, MANSON [11], MANSON and HAL-
FORD [12] and KAUFMAN [13]. Furthermore, major efforts have been made in past decades
for a generalization of developed TTP to a ‘single metamodel’, see for example the works
of MENDELSON, ROBERTS and MANSON [14] and HAQUE, RAMIREZ and STEWART [15].

For thermorheologically simple behavior, under isothermal conditions, a change
between different but constant temperatures is equivalent to a shift in the logarithmic time
scale. Otherwise, for thermorheologically complex behavior, under isothermal conditions,
a change between different but constant temperatures is equivalent to a stretch in the
logarithmic time scale, see for example the works of FESKO and TSCHOEGL [16] and
BAGLEY [17]. In this work it is shown that, for the complex behavior, a change between
different but constant temperatures is equivalent to a shift and a stretch in the logarithmic
time scale.

2. Time-Temperature Superposition Principle

The time-temperature superposition principle is generally defined and applied by
shifting experimental data along the logarithmic time or frequency axis, whereat one
temperature is set as the basis or reference, and, due to the shift, the data range for
the reference temperature ϑre f will be extended in time or frequency range. As a result
of (usually) empirical shifts of data obtained at different but constant temperatures, a
composite curve is constructed and often called ‘master curve’ or ‘master function’. An
important criterion for the application of TTS is that the shapes of the original curves
at different temperatures must match over a substantial range of time or frequencies,
see FERRY [2]. Provided that just data and no curves exist, appropriate overlaps of data
regarding the investigated state variable for different temperatures must be given.

Based on the assumption that experimental data show thermorheologically simple
behavior, an appropriate function of the state variable depending on time and temperature
has to be chosen as f (τ, ϑ), for example, representing creep or relaxation, where τ is
the normalized real time to a reference time t/tre f . This assumption must be confirmed
by evaluating the individual results. Generally, thermorheologically simple behaviour
is characterized by the fact that functions of the state variable for two arbitrary chosen
temperatures can be superimposed by a pure translation—i.e., parallel shifting along the
logarithmic time scale. The formulation of a master function is realized variously, either
by defining a functional approach, recommended by the authors and considered in this
work, or by a user-dependent manual shifting procedure of recorded data obtaining a
nearly continuous course, which is often exercised. For user-dependent manual shifting
procedures or otherwise nondefined shifts usually a polynomial function is chosen and
fitted to the shifted data.

Mathematically, thermorheologically simple behavior is defined for isothermal and
isostate conditions by

f (τ, ϑ) = fϑre f (τ̂) (1)
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with the relation between time, temperature and master time τ̂ in the form

τ̂ = α(ϑ)τ, (2)

or in logarithmic form
ln(τ̂) = ln(α(ϑ)) + ln(τ). (3)

The unknown temperature function α(ϑ) is considered as scale factor in time due
to Equation (2) and shift factor in logarithmic time due to Equation (3). As can be seen,
the TTS describing thermorheologically simple behavior requires an initial temperature-
independent state variable ∂ϑ f |τ=0 = 0.

For an arbitrarily chosen reference temperature ϑre f within the range of minimum
and maximum temperature ϑmin and ϑmax, the corresponding function fϑre f is the so-called
master function. That means, the studied process is accelerated or decelerated between
ϑmin and ϑmax. This function is embedded in the function f (τ, ϑ) for ϑ ≡ ϑre f

fϑre f (τ̂) = f
(

τ, ϑre f

)
(4)

with the normalization condition
α
(

ϑre f

)
= 1 (5)

or
ln
(

α
(

ϑre f

))
= 0, (6)

respectively. In addition to the knowledge of a suitable master function fϑre f (τ̂), a suitable
relation is needed to describe the time-temperature shift factor α(ϑ) for the application
of the time-temperature superposition principle. In this regard, the authors suggested
a modified ARRHENIUS approach in an earlier publication, see QIAO, NAGELSCHMIDT

and HERBRICH [18]. In contrast to the original linear relation of ARRHENIUS [19] for the
temperature-dependent shift factor in logarithmic scale ln(α) and the inverse absolute
temperature 1/ϑ, a nonlinear relation was derived for a continuous description within the
range of minimum and maximum temperature. Another approach to derive a suitable
relation to describe the time-temperature shift factor can be based on the transition state
theory wherein different modifications of the Arrhenius equation are suggested, see for
example the works of LAIDLER [20] and FLYNN [21].

New Visualization of TTS

In the following, the applicability of TTS for thermorheologically simple behavior
is visualized schematically and explained in detail in order to substantiate the new time-
temperature equivalent formulation introduced afterwards. Therefore, an appropriate
function was chosen for the description of a state variable f (τ, ϑ). In Figure 1a the projec-
tions of the function f (τ, ϑ) are shown for two different temperatures ϑre f and ϑi over τ,
where ϑi denotes a temperature between ϑmin and ϑmax, which was chosen to be above the
reference temperature ϑre f . Furthermore, two isostates fa and fb are selected exemplarily
in Figure 1a. Hence, four intersection points can be derived corresponding to τ1 up to τ4.
Although a logarithmic time scale is not depicted in Figure 1, it must be pointed out that
the distance between the markers (circle and triangle) is identical in logarithmic time scale
and therefore, this requirement for thermorheologically simple behavior is fulfilled.
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Figure 1. Application of the TTS for thermorheologically simple behavior: (a) projections of function
f (τ, ϑ) over normalized real time τ for two different temperatures ϑre f and ϑi; (b) linear relation
between normalized real time τ and master time τ̂; (c) master function fϑre f (τ̂) over master time τ̂

based on the reference temperature ϑre f with the transformation of exemplarily chosen normalized
real time values: τ1 7−→ τ̂a = α(ϑi)τ1 = τ3 and τ2 7−→ τ̂b = α(ϑi)τ2 = τ4 .

In Figure 1b, the homogeneous linear relations between normalized real time τ and
master time τ̂ with the scale factor α(ϑi) according to Equation (2) are depicted for the
temperatures ϑre f and ϑi. As can be seen from Figure 1b, one value of master time represents
a projection of different values of real time for each corresponding temperature, for example,
for τ̂a in the form

τ̂a 7−→ τ1 =
1

α(ϑi)
τ̂a (7)

and
τ̂a 7−→ τ3 =

1

α
(

ϑre f

) τ̂a = τ̂a (8)

As a fundamental goal of TTS, and depicted in Figure 1c, the function f of the two
independent variables τ and ϑ should be represented by only one reduced variable, as
exemplarily the master time τ̂ in this work. Due to the reduction of the variables, each
isostate condition is defined just by one intersection point on the master-curve—i.e., the
triangle marker {τ̂a, fa} and the circle marker {τ̂b, fb}. On the master function, a given
value of τ̂ corresponds to different values for pairs of {τk, ϑi}. In Figure 1c, the master func-
tion fϑre f (τ̂) is shown based on the reference temperature ϑre f . For any other temperature
ϑi > ϑre f the function f (τ, ϑi) is stretched onto the master function using α(ϑi).

3. New Time-Temperature-Equivalent Formulation

In the case of thermorheologically complex behavior, wherein a pure translation along
the logarithmic time scale (see TTS) is insufficient in terms of superimposing the function
f (τ, ϑi) onto the master function, a new formulation is needed. Nevertheless, it is possible
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to adjust each temperature-dependent factor α(ϑi) so that each superimposed function
f (τ, ϑi) matches the master function at least in one point, for example at {τ̂a, fa}, see
Figure 1c.

To achieve a sufficient match for the projection of a function f (τ, ϑi) onto fϑre f (τ̂)
various approaches can be developed. Already in the 1970s, the question of how to deal
with thermorheologically complex behavior was discussed, see FESKO and TSCHOEGL [16].
In this early publication, the authors suggested the construction of a master function for
the state variable at the reference temperature with a temperature- and additionally time-
dependent shift factor ln(α). However, a specific function of ln(α(ϑ, τ)) was not given. In
contrast, in the present work α(ϑ) is considered as a pure temperature-dependent function
as for TTS. Additionally, a further temperature-dependent parameter β(ϑ) is introduced
here. With this regard, in the following a new formulation is presented for analyzing
thermorheologically simple and complex behavior.

3.1. Key Assumptions

For a determinate and user-independent procedure for the construction of a master
function using the new formulation, some basic or key assumptions are required. Among
the following assumptions, fundamentally, the authors recommend to define and to adapt
a functional approach based on experimental observations as well as further considerations
before shifting any data.

(A-1) For any constant temperature ϑi, the function of the state variable must be strictly
monotonic with respect to time—i.e., for strictly monotonic increasing

∆ f ·∆τ > 0 ∀ {∆τ, ϑi} (9)

or for strictly monotonic decreasing

∆ f ·∆τ < 0 ∀ {∆τ, ϑi}. (10)

(A-2) The master function, for example, f̃ (τ̃) is defined as a ‘collection’ of all trans-
formed limited functions depending on the reduced variable, whereat, the reduced variable
τ̃ is a function of time and temperature.

{ f (τ, ϑi)} 7−→
{

f̃ (gi(τ, ϑ))
}
=: f̃ (τ̃) (11)

In this work, as a special case, the master function is defined for an arbitrary chosen
reference temperature as fϑre f (τ̃) and the reduced variable τ̃ is referred to as master time.

(A-3) For any constant temperature ϑi, the master time must be strictly monotonic
with respect to the real time.

∆τ̃·∆τ > 0 ∀ {∆τ, ϑi} (12)

3.2. New Formulation

Based on the homogenous linear relation of the real time τ and master time τ̂ used
for TTS, a new, homogenous nonlinear formulation for the function of the master time
τ̃ was developed in compliance with the key assumptions presented above. In the new
formulation the power law is applied for the description of the relation between master
time and real time and has the form

τ̃ = α(ϑi)τ
β(ϑi), (13)

or in logarithmic time scale

ln(τ̃) = ln(α(ϑi)) + β(ϑi)ln(τ). (14)
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The normalization conditions to fulfil the key assumption (A-2) are as follows:

α
(

ϑre f

)
= 1 (15)

and
β
(

ϑre f

)
= 1, (16)

where α(ϑi) denotes the scale factor and β(ϑi) represents a form or shape factor in the
relation between master time and normalised real time. The last-mentioned factor changes
the relation of the master time to real time from linear to nonlinear considering thermorhe-
ologically simple versus thermorheologically complex behavior. Obviously, the master
time τ̂ used for TTS is a special case of the master time τ̃ with β = 1. The new formulation
describing thermorheologically simple and complex behaviors requires also an initial,
temperature-independent state variable ∂ϑ f |τ=0 = 0 .

As mentioned above, other formulations can be developed as well. Nevertheless,
the presented formulation, Equations (13) and (14), can be called the power law time-
temperature equivalent principle.

3.3. Thermorheologically Complex Behavior

In the following, the applicability of the new introduced TTE formulation for ther-
morheologically complex behavior is visualized schematically and explained in detail.
Therefore, an appropriate function was chosen for the description of a state variable f (τ, ϑ).
In Figure 2a, analogous to Figure 1a, the projections of the function f (τ, ϑ) are shown for
two different temperatures ϑre f and ϑi over τ. Furthermore, two isostates fa and fb are
selected exemplarily in Figure 2a. Hence, four intersection points can be derived corre-
sponding to τ1 up to τ4. Although a logarithmic time scale is not depicted in Figure 2,
it must be pointed out that the distance between the markers (circle and triangle) is not
identical in logarithmic time scale in contrast to the requirement for thermorheologically
simple behavior.

In Figure 2b, the homogeneous nonlinear relations between normalized real time
τ and master time τ̃ with the scale factor α(ϑi) and the shape factor β(ϑi) are depicted
according to Equation (13) for the temperatures ϑre f and ϑi. Additionally, one value of
master time represents a projection of different values of real time for each corresponding
temperature—e.g., for τ̃a in the form

τ̃a 7−→ τ1 =

(
1

α(ϑi)
τ̃a

) 1
β(ϑi) (17)

and

τ̃a 7−→ τ3 =


1

α
(

ϑre f

)
︸ ︷︷ ︸

=1

τ̃a



1
β(ϑre f )︸ ︷︷ ︸

=1
= τ̃a. (18)

As a fundamental goal of TTE, and depicted in Figure 2c, the state function of the
two independent variables τ and ϑ should be represented by only one variable, here the
master time τ̃. Due to the reduction of the variables, one isostate condition is defined just
by one intersection point on the master-curve, here the triangle marker {τ̃a, fa}. On the
master function, a given value of τ̃ corresponds to different values for pairs of {τk, ϑi}. In
Figure 2c, the master function fϑre f (τ̃) is shown based on the reference temperature ϑre f .
For a temperature ϑi > ϑre f the function f (τ, ϑi) is stretched onto the master function using
α(ϑi) and β(ϑi).
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Figure 2. Application of the new formulation for thermorheologically complex behavior: (a) pro-
jections of function f (τ, ϑ) over normalized real time τ for two different temperatures ϑre f and ϑi;
(b) nonlinear relation between normalized real time τ and master time τ̃ for temperature ϑi; (c)
master function fϑre f (τ̃) over master time τ̃ based on the reference temperature ϑre f . For a tem-
perature ϑi > ϑre f the function f (τ, ϑi) is stretched onto the master function using α(ϑi) and β(ϑi):
τ1 7−→ τ̃a = α(ϑi)τ1

β(ϑi) = τ3 and τ2 7−→ τ̃b = α(ϑi)τ2
β(ϑi) = τ4 .

4. Relation of the New Formulation to Other Time-Temperature Equivalent Parameters

In the field of the TTE formulation several phenomenological parameters have been
proposed in the past, for example, by LARSON and MILLER [8], MANSON and HAFERD [9]
and ORR, SHERBY and DORN [10]. Major efforts have been made for a generalization of
different TTP, e.g., by MENDELSON, ROBERTS and MANSON [14] and HAQUE, RAMIREZ

and STEWART [15]. In the aforementioned study of HAQUE et al., a novel metamodeling
approach is applied to derive a single metamodel that incorporates twelve time-temperature
parameters (eight existing and four new TTP were exploited). In the following, correlations
between the new introduced TTE formulation and exemplarily chosen TTP (LARSON–
MILLER parameter and HAQUE–STEWART parameter) are shown.

4.1. Correlation of the New TTE Formulation to the TTP of LARSON and MILLER

In the following, the LARSON–MILLER parameter is presented and compared to the
introduced TTE formulation. This parameter is formulated for isothermal and isostate
conditions and is given in the form:

PLM = ϑ[C + ln(τ)] (19)

Here, C is the LARSON–MILLER constant, and rearrangement of Equation (19) yields a
linear relation in the plot of logarithmic time over inverse absolute temperature. If ϑ→ ∞ ,
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there is an intersection point at
{

1
ϑ → 0, ln(τ) = −C

}
for all isostate conditions. Compared

with Equation (14) and by setting
PLM ≡ ln(τ̃) (20)

it formally follows
ϑC = ln(α) (21)

and
ϑ = β. (22)

Applying the normalization condition Equation (15), Equation (21) is satisfied only
for ϑre f = 0, and applying the normalization condition Equation (16), Equation (22) is just
satisfied for ϑre f = 1, leads to an inconsistency for the LARSON–MILLER parameter in its
original form. Therefore, an adjusted LARSON–MILLER parameter is introduced which
satisfies the normalization requirements of the new TTE formulation—i.e., the scale of time
must not be changed for the reference temperature. The adjusted form is defined by

P̃LM =
ϑ

ϑre f
[C + ln(τ)]− C (23)

compared with Equation (14) and by setting

P̃LM ≡ ln(τ̃) (24)

it formally follows (
ϑ

ϑre f
− 1

)
C = ln(α) (25)

and
ϑ

ϑre f
= β. (26)

Applying the normalization condition Equations (15) and (16), Equations (25) and (26)
are both satisfied for ϑ = ϑre f . Hence, a consistency is given for the adjusted, normalized
LARSON–MILLER parameter P̃LM in the form of Equation (23), where C is determined with
ln(α)/(β− 1). In the Arrhenius plot of logarithmic time over ϑre f /ϑ, the slope of the linear

relation is given by P̃LM + C. If ϑ→ ∞ , the same intersection at
{

1
ϑ → 0, ln(τ) = −C

}
appears for all isostate conditions just as in the original LARSON–MILLER formulation.
That means the principal characteristic of the LARSON–MILLER parameter is not changed,
but the constant C and the parameter P̃LM are dimensionless due to the normalization and
especially due to the satisfaction of assumption (A-2).

4.2. Correlation of the New TTE Formulation to the TTP of HAQUE and STEWART

In the following, the more general HAQUE–STEWART parameter, which formally
incorporates twelve different TTP, is presented and compared to the introduced TTE
formulation. This parameter is formulated for isothermal and isostate conditions and given
in the form

PHS =
ln(τ)− a0 − a1ϑr

(ϑr − ar
2)

q (27)

where a0, a1 and a2 are material coefficients, r = ±1 and q ∈ N. Analogous to the performed
adjustments for the LARSON–MILLER parameter, the adjusted HAQUE–STEWART parameter
is introduced in the form

P̃HS =
a0 + a1ϑr

re f

(ϑr
re f − ar

2)
q −

a0 + a1ϑr

(ϑr − ar
2)

q +

(
ϑr

re f − ar
2

ϑr − ar
2

)q

ln(τ̃) (28)
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compared with Equation (14) and by setting

P̃HS ≡ ln(τ̃) (29)

it formally follows
a0 + a1ϑr

re f

(ϑr
re f − ar

2)
q −

a0 + a1ϑr

(ϑr − ar
2)

q = ln(α) (30)

and (
ϑr

re f − ar
2

ϑr − ar
2

)q

= β. (31)

By setting a1 = a2 = 0, r = −1, q = 1 and a0 = −C/ϑre f one gets the normalized
LARSON–MILLER parameter P̃LM again. Hence, all the twelve different TTP which are
included in the normalized HAQUE–STEWART metamodel are special cases of the new TTE
formulation. Therewith, a more general formulation in the field of TTE is introduced with
this study as well.

5. The New TTE Formulation Relating to ‘The Arrow of Time’

Considering the new TTE formulation with regard to ‘the arrow of time’, see for
instance WALLACE [22], leads to results, that the new formulation satisfies appropriate
conditions, especially, due to a strictly monotonic characteristic, see assumption (A-3). As
mentioned above, other comparable formulations may exist, whereat a verification should
be checked for each formulation with the condition that the second law of thermodynamics
must be satisfied. In this context, the concept of the arrow of time is useful. Considering
an isothermal process at a temperature ϑi and the idea of the arrow of time a homologous
time or arrow of time τ→ for normalized real time can be defined in the form

τ→(τ) =
τ − τmin

τmax − τmin
∈ [0, 1] (32)

with the period of observation τmin < τ < τmax, where τ→ is a linear function of τ. Analo-
gously a homologous time or arrow of master time τ̃→ for normalized master time can be
defined in the form

τ̃→(τ̃) =
τ̃ − τ̃min

τ̃max − τ̃min
∈ [0, 1] (33)

with the period of application τ̃min < τ̃ < τ̃max.
Using the nonlinear relation between master time and real time, from Equation (13),

the arrow of master time τ̃→ can be rewritten in the following form

τ̃→(τ) =
ατβ − τ̃min
τ̃max − τ̃min

∈ [0, 1]. (34)

Whereat, τ̃→ is a nonlinear function of τ, due to the additionally introduced parameter
β(ϑi). The definitions of the presented ‘homologous time forms’ are schematically depicted
in Figure 3. From that, the range of observation, the relation between real time and master
time as well as the thus dependent range of application for a temperature ϑi can be gathered.
Furthermore, in Figure 3 can be seen that the arrow of master time τ̃→ is bended but goes
forward. In contrast, for TTS, the arrow of master time is linear proportional to the arrow
of time. That means, the arrow of time remains straight even in the aspect of master time.
For both, the second law of thermodynamics is satisfied.
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6. Conclusions

Regarding the effect of temperature for the description of time-accelerated processes,
different strategies have been developed. For thermorheologically simple and complex pro-
cesses or material behavior the time-temperature superposition principle and enhanced for-
mulations, respectively, are commonly used. In contrast, in the past many time-temperature
parameter models as representatives for the equivalent effect of time and temperature have
been evolved as well. Both strategies and corresponding formulations are summarized in
this work. For the description of both thermorheologically simple and complex behavior by
using just one approach, a new power law time-temperature equivalent formulation was
introduced in the present work. Further advantages are a continuous description in time as
well as a more precise user-independent prediction. The new formulation can be applied
for various processes or material behaviors and depending on the field of application, it can
be adapted for the definition of an appropriate functional approach for the state function.
Hence, the introduced power law time-temperature equivalent formulation appears to be
the most general form in the field of time-temperature equivalence up to now. The new
formulation was exemplarily related to adjusted forms of well-known time-temperature
equivalent parameter models, such as those proposed by LARSON and MILLER and by
HAQUE and STEWART. In addition, the relation between the real time and master time was
discussed, bearing the ‘the arrow of time’ in mind. Considering that, the arrow of master
time is bent but goes forward and satisfies the second law of thermodynamics.
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