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a b s t r a c t 

Grain boundaries (GBs) are planar lattice defects that govern the properties of many types of polycrys- 

talline materials. Hence, their structures have been investigated in great detail. However, much less is 

known about their chemical features, owing to the experimental difficulties to probe these features at 

the atomic length scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable 

of accomplishing this task, with an ability to quantify chemical characteristics at near-atomic scale. Us- 

ing APT data sets, we present here a machine-learning-based approach for the automated quantification 

of chemical features of GBs. We trained a convolutional neural network (CNN) using twenty thousand 

synthesized images of grain interiors, GBs, or triple junctions. Such a trained CNN automatically detects 

the locations of GBs from APT data. Those GBs are then subjected to compositional mapping and analy- 

sis, including revealing their in-plane chemical decoration patterns. We applied this approach to experi- 

mentally obtained APT data sets pertaining to three case studies, namely, Ni-P, Pt-Au, and Al-Zn-Mg-Cu 

alloys. In the first case, we extracted GB specific segregation features as a function of misorientation and 

coincidence site lattice character. Secondly, we revealed interfacial excesses and in-plane chemical fea- 

tures that could not have been found by standard compositional analyses. Lastly, we tracked the temporal 

evolution of chemical decoration from early-stage solute GB segregation in the dilute limit to interfacial 

phase separation, characterized by the evolution of complex composition patterns. This machine-learning- 

based approach provides quantitative, unbiased, and automated access to GB chemical analyses, serving 

as an enabling tool for new discoveries related to interface thermodynamics, kinetics, and the associated 

chemistry-structure-property relations. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Grain boundaries (GBs) are interfaces between adjacent grains 

n polycrystalline materials. As ubiquitous lattice defects, they gov- 

rn many properties of materials, such as strength, ductility, wear 

esistance, conductivity, etc. [1–3] . Their structure and structure- 

roperty relationships have always been a subject of intense re- 

earch [4–14] , but the fact that GBs are buried within the mate- 

ial volume does make it more challenging to probe their struc- 
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ures and composition. In an alloy, the reduction in interface en- 

rgy drives solutes to segregate to GBs, a thermodynamic effect 

hat has been described by the adsorption isotherm [15–21] . Such 

olute segregation to GBs can leverage a plethora of effects. In 

ome cases, the solute(s) can lead to possible de-cohesion or for- 

ation of galvanic elements [ 22 , 23 ], both of which are deleterious 

ffects acting on strength and longevity, but some solutes can also 

ncrease interfacial coherence [24] . In other cases, solute partition- 

ng to the GB can decrease interfacial mobility [ 16 , 17 , 25 ] as well

s reduce the excess interfacial energy, a topic that has been key to 

anocrystalline stability [ 16 , 17 , 26-28 ]. In addition, solute segrega- 

ion in GBs can trigger precipitation of secondary phases [ 5 , 29 , 30 ]
. This is an open access article under the CC BY-NC-ND license 
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nd influence phenomena such as deformation [31–33] , recrystal- 

ization [34] , and grain growth [ 17 , 35 ]. These examples how solute

egregation to GBs offers multiple opportunities for alloy and mi- 

rostructure design [ 31 , 36 ]. 

The theoretical study of interfacial segregation started a century 

go by J. W. Gibbs who treated the interface as an infinitely thin 

ayer with “phase-like” properties [18] . In the Gibbs’ adsorption 

sotherm, the solutes are frequently approximated as species with- 

ut chemical interactions, i.e. in its original form the Gibbs adsorp- 

ion isotherm applies to the dilute limit of equilibrium segregation. 

his means that a decorated GB is assumed to exhibit a uniform 

n-plane chemical distribution of the segregated specie(s). Later 

owler and Guggenheim [19] , Hart [20] , and Guttmann [21] in- 

estigated interface segregation beyond this dilute limit. Once so- 

utes segregate to an interface, they will most likely not behave as 

 statistical solid-solution but experience some form of preferred 

nteractions. The rationale behind this type of segregation interac- 

ion comes from the observation that segregation increases if the 

ulk solubility decreases, i.e. if solutes prefer to get trapped at a 

efect rather than being solved in a bulk solid solution [37–39] . 

s a consequence, the solutes will also, most likely, assume pre- 

erred neighborhood configurations once the solute decorates the 

Bs [ 40 , 41 ]. This interaction among segregated species can lead to 

henomena such as in-plane GB spinodal-type decomposition [ 40 , 

2 ], GB phase transformations [20] , and solute wetting transitions 

t the GBs [43] . Factors such as solute-solute interaction [19] and 

ocal atomistic structure [44–46] all play significant roles in gov- 

rning the spatial distribution of solute atoms inside the GB planes. 

herefore, it is important to understand and quantify the in-plane 

rrangements that solute atoms at planar defects can assume di- 

ectly from experimental data, from the dilute limit to complex 

ow-dimensional decomposition patterns (hereafter all referred to 

s chemical features). To avoid intrinsic bias, methods that quan- 

itatively analyze those chemical features in an automated charac- 

erization approach increases the opportunity to discover new in- 

erface thermodynamics features, kinetic phenomena, and the as- 

ociated chemistry-structure-property relationships which had re- 

ained elusive for so long. 

Techniques to characterize the solute composition at GBs re- 

uire high spatial resolution and high chemical sensitivity. Prob- 

ng approaches for this purpose include transmission electron 

icroscopy (TEM)-based techniques, i.e. energy dispersive X-ray 

EDX) and electron energy loss spectroscopy (EELS) [47–50] , as 

ell as atom probe tomography (APT) [ 6 , 14 , 51-57 ]. TEM-based

ethods usually provide a two-dimensional (2D) projection of the 

olutes in the GBs [58] . Thus, in such cases, it is difficult to dis-

inguish whether the solute atoms segregate homogeneously, i.e. 

ccur as a dilute coverage without chemical spatial correlations, or 

orm a discontinuous pattern along a GB plane driven by element- 

pecific chemical interactions. In contrast, APT provides a three- 

imensional (3D) characterization of GBs and can accurately quan- 

ify solute distribution on the GB plane [ 13 , 14 , 51 ]. Thus, the 3D

econstruction from APT offers one additional dimension of infor- 

ation to TEM-based techniques, when exploring chemical fea- 

ures in GBs. Typical visualization tools for APT include chemical 

socomposition or isodensity surfaces, which help to highlight the 

ocation of features with a specific composition or density value 

59–61] . One-dimensional (1D) line profiles and 2D contour maps 

an aid to quantitatively displaying of the local composition [62] . 

n the specific case when consistent composition gradient direc- 

ions can be computed for a region in the APT dataset or when the 

sosurface patch culls a closed polyhedron, it is possible to com- 

ute signed composition profiles. Such a profile, centered at the 

nterface and aligned with a consistent outer or inner unit nor- 

al, respectively, are known in the APT community as a proximity 

istogram (or “proxigram” for short) [63] . These methods can be 
2 
sed to reveal various aspects of local chemical compositions at 

efects. However, there are still challenges when it comes to the 

uantification of chemical features along a GB plane that is arbi- 

rarily located and inclined in 3D space and carries complex chem- 

cal patterns. For example, interfaces in polycrystals may not be flat 

ut exhibit topological variation for a variety of reasons including 

quilibrium of forces at nodes and/or interfacial energy minimiza- 

ion [9–11] . Such complex structures of interfaces make the map- 

ing process in APT arduous and potentially user-biased. Below we 

ummarize key studies that have tackled problems in how to iden- 

ify and map solutes in APT reconstructed GBs. [ 6 , 55-57 , 64-67 ]. 

Yao et al. calculated the solute distribution map from a curved 

B plane based on the Hough transformation of reconstructed APT 

ata sets [ 6 , 64 ]. With the assistance of supervised machine learn-

ng (ML) algorithms, referred to as boosting [68] , Wei et al. were 

ble to characterize the five kinematic degrees of freedom that de- 

ne a GB (misorientation and plane inclination) with near-atomic 

esolution [69] . This method enabled the direct extraction of local 

ompositional and geometric information (i.e. the curvature of the 

nterface) without human-perceptive bias from manual manipula- 

ion procedures or user experience [69] . 

Nevertheless, these two solutions are not sufficiently robust 

hen descriptive crystallographic information about the adjacent 

rains is missing [ 6 , 64 , 69 , 70 ]. In other cases, the segregated so-

ute atoms can serve as markers to locate the position of the in- 

erfaces for creating a solute distribution map. Felfer et al. used 

uch isocomposition surfaces to determine the location of these 

nterfaces [ 56 , 65 , 66 ]. This method is practical if isocomposition

urfaces form a continuous interface set. If the segregation and de- 

letion is not continuous, such as in cases for interfacial spinodals 

 40-42 , 71 ], spatial gaps appear and the interface is no longer uni-

orm (complete) in this visual representation. Furthermore, calcu- 

ating isocomposition surfaces with implementations of the march- 

ng cubes algorithm do not necessarily produce topologically cor- 

ect results, nor can do they guarantee a description of closed sur- 

aces [72] . In these cases, where discontinuities exist, Felfer et al. 

eported that the interface needs to be manually located, mak- 

ng the analysis user-dependent, with uncertainties that are diffi- 

ult to quantify and limited reproducibility when the same data 

et is examined by different researchers. Felfer et al. also used 

he Voronoi filter [ 56 , 73 ] to represent an interface region, which

eparates atoms of interest belonging to adjacent regions of high 

tomic packing density from the bulk atoms by taking a thresh- 

ld value for the volume of the Voronoi cell of each atom [ 56 , 73 ].

ensity fluctuations are frequently used to represent and localize 

n interface [ 55 , 69 ]. In a recent publication, Peng et al. employed

 principal component analysis (PCA) to locate and reconstruct so- 

ute decorated interfaces [55] . This method offered a more repro- 

ucible alternative for locating the position of the interfaces. How- 

ver, its reliability is not guaranteed when multiple grains exist si- 

ultaneously in one APT data set. In all of these pioneering stud- 

es, the most critical challenge associated with mapping the chem- 

cal decoration on the interface is the ability to locate the interface 

n an accurate and reproducible manner. 

Here, we propose a ML framework that unbiasedly predicts the 

ocation of GBs from an APT data set for local composition map- 

ing [74] . The choice of ML algorithms over traditional image pro- 

essing methods is motivated by several concerns. In traditional 

mage analysis approaches, several drawbacks exist that include 

he following: high expertise and manual training is normally re- 

uired with no automation; poor reproducibility can occur be- 

ween different datasets; analysis often consists of time-consuming 

orkflows; when automation options are available, they usually 

till require some partial manual data processing; and, finally, in- 

ufficient sensitivity for pattern recognition by human users as 

ompared to well-trained machines. For example, the Hough trans- 
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orm [75] is a traditional image processing method that uses a 

redefined criterion to identify linear objects in images. In cases 

here complex patterns exist, some features maybe ‘hidden’ from 

he user’s direct observation unless they have some a priori under- 

tanding or knowledge. To avoid this user-defined issue, we choose 

onvolutional neural networks (CNNs) [74] , a core method in deep 

earning for complex image recognition. From a methods perspec- 

ive, CNNs are multi-layer artificial neural networks with back- 

ropagation and adequate penalizing functions (considering both, 

enalization of total prediction deviation and of over-fitting) where 

he individual layers are usually specialized on feature-specific fil- 

ering and compression operations. These are usually implemented 

n the form of marching matrix dot product operations that are ap- 

lied in a staggered sequence to the input layer data. The weight 

unctions behind the filters are iterated by training, as for all neu- 

al networks. CNNs are usually strong in the automated recognition 

nd the classification of the features formed by complex patterns. 

fter adequate training, CNNs can recognize different types of ob- 

ects in complex patterns [ 76 , 77 ]. Such an automated ML approach

an accelerate the analysis process and improve reproducibility. 

NNs have the potential, in some cases, to reveal patterns that re- 

ain hidden when analyzed by using traditional methods or when 

sing forward pattern analysis with consideration of only known 

attern features. To this extent, some pattern features can likely 

e identified more efficiently and in less biased form by the user 

hen using ML algorithms. ML has proven capable of such advan- 

ages, specifically in case of APT data analysis, as shown by the pa- 

ers of Wei et al. [ 69 , 78 ], Madireddy et al. [79] , and Zelenty et al.

80] . 

This paper expands upon these methods by reporting a new 

orkflow for an automated approach to quantify the spatial dis- 
ig. 1. flowchart summarizing the steps of ML-enhanced mapping of GB composition and 

oolkit for data analysis workstations [82] . Matlab is a numerical computing environmen

nvironment (IDE) for scientific programming in Python. Blender is an open-source comp

or storing atomic positions and associated mass-to-charge-state ratios. RRNG is a range fi

ssociating an element or molecular ion with a set of mass-to-charge-state ratios ranges

imensions, respectively. 

3 
ribution of solute segregation along GB planes from APT data sets. 

n this method, decorated species assist in determining the posi- 

ions of the GBs. Specifically, we show how to train a CNN [ 74 ,

6 , 77 ] with synthesized images for recognizing and labeling lo- 

al features, such as images showing regions-of-interest probing 

rain interiors, GBs, and triple junctions, from APT data sets. Once 

he location of the GBs is identified, the quantification of the so- 

ute distribution along the GB planes follows the framework in- 

roduced by Felfer et al. [ 56 , 65 ]. In particular, this work tackles

he step of how to automatically and accurately determine the po- 

itions of GBs where mapping is needed. The ability to identify 

Bs in an unbiased manner via automated methods is an essen- 

ial need for consistent APT analysis, particularly for APT datasets 

hich contain multiple GBs. We have successfully employed this 

L-based approach to study the GB solute segregation phenom- 

na in three cases, namely (1) Ni-P, (2) Pt-Au, and (3) Al-Zn-Mg- 

u alloys. Such a quantitative, unbiased, and automated character- 

zation method is capable of catalyzing new discoveries related to 

nterface thermodynamics, kinetics, and the associated chemistry- 

tructure-property relations. 

esults and discussion 

orkflow for the in-plane grain boundary composition analysis 

pproach 

Fig. 1 shows the workflow for determining the in-plane GB 

omposition. As a first test scenario, we selected different poly- 

rystalline specimens with near-columnar grain morphologies. The 

dvantage of a columnar grain is that the planar interface is rel- 

tively flat and parallel in one direction readily enabling the GB 
interfacial excess from APT data sets. The term ‘AP Suite’ refers to the atom prober’s 

t developed by MathWorks, Inc. Spyder is an open-source integrated development 

uter graphics, animation, and compositing software [83] . POS is an APT file format 

le format identifying the chemical information of each ion species in APT data by 

 [84] . OBJ is a geometry definition file format. 2D and 3D refer to two- and three 
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Fig. 2. A Schematic of an atom probe tomography specimen showing the rotation by an angle θ about an axis perpendicular to the grain columnar axis B shows the 

relationship between θ and the average solute (aluminum) composition in the filtered 2D image of the projected APT data obtained from a ZnO-Al sample with columnar 

grain shape. The embedded composition map exemplifies the average (projected) solute distribution in the projection plane, as shown in the left-image at 0 ◦ We also 

include five filtered 2D images at several θ values (right-image at 0 ◦ and images at 150 ◦ , 180 ◦ , 270 ◦ , and 360 ◦ , respectively) for comparison. The average solute composition 

is calculated from regions highlighted by white pixels in the filtered 2D images. 
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omposition to be directly captured in a 2D plane [81] . Below we 

ummarize our approach followed by more detailed sub-sections 

or each step. 

First, we start with the APT data set, which contains two types 

f information: (1) a file for the positions (x, y, z) and the respec-

ive mass-to-charge-state (m/q) ratio for each ion to that position 

nd (2) a m/q range file which identifies each ion species by asso- 

iating a set of mass-to-charge-state ratio intervals, or a complex 

f ions (molecular ion), that occurs from the uncertainty associ- 

ted with the arrival time variance upon detection. Such data sets 

an be experimentally measured or computationally generated. We 

sed the workstation (AP Suite 6.1) to perform the initial data re- 

onstruction on the experimentally captured data set [84] and ap- 

lied an in-house developed Matlab (2018a) script to generate the 

ynthesized dataset [85] . Both data sets are readable in AP Suite 

.1 for extracting and exporting regions-of-interest (ROIs) as the 

nput of the subsequent GB compositional mapping and analysis. 

or this work, our ROI was cylindrical because of the symmetry in 

he reconstruction associated with the composition within the GB 

lane. 

In the next step, we rotate these datasets to calculate successive 

rojections of the solute composition onto the planes to identify 

pecific rotation angles of so-called edge-on configurations where 

he grain column axis is perpendicular to the current projection 

lane. Section 2.2 contains more details about this particular step. 

In section 2.3, we used a trained CNN to identify where the 

ompositional signal strength is sufficiently above background to 

upport the spatial position of the GB network on the projection 

lane. This results in a skeleton network of the chemical decora- 

ion, quantified here via an average solute composition projected 

nto the plane. Given the constraint that we analyze columnar 

rains, we use this skeleton to extend the GB planes in 3D. We de- 

eloped an algorithm for meshing these GB planes and tuning their 

orphology to track the GBs in 3D using the open-source software 

lender (version 2.92) [83] . Section 2.4 explains the quantification 

f the GB segregation, with a workflow step that has been coded 

n Matlab (version 2018a). Section 2.5 validates our approach with 

 synthesized data set. Finally, in section 2.6, we applied the ap- 

roach to analyze the in-plane GB chemical features from experi- 
p

4 
entally obtained APT data sets from three different alloys to as- 

ess the robustness of our workflow and proposed methods. 

rojection of three-dimensional chemical information onto a 

wo-dimensional plane 

Our method has first been applied to APT data retrieved from 

 ZnO-Al thin film. An evident columnar grain morphology was 

resent with strong segregation of aluminum (Al) to these GBs, as 

hown in Fig. 2 . Because of this strong partitioning, we can readily 

dentify the GBs in an edge-on configuration, where the projection 

lane has been aligned perpendicular to the cylinder shaped GBs, 

ee Fig. 2 A. 

In this step, we detail an algorithm to automate the detection of 

he GB direction that is orthogonal to the GB normal, or, in other 

ords, the direction that is parallel to the GB plane. This method 

ainly focuses on the interpretation of the chemical feature of 

Bs, i.e. GB composition and the corresponding edge-on and in- 

lane patterns. Note that atomistic structures, i.e. local atomic mo- 

ifs in the GB, are not resolvable because of the spatial reconstruc- 

ion limitations and detection efficiencies associated with APT. We 

ssume that the chemical decoration is substantially higher in the 

roximity of the GBs than in the grain interior. In this case, we ex- 

ect that the chemical contrast forms a connected trace image of 

he GB network, instead of only a set of isolated traces for arbitrary 

otations of the dataset. 

Averaging the 3D chemical decoration along these aligned 

rains allows for a clear distinction between the grain interior and 

he GBs, owing to the above solute segregation. To determine the 

pecific projection plane, we generated a series of 2D projection 

mages by successively rotating the data set by an angle θ about an 

xis which was perpendicular to the grains’ columnar axis. Fig. 2 A 

resents a schematic diagram to show this rotation. The specific 

xis chosen here coincides with the field evaporation axis that was 

sed in the APT experiment. Choosing this axis has the advan- 

age of minimized APT reconstruction aberration effects [ 61 , 86 ]. 

hus, at a certain rotation angle, θ , a GB edge-on configuration 

s achieved and a clear edge-on GB decoration projection is now 

resent with minimal aberrations in the reconstruction. 
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A criterion is now defined for rendering this formally, i.e., for 

eaching an optimum θ value. First, we binarized the composition 

ap by filtering the non-random solute distribution via a threshold 

 defined as 

 = μ + k × σ (1) 

here μ corresponds to the mean composition for all pixels in the 

rojected composition map, σ is the standard deviation among all 

ixels, and k is an adjustable number. Regions with compositions 

igher than the threshold T were assigned a "1 ′′ , and regions hav- 

ng compositions below that value are "0 ′′ . The filtered pixels, for 

hich values are "1 ′′ , correspond to regions enriched in solutes 

the projection of the chemical decoration). With a GB in an edge- 

n configuration, the solutes along the GB planes reside within a 

et of thin line segments in this projection plane, and the aver- 

ge solute concentration, indicated by the filtered pixels, tends to 

e high on these lines. Using this filter, the GB recognition pro- 

ess will be less sensitive in locating composition variations, and 

t is adaptable to various composition ranges. While this threshold 

oes not enable accurate compositional analysis in the GB, evident 

y the binary “1 ′′ or “0 ′′ binning, its purpose is to locate and de-

ne the GB by the presence of solute segregation, not necessarily 

he quantification of solute segregation. This latter measurement is 

one using another method used later on in our workflow, Fig. 1 . 

We now illustrate this process with the ZnO-Al experimen- 

al data set. The 3D chemical information was projected succes- 

ively on multiple 2D projection planes, Fig. 2 B. For example, the 

eft-image is at 0 ◦ and shows a projected composition map. We 

inarized the composition map using the aforementioned binary 

hreshold approach, Eq. (1) , and represented the threshold out- 

ome as a black (“0 ′′ ) and white (“1 ′′ ) contrast image, Fig. 2 B. Here,

 is set at 2.3 at.% when the adjustable k is 0.5. As such, the av-

rage solute composition within the white pixels was plotted as a 

unction of the rotation angle, θ , in Fig. 2 B. When θ is 0 ◦, 180 ◦, and

60 ◦, the maps appear to have some interconnected line segments, 

hich is the signature of a projected aggregate of edge-on oriented 

risms (GB network). For those θs, the average solute composition 

ends to be the highest. Fig. 2 B also includes the maps at θs with

 low average solute composition, such as 150 ◦ and 270 ◦, where 

he parallel lines run through the image. Note that GBs oriented 

n this direction are not suitable for the later auto-detection of the 

B. Therefore, we chose the θ value to be 0 ◦ for an edge-on GB 

onfiguration. 

utomated grain boundary detection by using a convolutional neural 

etwork 

The convolutional neural network comprises multiple layers 

ith the goal of building a function to classify an input image [ 74 ,

7-89 ]. The individual layers are specialized for feature-specific fil- 

ering and compression. For instance, the convolutional layer ex- 

racts structural features, e.g. an edge, a line, or junctions, from 

he source image and passes its results to the next layer [89] . This

onvolutional layer helps with sharpening, blurring, noise reduc- 

ion, edge detection, or other operations that can assist the ML 

lgorithm in learning the specific characteristics of an image. The 

eight and bias functions behind the filters are iterated through 

raining [ 74 , 89 ]. For convenience, we refer to this automated GB

etection by a CNN as Auto-GB-CNN. 

.3.1. Training data of synthesized grain boundaries for recognizing 

ocal features 

The preparation of training data to recognize actual data is a 

rucial step for accurately capturing features of interest in any su- 

ervised ML algorithm. With a sufficiently large set of training 

ata, CNNs can efficiently learn the weight factors pertaining to 
5 
ll filters and provide a translation equivariant response. This is 

chieved by identifying adequate penalty measures from the train- 

ng data set. The second important aspect relates to the avoid- 

nce of overfitting. Even if some experimental features, i.e. chemi- 

al contrasts that form a coherent trace image of the GB network, 

re not contained in the training data, ML can identify them by 

apturing features of interest from the learned structures. CNNs 

ave a considerable potential to unbiasedly and automatically re- 

eal chemical patterns that are hidden when using forward pattern 

nalysis with consideration of only known pattern features. 

Our goal is then to create training datasets containing grains 

ith different shapes and GBs with varying degrees of solute dec- 

ration for mimicking compositional information obtained from 

xperimental APT data sets. To do this, we created various sim- 

lated data sets with different (but known) compositional infor- 

ation and GB structures. This was achieved by generating 2D 

oronoi tessellation and then extending its trace into 3D to mimic 

he columnar grain shapes [85] . Using these simulated structures, 

e then filled the columnar volumes with periodically positioned 

toms defining different orientations per column to generate vari- 

us GB misorientations and inclinations. We did not relax the atom 

ositions of these simulated structures for the following two rea- 

ons:(1) The spatial resolution of APT is approximately 0.1–0.3 nm 

n depth and 0.3–0.5 nm laterally [ 62 , 84 , 90 ] with field evapo-

ation of ions near GBs being further displaced in the reconstruc- 

ion from local magnification effects [ 61 , 86 , 91 ]. Therefore, it is

eyond the capability of the experimental APT technique to cap- 

ure the atomistic structure of GBs precisely and accurately. Hence, 

ny simulation relaxation to further improve the atomic position 

or training would not ultimately improve the ability of detect- 

ng such features when applied to the experimental data set. (2) 

e will use the atomistic structures only to distinguish the chem- 

cal difference between the grain interiors and the GBs. The ac- 

ual arrangement of atoms at GBs is of less interest to this par- 

icular work. Fig. 3 A is a simulated 3D image of a polycrystal 

ith columnar grains. The grains are defined as distinct regions 

f atoms (represented as green dots in Fig. 3 A) which are ar- 

anged on positions of a face-centered cubic (FCC) crystal lattice 

ith a lattice parameter of 0.4 nm. The remaining gray-colored 

toms within the simulation are atom positions located in the 

Bs. 

Note that local magnification effects [ 61 , 86 , 91 ] mentioned 

bove will cause the APT reconstructed GBs widths to potentially 

ppear thicker than their actual width. To account for this effect, 

e defined artificial GB widths over which resolved segregations 

ould occur to 3 nm, which matches more closely with antici- 

ated experimental APT observations. Fig. 3 B is a representative 

rojected 2D image showing the resolved grain interiors, GBs, and 

riple junctions. Since compositional variations can occur both in 

he grain interior and along the GB planes, we also added solute 

toms to interior and GB regions as clusters with a range of sizes, 

arious compositions, and different number densities. Fig. 3 C is a 

D projection of the 3D simulation with these additions for an av- 

rage composition of 5 at.% in the interior and up to 80 at.% en- 

ichment to the GBs. These modifications also follow the exper- 

mental findings, namely that GB segregation is typically a phe- 

omenon where in-plane GB compositions can be highly inhomo- 

eneous and vary by more than an order of magnitude [31] . 

The actual compositions of grain interior and GBs are related 

o the alloy system, solute composition, crystal structure, and heat 

reatment. Here the solvent and solute elements are not defined, as 

his training data set had been designed for an arbitrary alloy sys- 

em with GB segregation. We have generated a range of composi- 

ional combinations between the grain interiors (e.g. 3 - 6 at.%) and 

Bs (e.g. 2 - 80 at.%) to cover a wide range of potential possibili-

ies. Using the filter from Eq. (1) , the simulated GB network can be 
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Fig. 3. Synthesized training data set. A 3D atomistic structure of columnar grains, 

where atoms in grain interiors (GIs) are green, and those at grain interiors (GBs) 

are gray. B The projected 2D map showing resolved GIs, GBs, and triple junctions 

(Triple). C The projected 2D composition map after adding solute atoms as a form 

of clusters. D The filtered 2D image is divided into small sub-images by red dashed 

lines. E We assign each of the sub-images into three groups by the different colors 

of their frames. 
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ell revealed in the binarized 2D image, Fig. 3 D. Sub-images from 

ig. 3 D, were then divided, shown by the red lines, with these sub- 

mages used as the training data sets. Each of these images, delin- 

ated by a colored box in Fig. 3 E, is classified into one of three

ategories – grain interiors, GBs, and triple junctions. The criteria 

or distinguishing which category the image belongs to are based 

n how many grains the image contains. For example, we define 

hat an image that involves only a single grain belongs to the grain 

nterior category of images. If two grains are present, the image is 

abeled as a GB and all other identified features then belong to the 

riple junction category. Using the above method, we generated the 

raining data set with 20,0 0 0 images of the same size but differ-

nt patterns. Learning to back out compositional features, such as 

B network traces (lines) and triple-line-imaging plane intersec- 

ion points, can then help the CNNs locate the GB network from 

he experimental APT data. The following section now discusses 

he details of this classification process by CNNs. 

.3.2. Convolutional neural network for recognizing grain boundaries 

The CNN used herein is implemented in the software library 

ensorFlow 2.0.0-beta1 [92] . The input data of a CNN has a shape 

f (number of images) × (image width) × (image height) × (image 

epth). In this work, the input data is a ( 20 , 0 0 0 × 20 × 20 × 1)

atrix with each input image having a 20-pixel width, a 20-pixel 

eight, and a 1-channel depth. The edge length of each square 

ixel represents 0.4 nm spatial distance. The training images are 

omposed of grains with different shapes and various solute distri- 

utions. The left image in Fig. 4 is an example of an input image

ith which the CNN has been trained to detect it as a triple junc- 

ion unit. Fig. 4 also contains the neural network schematic for the 

raining process. 
6 
A convolutional layer is composed of a series of filters known 

s kernels, namely a matrix of numbers. In our work, the convo- 

utional layer utilized a 3 × 3 pixe l 2 kernel whereupon we move 

he sampling window (i.e., the field of view for the kernel) over the 

nput image, pixel after pixel, for every position in the input image. 

ence, the kernels only “see” a portion of the input image. The dot 

roduct of the imaging matrix with the operations of the kernels 

enerates a single value to present the analyzed pixels. By march- 

ng the sampling window through the input image, and performing 

his dot product operation, a feature map is created. We used the 

ectified Linear Units (ReLUs) activation function to transfer the 

ot product value into the next layer, which outputs the inputs di- 

ectly if it is positive value but if the operation yields either zero 

r a negative value, the output is assigned a ‘zero’ value [89] . As 

 default activation function for the convolutional layer, ReLU can 

rain the model more easily while achieving a better performance. 

or example, it can overcome the vanishing gradient problem that 

requently occurs with sigmoid and hyperbolic tangent activation 

unctions [89] . The output after the convolution layer retained the 

ame number of images, but each image now becomes a matrix of 

 18 × 18 × 64). Here, 18 pixels refer to the width and height of 

n image, while 64 is the number of channels. 

By adding a layer of 2 × 2 pixe l 2 , the largest element com- 

ression kernels reduce the number of parameters while retaining 

nformation in latent space [89] . This is known as a max-pooling 

ayer. During this step, the kernel was stridden over the input ma- 

rix by moving it horizontally every two pixels column-wise and 

ertically every two pixels to subsequent rows. This operation pro- 

ided an output feature map with the value extracted from each 

ernel. The height and width of the image decreased in half form- 

ng a compressed matrix of ( 9 × 9 × 64). 

Afterwards, we flatten those output layers into different classes. 

his step transforms the two-dimensional matrix of features into a 

ector that can be fed into a fully-connected neural network classi- 

er. In our case, the first fully-connected layer contains 5184 units 

fter flattening. We further condensed sequentially all units into 

12, 128, and 64 units. In the last pooling step, the activation func- 

ion, Softmax, normalized the output of the network to a proba- 

ility distribution over the predicted output classes [89] . As such, 

he outcome of the neutral network classifier is a label represent- 

ng one of three classes (grain interior, GB, and triple junction) for 

ach image. 

We have tested multiple parameters, i.e. the number of convo- 

utional layers (1–3), the number of channels (32, 64, 128), and 

he size of dense layers (512, 128, 64). The neural network shown 

n Fig. 4 gives the highest accuracy and was therefore selected for 

he later recognition step. 

We now discuss the influence of the number of training images 

n the accuracy of the CNN as well as potential inaccuracies in our 

roposed ML approach. We trained the CNN with a different num- 

er of images and then calculated the sparse categorical accuracy, 

.e. a value indicating how often predictions match integer labels 

92] . The calculations were based on the same 10 0 0 test images. 

ig. 5 A shows the sparse categorical accuracy of the CNN as a func- 

ion of the number of training images up to 20,0 0 0. Each point in

he plot is an average of five different groups of training images, 

ith the error bars showing the variance. The accuracy rapidly 

ncreases as the number of training images increases. At approx- 

mately 12,0 0 0 training images, the accuracy improvement levels 

ut at a value of 0.87 approximately. Fig. 5 B shows the confusion 

error) matrix between the predictions and the actual values. Dis- 

inguishing between the grain interior and the triple junction was 

elatively accurate; however, most of the ambiguity or error oc- 

urred when the system needed to distinguish between either a 

B and triple junction or a GB and a grain interior. These ambigu- 

ties are a result of the following: Firstly, if there is only a small 
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Fig. 4. Construction of the convolutional neural network for recognizing local features. Here, the abbreviations GI, GB, and Triple stand for grain interior, grain boundary, 

and triple junction, respectively. 

Fig. 5. A Sparse categorical accuracy as a function of the size of training samples. B Confusion (error) matrix between predictions and actual values. GI, GB, and Triple 

represent grain interior, grain boundary, and triple junction, respectively. 
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egment of a second GB connected to a triple junction, the CNN 

an mislabel it as a single GB. Secondly, since clusters can also ex- 

st in grain interiors, there is an uncertainty in distinguishing this 

ype of grain interior from such GBs that only carry a low amount 

f solute segregation. 

While these ambiguities are concerning, they can be mitigated 

y employing a weight and bias function that can automatically 

ecognize GBs by training it as well with the 20,0 0 0 images. Here,

e divided the experimental image into smaller field of views or 

indows that were 20 × 20 pixe l 2 whereupon the feature (grain 

nterior, GB, or triple junction) in the window is automatically de- 

ected and identified by the above CNN algorithm. By overlap- 

ing the windows, the continuity of the feature is better identified. 

hrough this window scanning approach, some degree of misclas- 

ification that occurs will not significantly alter the correct detec- 

ion of the location of GBs. The actual results relate to what the 

egion is most likely identified as. In other words, even if a region 

s not accurately indexed in one window but correctly identified 

n the surrounding windows, the probability to correctly recognize 

his region is still quite high. We have also used this image pro- 

essing to remove artifacts generated during the CNN step. In the 

ext paragraph, we provide the details of this image processing by 

sing an example of the Auto-GB-CNN process on the Ni-P APT 

ataset [93] . 
7 
.3.3. Example of automatic grain boundary detection from atom 

robe data sets without correlative microscopy 

Here, we apply the methods discussed in Sections 2.2 and 2.3 

Auto-GB-CNN) to locate the GB network in a columnar structured 

i-P APT data set where the phosphorus (P) has partitioned to the 

Bs [93] . Fig. 6 A shows the filtered 2D image of the averaged so-

ute composition with most of the GBs being in an edge-on con- 

guration. This 2D image is composed of 263 × 223 pixel s 2 . Us- 

ng a sliding window of 20 × 20 pixel s 2 , the CNN examined the 

omposition-related features in each window and classified it into 

ne of three categories (grain interior, GB, and triple junction). 

hen the sliding window was labelled as grain interior, we set all 

ixels to "0 ′′ . For images of all of the other labels (GB and triple

unction), these pixels are now set to "1 ′′ and stored separately. 

fterwards, we superimposed the assigned values in all the sliding 

indows into a series of new 2D matrices that have the same size 

s the original 2D image. Those two new matrices represent a GB 

ap ( Fig. 6 B) and a triple junction map ( Fig. 6 C), respectively. In

uch a manner, features, i.e. GBs and triple junctions, have been 

ounted multiple times during the sliding window step. Conse- 

uently, these features result in a high detected value in the output 

mages. In Fig. 6 C, we also highlight the local maxima in these dis- 

inct regions, which could be the location of possible triple junc- 

ions, by green spot makers in the image. Fig. 6 D shows the bina-
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Fig. 6. A Filtered 2D image from the experimental Ni-P atom probe data set [93] . B Pixels in yellow highlight the GB regions as they were detected by the CNN. C Pixels in 

yellow represent the triple junction regions as they were detected by the CNN. Green-colored spots highlight the possible triple junctions. D The black and white image is 

the binarized image of B according to the filter described in Eq. (1) . Here, the red line segments are the GBs detected by the GB features. The green line segments show the 

modified GB network favored by the triple junction features. Overlaid onto the composition map are GB line vectors before (red edge line in E ) and after (green edge line in 

F ) being adjusted by the triple junction criterion. 

Fig. 7. A 3D rendering of the P atom point cloud (red-colored) superimposed onto the 3D geometry of the GB network (blue-colored). B GB meshes (blue-colored) showing 

together with selected P (red-colored) and Ni (green-colored) atoms. C Magnified region (as pointed by the arrow) which exemplifies a volume used for computing IE and 

GB composition. D The ladder diagram computed from this volume shown in C. The green-edge circle indicates the location of the node in the GB meshes, while the yellow 

edge circle is the center of the region used for calculating GB composition. 
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ized GB signal as a black and white image by using the same fil-

er described in Eq. (1) . We then applied the "skeleton" algorithm 

94] to reduce all objects to single-pixel width lines. As shown in 

ig. 6 D, the line segments created in this way (colored in red) ap-

ear as an interconnected GB network. We further divided them 

nto multiple line segments by locating the ending pixel or junc- 

ion pixels. Here, each line segment represents an individual GB. 

he GB network detected by the GB feature is not always perfect, 

.e. the red edge lines in Fig. 6 E do not match well with the compo-

ition map. This issue arises from either the inaccurate prediction 

f the CNN or a ‘blur’ due to the sliding window process. We can 

esolve this issue by simply adjusting the k in Eq. (1) to make the

inary image sharper. As a second option, the position of the GB 

ine segments can be adjusted with the help of the junction pixels 

etected by the triple junction features. Fig. 6 F indicates modified 

B line segments (green edge lines) with all GB line segments ex- 

ended along the columnar direction to form the interconnected 

B planes. This operation involves a translation of the coordinates 

f the GB lines. Finally, we exported the 3D geometry of the GB 

etwork into a geometry definition file format (OBJ file). This file 

s a standard 3D image format that can be opened by various 3D 

odeling programs. 

.3.4. Meshing of the grain boundary planes in three dimensions 

We imported the extracted network of GB traces and triple 

unction locations into the open-source 3D graphics suite Blender 

version 2.92) [83] to create a mesh and perform a local refine- 

ent of the mesh. Fig. 7 A shows a section of the 3D geometry of

he GB network that is overlaid onto a rendering of the P atom 
8 
ositions within the reconstructed Ni-P APT data set. In Blender, it 

s possible to adjust specific nodes of the 3D geometry to achieve 

 better match between the highlight planes and the GB positions. 

or instance, we could manually add a GB that has been confirmed 

y complementary TEM results but remained undetected by the 

L algorithm. A possible reason when this would be needed is for 

ases when the solute segregation is too low and remains below 

he threshold to trigger the insertion of a GB segment in the Auto- 

B-CNN step. 

The next step is to mesh the GB planes. As it is often difficult 

o obtain meshes with as closely as possible equilateral triangles 

B planes, we first cut the GB planes into small rectangles and 

hen divided each rectangle into two triangles in Blender [83] . The 

inimum side length of the triangles is adjustable for controlling 

he density of triangles per mesh surface unit area. For Fig. 7 B, the

inimum meshing length was set to 3 nm. Subsequently, all nodes 

n the meshes that lie outside the convex hull of the specimen 

ere deleted [95] . Next, we assigned the nodes on the meshes to 

he respective GB line segments defined in the previous step to 

dentify each GB as an individual unit of the 3D mesh. Finally, in 

he last step, the positions of the nodes on the GB meshes were 

utomatically adjusted towards the center-of-mass of the solute 

pecies using the algorithm introduced by Felfer et al. [56] . Fig. 7 B

s a representative image of the meshed GB network in 3D. 

uantification of grain boundary segregation 

With the GBs now defined, the measurement of local solute 

omposition in the GB is merely computing the relative percent- 
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ge of one specific species among all identified atoms in a given 

olume. This requires a definition of the GB width. In reality, the 

rystallographic width of a GB is typically the size of one to a 

ew atomic layers in thickness [96] . However, the measured APT 

B width can span one monolayer to a few nanometers depend- 

ng upon how the chemical demarcation is defined in the atom 

robe reconstruction [97–99] . It can even vary from region-to- 

egion along a singular GB plane depending upon the spatial distri- 

ution of the solutes [55] . Consequently, the widths of GBs as mea- 

ured by APT may appear modestly thicker than their actual width 

ecause of these effects that are largely contributed to a ‘local 

agnification effect’ when the data is reconstructed [ 61 , 86 , 91 ].

herefore, the quantification of the precise GB width from APT can 

e difficult to ascertain. One means to determine the solute con- 

ent in the GB is the use of interfacial excess (IE) mapping, where 

E represents the excess number of atoms per unit area due to the 

resence of an interface [ 1 , 18 ]. This quantification is much less

ensitive to reconstruction artifacts and does not need one to de- 

ne the exact width of a GB [ 55-57 , 67 ]. By combining composition

nd IE mapping, we can now achieve a more complete description 

f the solute distributions along the GB planes [61] with our cal- 

ulation following the methodology from Felfer et al. [56] . In sum- 

ary, the use of the ML-based approach provides a quantitative, 

ess biased, and automated access to identify the GBs whereupon 

ethods of composition analysis on such boundaries can then be 

eadily applied to collectively yield a robust means for chemical 

haracterization from APT datasets on these features. Using this 

pproach, we now continue its application using the Ni-P APT data 

et. 

.4.1. Automatic interfacial excess mapping 

Obtaining an IE value requires two quantities: (1) the number 

f excess atoms and (2) a reference area on the surface of the GB 

esh where the calculation is to be performed. We can gain the 

umber of excess atoms from plotting a so-called ladder diagram 

57] . Such a diagram is computed for each vertex on the GB mesh

identified by our ML methods) by placing a small columnar vol- 

me across the GB mesh and plotting the number of solutes as a 

unction of the number of total atoms when counting both num- 

ers (solutes and total atoms collected) from one end of the vol- 

me to the other. When the solutes enrich a GB, the slope of the 

iddle line segment will become steeper than those on either side 

f the GB. This created the appearance of a ladder shape. Fig. 7 C

hows the selected volume across the meshed GB with Fig. 7 D re- 

ealing this ladder step in the Ni-P system. Fig. 7 D also includes 

inear fits for the two segments on either side of the GB, which 

as been colored in blue and red dashed lines, respectively. These 

lopes represent the solute presence within the grain interior. The 

ifference in the intercept values of those two lines at the loca- 

ion of the interface is the number of excess atoms in the GB. We 

mployed a Matlab script to search for the turning points where 

he ladder diagrams could be divided into these three line seg- 

ents or slopes [100] . While the slope here is steep and positive, 

ndicating solute segregation in the GB, the slope in the middle 

ine segment does not necessarily have to be larger than the slope 

rom either grain. In that case, the GB is depleted of solutes. The 

adder diagram can be used to characterize GB enrichment or de- 

letion when the curve can on the one hand be decomposed into 

hree segments that can all be described via linear interpolation 

nd when the values in the middle segment on the other hand are 

ither larger or smaller than those of the other segments repre- 

enting the situation in the grains on either side of the boundary. 

hile the ML approach does use segregation as the descriptor for 

dentifying GBs, the reconstruction will create a GB plane where 

arts of the regions on this plane may have little to no segrega- 

ion. In those cases, where such regions are sampled, there will be 
9 
o significant change of slope in this type of IE plot. In such re- 

ions, excess atom quantities are zero. 

The other quantity for calculating an IE value is the reference 

rea of the respective GB mesh where the ladder diagram is eval- 

ated. As the involved volume for IE calculation has a columnar 

hape in our case study, we can calculate the area, S, using the 

ollowing equation: 

 = V/ H (2) 

here V is the volume of the convex hull [95] of the involved 

toms and H is the vertical distance measured between the far- 

hest separated atoms in the direction normal to the GB plane. 

rom the original APT dataset, only regions within a few nanome- 

ers on either side from the GB mesh are needed for the IE calcu- 

ation. Hence, we can extract or clip these volumes out of the en- 

ire datasets. Using an automatic clipping algorithm from the ML 

efined GBs, the calculation of IE maps becomes efficient. For the 

ase system shown here for Ni-P, we set the distance to 7 nm on 

ither side of the interface making H 14 nm. 

.4.2. Computing the composition within a grain boundary 

When one needs to calculate local GB compositions, this is done 

y computing the fraction of solute atoms over all atoms in a given 

OI volume. The accuracy of such a GB composition map depends 

trongly on the locations of the ROI to the GB position. While the 

ocation of GBs determined through CNN are a good estimation, 

hey still represent an approximate position. In some cases, the so- 

ute may shift relative to the boundary’s actual location based on 

ow the CNN located the boundary mesh. Ladder diagrams are one 

lternative solution. Here, one can more precisely refine the GB po- 

ition if one assumes that the solute is located in the middle of the 

B. In Fig. 7 D a green edge circle is used to indicate the CNN de-

ermined position of the boundary. This location appears slightly 

loser to the grain on the right side. If we now assume that the 

olute distribution is symmetric along the GB plane, the location 

f the GB should be located in the middle position between the 

wo inflection points in the ladder diagram. This is indicated by 

he yellow edge circle in Fig. 7 D. A volume centered at this po- 

ition would then offer a potentially more accurate positioning of 

he ROI based on the assumptions above. While these spatial dif- 

erences are relatively minor in our example, it does highlight that 

 deviation can and does exist and should be accounted for how 

ne may approach an automatic means of determining GB compo- 

ition. 

alidation through a synthesized data set 

While the sections above have shown how the Auto-GB-CNN 

ethod functions for each step, even using real experimental 

atasets to highlight its use for specific steps, it has not yet been 

mployed for either a full dataset analysis that contains multiple 

Bs nor has it been tested to determine its accuracy for compo- 

itional mapping. To validate the collective various steps in the 

uto-GB-CNN method, it is now tested against a simulated dataset 

here the composition and features are well defined. 

The simulated dataset was created using the same custom de- 

eloped Matlab script that generated the training datasets (Sec- 

ion 2.3) [85] . Here, the data set contained approximately 6 million 

toms on a FCC lattice ( a = 0.4 nm) which consisted of a polycrys-

alline structure with a columnar grain structure that has a known 

patial distribution of solute atoms. Here, the average columnar di- 

meter was approximately 34 nm and the average solute composi- 

ion in the grain interiors was set to 9 at.%. In addition, spherical 

lusters with radii of 1 – 1.5 nm were added into the grain in- 

eriors with such clusters having a solute content of 15 at.%. The 

B widths were set to 2.5 nm with the solute segregation in these 
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Fig. 8. A Synthesized data set with 30 at.% solute isocomposition surfaces (blue-colored) embedded. Pink atoms represent any possible solvent atoms. B 2D projected image 

showing local composition C Line segments found by the Auto-GB-CNN method profiling the GB network D GB composition map embedded in the 3D atom map of solvent 

atoms (pink-colored). 
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Fig. 9. A correlative study of the 350 °C/1 h annealed Ni-1.5at.%P thin film [93] . A 

Precession electron diffraction orientation and GB map for an atom probe specimen. 

B GB composition map embedded in the 3D atom map of P (red-colored) from the 

same APT specimen. C GB composition (P) as a function of GB misorientation. 
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oundaries threshold at a minimum of 12 at.%. To further mimic 

xperimental data, we allowed the solute atoms to cluster in these 

Bs with radii of the clusters ranging from 1.1 to 1.9 nm, up to 

ompositions of 94 at.% with this clustering accounting for 82% of 

he GB volume. Considering that the size of a simulated GB clus- 

er can be larger than the defined GB width, only the region of 

he cluster within the GB width was used. Every compositional in- 

ormation of the cluster outside this boundary condition was not 

sed. 

Fig. 8 A shows the atom map of this synthesized data set. The 

ink atoms represent the solvent atoms. We employed the blue- 

olored isocomposition surfaces to highlight localized regions with 

olute compositions above 30 at.% (hence no clusters within the 

rain interior are seen because they do not reach this threshold). 

owever, clusters within the GBs are noted. In Fig. 8 A, this cluster 

nhomogeneity is clearly visible from the incomplete connections 

f the isocomposition surfaces in the boundaries. The chemical in- 

ormation of the 3D data set was then rotated and projected onto 

 2D plane to satisfy GB edge-on criteria, Fig. 8 B, as already dis-

ussed in Section 2.2. The green lines in Fig. 8 C reveal the ML

B network as it was detected by the Auto-GB-CNN algorithm. 

ig. 8 D is the local solute composition along these simulated GB 

lanes. The minimum and maximum solute content are 12 at.% 

nd 95 at.%, respectively. While the measured composition is ever 

o higher than the input value, it does reveal very close match- 

ng and confidence in this auto-detection and mapping approach. 

ith the complete Auto-GB-CNN procedure tested against the sim- 

lated dataset, we now apply it, in full, to the various experimen- 

al datasets discussed at the end of the introduction section of this 

aper. 

pplications for experimentally measured atom probe data sets 

.6.1. Grain boundary specific segregation 

As shown above in the interfacial excess section, P readily par- 

itions to the GBs in Ni. Here we use the Ni-P experimental dataset 

or further analysis. One of the advantages of the simulated dataset 

hown above is a priori knowledge of the nanostructure features, 

hich is not always available in an APT experimental dataset. To 

reate this a priori knowledge to our experimental system, we have 

dentified the GBs in the APT specimen tip, prior to field evapo- 

ation, by performing precession electron diffraction (PED) where- 

pon grain-to-grain misorientation is captured with the data repre- 

ented by automated crystal orientation mapping (ACOM). Through 

his type of cross-correlative method, we increase our confidence 

f the GB identification process by ML in the experimental APT 

ata because the ML generated images can be directly compared to 

n independent means of microscopy imaging. The details of this 
10 
ross-correlative method and the preparation of the Ni-P sample 

re found in [ 13 , 93 ]. 

Fig. 9 A shows the PED measurement of the grain orientations. 

he results document that different GB misorientations are present 

n the sample, enabling a qualitative characterization of the GB 

ypes among low angle GBs (LAGBs, green), high angle GB (HAGBs, 

lue), as well as a few coincidence site lattice (CSL) boundaries 

uch as �5 (cyan), �3 (red), and twin boundaries (a specific type 

f �3, red with yellow background). Fig. 9 B reveals the reconstruc- 

ion of the APT data from the ML Auto-GB-CNN method. Nearly all 

f the GBs were found and matched the PED data. However, the 

3 twin boundaries were not initially captured by the Auto-GB- 

NN method because this boundary revealed minimal solute par- 

itioning. Consequently, these boundaries were added manually to 

he image shown. This highlights a very important outcome. First, 

L may not capture all of the GB features. Hence, using cross- 

orrelative methods that can improve the accuracy of the APT re- 
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Fig. 10. A Composition map and B IE map of a LAGB found in the APT specimen extracted from a 1027 ◦C /15 min annealed Pt-7at.% Au thin film [102] . C Scatter plot to 

reveal the relationship between GB compositions and IE values for the data points collected from 910 vertices in the LAGB showing in A and B. The red dashed line is a 

linear fit. 
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onstruction is beneficial, as would be the case even if ML was not 

pplied. Even though our method did not capture this twin GB, 

t readily identified all others and provided for a rapid method of 

ata capture, analysis and representation. This decreases the time 

or users to sort through the data and apply any manual input 

o features that are notably absent, which still demonstrates the 

mpact ML can still have on APT reconstruction development. Us- 

ng the ML method, it was able to automatically reveal the in- 

omogeneity of P atoms not only between different GBs but also 

ithin the same GB, Fig. 9 B. This reduces the manual effort and 

otential human error in such analysis, a major motivation for the 

L approach developed here. Fig. 9 C displays how GB composi- 

ion relates to the misorientation. The large error bars notable for 

ll points in this plot indicates significant compositional variation 

long the GB planes. A more detailed understanding of the distri- 

ution of solutes is connected to the potential energy of GB sites 

nd was the subject of another study [93] . This collective study 

f chemical structure relationships using this ML approach to APT 

ata analysis provides a quantitative and representative way to re- 

eal GB-specific separation phenomena, while also recognizing po- 

ential areas for future development in identifying GBs in such 

atasets where low solute segregation in GBs exists. 

.6.2. Dislocations inside of a low angle grain boundary 

While the majority of the GBs above are associated with large 

isorientations, LAGBs contain a series of periodically arranged 

islocations that create modest crystallographic rotations, usually 

elow a few degrees, with the spacing of such dislocations directly 

inked to the misorientation. Similar to GBs, these dislocation de- 

ects also attract solutes. Such solute segregation at a LAGB de- 

ends on the local structural disorder and the hydrostatic stress 

round the containing dislocations [101] . In this second case study, 

e demonstrate our Auto-GB-CNN approach to reveal the chemical 

eatures of these local crystal defects. 

In this example, Pt-7at.% Au thin films were sputter-deposited 

nd annealed at 1027 ◦C for 15 min to facilitate the solute parti- 

ioning to defects. Details of the specimen preparation and analysis 

re given elsewhere [102] . Fig. 10 A and B are the composition map

nd IE map of the LAGB with a misorientation of 2 . 5 ◦, which can

e further decomposed into a tilt component of 2 . 43 ◦ and a twist

omponent of 0 . 12 ◦ The LAGB in the APT experimental dataset was 

aptured using our ML methodology, whereupon a pattern of par- 

llel lines was visibly represented in both a compositional and IE 

ap, from the Auto-GB-CNN toolkit above. The lines in this GB are 

ttributed to the dislocation array that creates this misorientation 

 42 , 102-104 ]. We treated such an arrangement of dislocation as 
11 
 spatially continuous GB rather than isolated dislocation lines. As 

or the latter, the excess in the unit of atoms per line can be cal-

ulated according to reference [65] . In this work, the compositional 

ariation is revealed over the entire GB plane. Fig. 10 C includes a 

ore quantitative result that shows a linear relationship between 

he IE values and solute compositions, with the data points col- 

ected from 910 vertices in this LAGB mesh that was automatically 

dentified by the ML method. By studying the separation behavior 

long the GB plane in this automated manner, the in-plane chem- 

cal patterns that are not nominally easily detected by standard 

ompositional analysis were presented in an unbiased manner. 

.6.3. Segregation and precipitation at grain boundaries 

Finally, a third case study was applied to our Auto-GB-CNN 

ethod. In this case, the APT dataset was taken from an Al-Zn- 

g-Cu alloy previously published by Zhao et al. [5] . Our aim now 

s to provide a statistical analysis revealing the solute distribution 

long the GB planes. Zhao et al. reported that magnesium (Mg) 

toms segregate toward the GBs in this alloy during annealing and 

hat this segregation contributed to the formation of precipitates 

long the GB plane. Using our ML method and mapping analysis, 

e can detect these solutes and provide a statistical analysis of 

hem on these planes in an unbiased manner. Fig. 11 is the com- 

osition data measured along the GB plane with the area fraction 

f a given solute content given as a function of solute composition. 

s shown in this figure, for the as-quenched sample, two compo- 

itional peaks could be easily distinguished with the distribution 

f the Mg solute revealing it was not a Gaussian distribution, but 

ather a combination of multiple peaks as pointed out by the red 

rrows. These two peaks correspond to regions with different lev- 

ls of solute partitioning. During the heat treatment, the peak with 

he lower solute content, approximate 2 at.% Mg, shifted to an even 

ower value, approximate 1 at.% Mg. This peak shift corresponded 

o the emergence of a solute-depleted region along the GB plane. 

he inset concentration maps in this figure are the GB planes that 

ere identified by our Auto-GB-CNN method where one can visu- 

lly note the solute evolution. We found that the peak at approxi- 

ate 5 at.% Mg also shifted to lower solute content. However, with 

ncreasing heat treatment time, a longer compositional tail appears 

n the high solute content side. This longer tail corresponded to 

he center of the clusters that now are readily observed to form on 

he GB plane. These clusters act as a nucleus and assist the precip- 

tation process along the GB plane as noted by Zhao et al. [5] . After

ncreasing the annealing time to 24 h, the Mg content increased to 

 maximum of approximate 35 at.%. The area highlighted in the red 

ashed box in the compositional tail at 24 h shows the precipitates 
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Fig. 11. The distribution of solute Mg atoms along the GB planes of a model Al-Zn-Mg-Cu alloy [5] , represented by the area fraction of a given Mg content as a function of 

Mg composition. Dashed lines represent fittings from multiple peaks with Gaussian distribution. The embedded images are contour maps of solute composition along the 

GB plane of samples heat-treated at 120 ◦C for different times. 
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long the GB plane. Here, our Auto-GB-CNN method presented a 

eproducible and highly automated approach to the analysis of a 

ime sequence study of APT experimental data. In doing so, new 

nsights into interface thermodynamics and dynamics can be de- 

eloped by having a reliable means of experimental analysis with 

o bias. 

ummary and outlook 

This paper introduced a ML-based approach for mapping GB 

omposition and quantifying solute IE from APT data. This method- 

logy leads to an automatic way to reveal solute distribution along 

he GB plane, allowing the insights of distinguishable solute segre- 

ation behavior that extends beyond the dilute limit, where solute- 

olute interactions are non-negligible. The interaction between seg- 

egated species as well as segregated species with local defect 

tructure can lead to phenomena, such as GB-specific segregation 

eatures as a function of misorientation and coincidence site lattice 

haracter, in-plane GB-spinodal decomposition, solute-dislocation 

nteraction leading to complex segregation patterns, and the tem- 

oral evolution from early solute-GB segregation in the dilute limit 

o interfacial phase separation. 

Several recent examples have demonstrated for instance that 

ne single value of the composition of one or more segregated 

pecies cannot capture the low-dimensional compositional patterns 

nd multiple levels of complexity of the elemental distribution at 

efects [ 7 , 29 , 30 ]. Yet, the properties and the microstructural evo-

ution of materials are related to the local values of the chemical 

otential both, in the bulk and at defects, i.e. it is of critical im- 

ortance to study not only the global chemical composition of GBs 

ut also the low-dimensional, in-plane patterns formed by the el- 

mental distribution. Such information cannot simply be captured, 

easured or interpreted by just using the conventional line pro- 

les or 2D contour maps but these features need to be adequately 

evealed to make them accessible to analysis. 

Such in-plane chemical patterning has rarely been studied sys- 

ematically, owing to the associated experimental challenges, their 
12 
imited spatial extension, sometimes low compositional variations 

nd lack of appropriate data extraction and analysis approaches. 

hese compositional segregation and patterning phenomena are 

ence still poorly understood due to this lack of direct and quanti- 

ative observation. Therefore, in this work, we have introduced an 

uto-GB-CNN method to probe, analyze and reveal patterned seg- 

egation features in real space, which can be applied to any kinds 

f low dimensional defects. The development and application of 

his method enable to reveal chemical patterns that can contribute 

o a better understanding of interfaces and their relationship to 

roperties. 

For example, GB motion in pure metals typically progresses 

uch faster than in alloys, but the actual magnitude and pat- 

erning of such chemical decoration have often remained undoc- 

mented. The effect of solute atoms on GB motion is commonly 

nown as impurity drag [25] but this interpretation is based on the 

ssumption of homogeneous segregation patterns on GBs. There- 

ore, direct quantification of the distribution of solutes across GB 

lanes in alloys is required for understanding, for instance, the ori- 

in of nonlinear transitions in the (discontinuous) grain growth be- 

avior and morphological stability of nanocrystalline materials [ 17 , 

5 ]. In addition to GB motion, the mechanical, physical and chemi- 

al properties of GBs can be strongly influenced by the coverage of 

olute atoms at GBs, the associated planar patterns of how these 

toms are arranged on GBs, as well as the interaction between 

eighboring atoms across GBs [105–110] . Our new methodology 

rovides these additional analysis approaches that are capable of 

esolving such complex features, for extracting more information 

rom atom probe data to advance the understanding of these fun- 

amental problems that have great engineering impact. 

The segregation of solutes and the compositional patterning on 

Bs is a complex problem. Recently, theoreticians have found that 

n addition to solute interaction, one must also consider the spe- 

ific site energy values to understand the phenomenon of solute 

egregation using hybrid Monte Carlo/molecular dynamics simula- 

ions [46] . Using a similar method, Garg et al. discussed the com- 

etition between segregation and complexation in the CuZr system 
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111] . In our recent work, a density-based phase-field model was 

sed to study how grain boundaries contribute to the time evolu- 

ion of chemical decomposition within the miscibility gap of a Pt- 

u nanocryst al system [112] . All of these theoretical studies require 

igh-quality experimental analysis for observation and demonstra- 

ion. Here, our newly developed Auto-GB-CNN method can assist 

heoreticians in comparing experiments with theoretical models. 

From the methodology aspect, we demonstrated our method 

sing crystalline grains with near-columnar structures where the 

olute segregation is strongly coupled to the GB network. A CNN- 

ased approach helped determine the local features of the grain 

nterior, GB, and the triple junctions in profiling the GB network. 

ompositional mapping was achieved after meshing the GB net- 

ork and performing subsequent quantification steps. With the 

elp of the ladder diagram for each node in the GB mesh, auto- 

atic interfacial excess mapping was achieved as well as a means 

o determine the accurate location of a node for quantifying the 

ocal composition of a GB. We validated our implementation and 

pproach with a synthesized data set. Thereafter, we applied this 

pproach to three experimental case studies. 

The advantage of the ML to APT dataset analysis is multifold. It 

an accelerate GB identification within the dataset by training the 

ystem to identify such features. As a result, it reduces the arduous, 

anual process of finding these features. Furthermore, it removes 

ntrinsic and extrinsic bias users have in the search for these fea- 

ures. Our approach also eliminates the use of prior methods, such 

s isocomposition surfaces to identify the GBs, as this often de- 

ends on the solute being spatially and compositionally uniform 

ver the GB plane, something that is rare. As a result, gaps exist on 

he actual plane. Using a ML approach, we identify the projected 

B plane and corresponding GB network. This is then expanded 

o 3D and an automatic triangular mesh is applied that captures 

he boundary curvature and solutes on such planes. With the GBs 

dentified, we demonstrated in automatic means for quantifying GB 

egregation that increases the speed of data output, removes muti- 

ous tasks, and, again, eliminates human bias in how the data is 

nalyzed. Through this approach, atom probe information can be- 

ome more readily reconstructed and analyzed in helping address 

 variety of physical and metallurgical factors that govern alloy de- 

ign. The current approach is available as an open-source software 

ackage. 

With the success of its development in identifying 2D GB net- 

orks, future work aims to extend it to more complex polycrystals. 

e propose two methods to solve the 3D problem. The first is to 

ivide the 3D volume into sections, each with a columnar struc- 

ure. A similar 2D algorithm could be applied to each section to 

reate a map of GB composition or interface excess, and then com- 

ine these sections into a total volume for the 3D GB network. The 

econd method would be to directly train a 3D CNN for feature 

ecognition. The challenge for both methods is whether we can ex- 

ract continuous GB planes from a small volume, since the solutes 

re not always spatially uniformly distributed across the GB plane. 
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