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Abstract: The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary medicine
as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug.
However, transformation products (TPs) resulting from metabolic and environmental degradation of
SAL are incompletely known and structural information is missing. In this study, we therefore sys-
tematically investigated the formation and identification of SAL derived TPs using electrochemistry
(EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as
TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry
(HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and
to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different
TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions
are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular
interest are potassium-based TPs identified after liver microsome incubation because these might
have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies
due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of
TPs was used to predict the position of identified modifications in the SAL molecule. The obtained
knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate
SAL-metabolites with regards to structural prediction.

Keywords: salinomycin; ionophore antibiotics; transformation product; electrochemistry; rat/human
liver microsomes; HRMS

1. Introduction

Salinomycin (SAL) is an ionophore antibiotic that shows antibacterial, antifungal,
antiparasitic, and antiviral properties [1,2]. SAL is commercially used as a veterinary drug
to treat and prevent coccidiosis in poultry farming. Furthermore, SAL shows potential
as growth promoter in modern animal husbandry (usage not allowed in the EU). In 2009,
Gupta et al. observed that SAL selectively negatively impacts on breast cancer stem cells [3],
inducing intensive studies of SAL as a novel therapeutic agent in different human cancer
types (e.g., breast, colon, and leukemia) [4].

The chemical structure of SAL consists of a polyether skeleton with five polyether
rings. Three rings form a unique tricyclic spiroketal system, whereby the middle ether ring
has a double bond. Similar to other ionophore antibiotics, SAL has a carboxylic group and
an ether-ring with a hydroxy-group in terminal positions [1,4]. These specific structural
properties lead to the occurrence of a pseudo cyclic SAL complex with metal cations (see
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Figure 1). The selectivity of forming complexes is dependent on the polar metal cation. SAL
shows the highest affinity for complexation with potassium (K+) followed by sodium (Na+).
The formed SAL-complex is lipophilic and can enter lipid bilayers to transport cations
across them [1,4].
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Figure 1. Chemical structure of salinomycin (SAL) as sodium-complex.

A generic term for metabolic and environmental degradation products is transforma-
tion products (TPs) [5]. All TPs of SAL are possible residues in foodstuff or in environmental
matrices. They occur at low levels (up to trace levels), and liquid-chromatography high-
resolution mass spectrometry (LC-HRMS) enables the identification of novel TPs using
non-target approaches [5,6]. TPs are expected to exhibit different properties compared to
their precursors, which might include higher toxicity and persistence. Different laboratory
approaches are used to simulate (generation of TPs under laboratory conditions is termed
simulation) and identify TPs [7].

Public data about SAL derived TPs are partly available. A comprehensive overview of
different experimental investigations with regard to identification of metabolites/degradation
products of SAL is given in Table 1. The results are ordered by their transformation reaction.
Metabolites of SAL are mostly generated by (+O) (hydroxylation; +OH; as mono-, di-, and
tri hydroxylation). This is in accordance with the scientific opinion over SAL-sodium of
the European Food and Safety Authority, where it is mentioned that SAL is extensively
metabolized by chicken, with mono- and multi-hydroxylated or keto-derivates of SAL [8].
In recent years, the group of Olejnik investigated metabolites of SAL intensively. They
identified metabolites in tests with human hepatoma cells (HepG2) (14 metabolites) [9],
primary human hepatocytes (PHH) (20 metabolites) [10], and rat primary hepatocytes
(PRH) (16 metabolites) [11] and rat hepatoma cells (FaO) (three metabolites) [11]. In contrast,
based on the widely usage of SAL as veterinary drug, the degradation behavior including
degradation products is well-investigated. A degradation product with m/z of 531.3 is
identified by several studies, and the degradation process is based on C-C cleavage (mainly
at the β-hydroxy-ketone position) [12].
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Table 1. Overview of literature described metabolites or degradation products of salinomycin ordered
by the transformation reaction.

Transformation Reaction Experiment References

m/z 531 (C-C cleavage,
β-hydroxy-ketone position)

degradation by poultry litter [13]
degradation by broiler litter [14]

manure storage [15]
hydrolysis (acid-catalyzed) [16]
treatment with formic acid [17]

photodegradation [18]
transformation in soil [19]

microbial decomposition [12,14]

m/z 265 (C-C cleavage)
hydrolysis (acid-catalyzed) [16]
treatment with formic acid [17]

photodegradation [18]

Hydroxylation (+O)

human hepatoma cells (HepG2) [9]
primary human hepatocytes (PHH) [10]

rat primary hepatocytes (PRH) [11]
rat hepatoma cells (FaO) [11]

Hydroxylation + Demethylation
photodegradation [18]

human hepatoma cells (HepG2) [9]
primary human hepatocytes (PHH) [10]

Di-/Tri-hydroxylation
photodegradation [18]

primary human hepatocytes (PHH) [10]
rat primary hepatocytes (PRH) [11]

Dehydrogenation rat primary hepatocytes (PRH) [11]

Isomeric changes hydrolysis (acid-catalyzed) [16]

In general, transformation processes are based on chemical mechanisms such as
redox or radical-based reactions. The use of electrochemistry (EC) is well-established to
simulate redox-reactions and generate TPs [20,21]. A widely used instrumental set-up is the
combination of an electrochemical reactor (ECR) with mass spectrometry (MS). Inside the
cell of the ECR, an applied electrical potential induces different transformation reactions.
The ECR-MS can be used in two modes, online or offline. For the online mode, a direct
coupling between the ECR and the MS enables the detection of stable and transient TPs [22].
For offline measurements, the eluent is collected after the ECR and is analyzed in a second
step. The absence of complex matrices usually simplifies TP identification. Depending on
the selected potential (positive or negative) in the EC cell, oxidation or reduction reactions
can be induced, allowing the simulation of a broad reaction spectrum [20]. The simulation
of cytochrome P450-mediated metabolic reactions of drug metabolism by electrochemistry
has been published by several studies [22,23].

In contrast to EC-based approaches, metabolism tests of different complexity are
known to simulate metabolic reactions in the laboratory ranging from in vivo/in vitro
experiments (e.g., transgenic cell lines, primary hepatocytes, and liver slices) to cell free
incubation with human (HLM) or rat liver microsomes (RLM) [24]. After incubation, the
metabolites are isolated and analyzed by LC-HRMS, which allows an accurate mass deter-
mination of the TPs resulting in molecular formulas. The modification reactions can often
be derived from the molecular formulas [6]. Additionally, MS/MS fragmentation patterns
are investigated to obtain structural information about the TPs.

The aim of this study was to investigate the transformation behavior (modification
reactions) of SAL by the generation of TPs using electrochemistry and liver microsome
incubation and to identify the resulting TPs. To this end, HRMS was used to improve
identification in comparison to the low-resolution MS data generated in other studies. The
focus was placed on the suspected-target analysis of the HRMS data of measured TPs to
obtain as much information as possible (in relation to sum formula, modification reaction,
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and structure). The newly found EC and HLM/RLM-TPs are compared with each other
and degradation products of SAL described in the literature.

2. Results and Discussion
2.1. Electrochemical Investigation

The oxidation behavior of SAL and identification of SAL-TPs was studied by two dif-
ferent settings: First, the online-mode consisting of an ECR coupled to an ESI-source of
a HRMS, and, secondly, an offline set-up combining ECR and LC-HRMS to obtain further
information regarding structural proposals of the generated TPs.

At the beginning, the experimental conditions for the electrochemical generation of
SAL-TPs were optimized with respect to several parameters (solvent, modifier, and working
electrode). More detailed information is given in ESM (Supplementary Materials Table S1).
The best reproducibility and highest number of TPs were achieved by using a GC working
electrode and a solvent mixture of methanol:acetonitrile:water (3:1:1, v/v/v) with 1 mM
ammonium formiate. The SAL-containing solution was transferred to the electrochemical
cell where an electric potential was applied (0 to 2.5 V).

The results are displayed in Figure 2A, consisting of two mass spectra at different
potential-ranges (around 1.0 and 2.0 V). At the higher potential (lower spectrum), several
additional m/z peaks could be obtained. A more detailed visualization is given by the
three-dimensional mass voltammogram (Figure 2B), presenting the mass spectra (m/z 630
to 800) against the applied potential (0.0 to 2.5 V). The potential-dependent intensity course
is visualized for SAL (m/z = 773, decreasing with increasing potential) and 11 increasing
m/z-traces. The m/z-traces may represent potential EC-TPs and showed different starting
occurrence and intensity courses in relation to maximum intensity. The term EC-TPs is used
for all eleven m/z-traces independent of whether the m/z-trace is generated by EC. Exact masses
as well as the corresponding modifications of all products are listed in Table 1. Sum formulas
were calculated based on the measured accurate mass. This allows drawing conclusions
about the type of causal SAL-modification reactions. Different modification reactions were
found; the most prominent was the decarbonylation (−CO) for 10 TPs. Further modification
reactions were decarboxylation (−CO2), dealkylation (−CxHy), (de-)hydrogenation (+/−H),
dehydration (−H2O), oxidation (+O), and reduction (−O). Additionally, SAL-TPs were found
by forming complexes with a second cation (sodium (+Na) and/or ammonium (+NH4

+)).
One intense TP is EC-TP-5 with m/z 745 showing decarbonylation, the most prominent
modification. Additionally, a high intensity shows EC-TP-4 with m/z 759 (reduction and
hydrogenation). The formation of these TPs started at a potential around 1.5 V. The EC-TP-2
with m/z 786 showed an adduct formation next to the decarbonylation with ammonium and
a second sodium ion. In addition to adduct formation of EC-TP-4, the dehydrated EC-TP-7
with m/z of 727 was existing. Around the same potential (1.5 V), EC-TP-9, 10, and 11 were
also occurring. These three TPs showed a similar pattern of intensity and ion abundance
decreasing with m/z. The mass difference of 18 Da between TP9/TP10 and TP10/TP11
indicates a loss of water. Further TPs with m/z of 717 (EC-TP-8), 743 (EC-TP-6), 777 (EC-TP-3),
and 791 (EC-TP-1) appeared at a potential around 2.0 V. The EC-TP-1 was the ammonium
adduct of the EC-TP-3 (decarbonylation and di-oxidation). Dehydrogenation of EC-TP-5 leads
to EC-TP-6 and a dealkylation to EC-TP-8.
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(upper spectrum) and 2.0 V (lower spectrum). (B) 3D mass voltammogram of SAL. Mass traces (m/z) of
the TPs of SAL as [M + Na]+ in dependence of the applied oxidation potential ramped from 0 to 2.5 V.

While the online-mode allows an easy identification of interesting m/z-traces, it does
not allow distinguishing whether these traces represent TPs generated inside the ECR or
by-products due to in-source-fragmentation during ionization [25]. To obtain information
about the generation and stability of occurring m/z-traces, additional offline LC-HRMS
measurements of the EC-treated SAL-solution were performed. MS/MS fragmentation was
used to obtain further structural information about the generated TPs. In comparison to the
SAL-standard chromatogram, the chromatogram of the EC-treated SAL-solution showed
two additional peaks. The online measurements result in 11 m/z-traces (Table 2), and only
two of them, EC-TP-5 (m/z 745.486) and EC-TP-7 (m/z 727.476), were found also in offline
LC-HRMS measurements. Upon closer inspection, we found that four of the m/z-traces
were co-eluting at low intensities together with EC-TP-5 (EC-TP-10), EC-TP-7 (EC-TP-6
and EC-TP-11), or SAL (EC-TP-1), respectively (see Figure S1). This indicates that these
m/z-traces are potential in-source-fragments.

The two stable TPs of SAL were measured by LC-HRMS, and the MS/MS frag-
mentation of EC-TP-5 and EC-TP-7 is used to localize the region of SAL, where the EC
induced modification is occurring. The evaluated MS/MS data were compared to previ-
ously described ESI-fragmentation of SAL by Miao et al. [26] A shortened fragmentation
scheme is presented in Figure 3, and the detailed fragmentation scheme is given in ESM
(Supplementary Materials Figure S2 and Table S2). The main fragmentation of SAL is oc-
curring at both sides of the carbonyl function by a β-cleavage of the C-C bond. The resulting
fragment pairs of m/z 531 + m/z 265 and m/z 431 + m/z 365 serve as basis for the evaluation.
The associated MS/MS fragments to the fragmentation pathway are given in Table S3
(see Supplementary Materials). The EC-TP-5 has an accurate mass of m/z 745.486 that
corresponds to a decarbonylation of SAL. The evaluation of the MS/MS data identified the
modification at fragment m/z 365, but the fragment of m/z 265 is available unchanged. It is
assumed that the carbonyl moiety of SAL is eliminated, visualized in Figure 4. The EC-TP-7
(accurate mas m/z 727.474) is modified by decarbonylation and dehydration. It seems that
the decarbonylation is occurring at the same position as EC-TP-5. The placement of the
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dehydration is expected to fragment m/z 265, and three positions (hydroxy-groups and
ether-ring) are possible (see Figure 4).

Table 2. The intensity is calculated in relation to the highest TP-signal (m/z-trace 759) vs. (very strong) > 60%,
s (strong): 40–60%, m (moderate): 20–40%, w (weak) 10–20%, vw (very weak) < 10%).

EC-TP Mass
Meas.

Mass
Calc. Sum Formula Suggested Modification Intensity

1 * 791.4801 791.4795 C41H70O12NNa −CO, +2O, −4H, +NH4 vw
2 786.5116 786.5108 C41H74O10NNa2 −CO, +NH4, + Na m
3 777.4804 777.4764 C41H70O12Na −CO, +2O vw
4 759.4956 759.5000 C42H72O10Na −O, +2H vs

5 § 745.4859 745.4866 C41H70O10Na −CO vs
6 * 743.4710 743.4710 C41H68O10Na −CO, −2H m
7 § 727.4764 727.4761 C41H68O9Na −CO, −H2O s
8 717.4552 717.4553 C39H66O10Na −CO, −C2H4 vw
9 687.4817 687.4811 C39H68O8Na −CO, −CO2, −CH2 w

10 * 669.4732 669.4706 C39H66O7Na −CO, −CO2, −CH2, −H2O w
11 * 651.4621 651.4600 C39H64O6Na −CO, −CO2, −CH2, −2H2O vw
SAL 773.4816 773.4815 C42H70O11Na

* EC-TPs indicated by an asterisk are potential ESI in source fragments. § These EC-TPs have been confirmed in
offline measurements.
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Figure 4. Proposed structures of the TPs derived from EC experiments with SAL using GC electrode.
The dotted circles mark the areas of modification. The red highlighted oxygen-atoms of EC-TP2 could
be involved in a loss of water.

The obtained results showed eleven m/z-traces of SAL, whereby six were found in
the offline measurements distributed at two peaks. The decarbonylation was the main-
modification reaction occurring by EC for SAL and the EC-TP-5 showed exactly these.
Based on the data the region of the modification was identified and a structure predicted.
The decarbonylation reaction as a modification of SAL was previously undescribed. The
comparison between the online found m/z-traces and offline found TPs resulted in five
missing EC-TPs. Except for EC-TP-4 (m/z 759), all other missing m/z-traces show only
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a low intensity. Potential reasons for the absence are (i) low stability of the TPs and loss
of adduct formation during storage, (ii) stability of adduct-formation is depended on
matrix conditions (in online-measurements the ammonia concentration is much higher
than in offline-mode), and (iii) differences in the amount of in-source fragmentation (online
measurements might enhance fragmentation compared to offline-mode).

2.2. Liver Microsomes Assay

Liver microsomes assay were performed with HLM and RLM. SAL is incubated either
with HLM or RLM in potassium phosphate buffer; afterwards, the samples are analyzed by
LC-HRMS. In Table 3, all obtained TPs are listed including the accurate mass and suggested
modification. All TPs were more polar than SAL, indicated by the shorter retention time
under reversed-phase LC conditions. In total, five TPs for the RLM incubation and 11 TPs
for the HLM incubation were detected. Four TPs were identical, having the same accurate
mass and retention time (R1-H4, R2-H6, R3-H9, and R4-H11). In general, the conversion of
SAL was higher for the HLM-incubation than for the RLM-incubation. The main modifica-
tion reaction was oxidation (+O) occurring as mono-, di-, and tri-oxidation. The oxidation
can occur as hydroxylation (+OH/−H) or as epoxidation (+O). Epoxidation is possible
at the double bound of the spiro-ketal ring system. Attention should be paid to the potas-
sium TPs in which sodium is replaced by potassium. In the literature, SAL complexes with
different mono- and divalent cations are described, with potassium exhibiting the high-
est affinity to SAL [4]. The evaluation of the accurate mass was more complex due to the
sodium–potassium exchange. The mass difference between sodium (m/z 22.9898) and potas-
sium (m/z 38.9637) is 15.9739, causing confusion with oxygen (m/z 15.9949) (dm = 0.021).
If HRMS is not used, there will be a risk of determining a hydroxylation instead of an
Na–K exchange. An example was TP-H2 (m/z 819.4296) and TP-H8 (m/z 819.4507); TP-H2
as the potassium-complex showed a di-hydroxylation and TP-H8 as sodium-complex a
tri-hydroxylation, both in combination with di-dehydrogenation.

Table 3. Detected TPs of SAL in a liver microsome assay. The intensity is calculated in relation to
the highest TP-signal vs (very strong) > 60%, s (strong): 40–60%, m (moderate): 20–40%, w (weak)
10–20%, vw (very weak) < 10%).

rt [s] Mass Meas. Mass Calc. Sum Formula Suggested Modification Intensity

HLM

TP-R1 65.20 821.4456 821.4453 C42H70O13K −Na, +2O, +K vw

TP-R2 81.35 805.4510 805.4504 C42H70O12K −Na, +O, +K m
TP-R3 91.57 787.4582 787.4608 C42H68O12Na −2H, +O vw
TP-R4 108.00 789.4754 789.4764 C42H70O12Na +O w
TP-R5 118.56 771.4633 771.4659 C42H68O11Na −2H vw
SAL 142.61 773.4815 773.4815 C42H70O11Na vs

RLM

TP-H1 44.33 821.4445 821.4453 C42H70O13K −Na, +2O, +K vs

TP-H2 53.60 819.4307 819.4296 C42H68O13K −Na, −2H, +2O, +K m
TP-H3 61.44 821.4439 821.4453 C42H70O13K −Na, +2O, +K vs
TP-H4 65.20 821.4408 821.4453 C42H70O13K −Na, +2O, +K s
TP-H5 69.91 819.4313 819.4296 C42H68O13K −Na, −2H, +2O, +K w
TP-H6 81.35 805.4508 805.4504 C42H70O12K −Na, +O, +K vs
TP-H7 86.37 803.4409 803.4347 C42H68O12K −Na, −2H, +O, +K m
TP-H8 90.00 819.4582 819.4507 C42H68O14Na −2H, +3O vw
TP-H9 91.57 787.4595 787.4608 C42H68O12Na −2H, +O vw

TP-H10 102.10 787.4577 787.4608 C42H68O12Na −H2O, +2O w
TP-H11 108.00 789.4707 789.4764 C42H70O12Na +O vw

SAL 142.61 773.4815 773.4815 C42H70O11Na w
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The HRMS results also included data from MS/MS-analyses. The aim of the evaluation
was to identify structural parts where the modification is located. For the RLM/HLM TPs, it
was not possible to determine the exact position in the SAL molecule where the modification
reaction takes place. The smallest obtained fragments were still too large to draw definite
conclusions about structural modifications. In particular, even when modifications such as
hydroxylation could be mapped to the same region of SAL for different TPs (Figure 5), it
was not possible to confirm whether or not the modification took place at the same C-atom.
For example, TP-H3 and TP-H7 showed both a hydroxylation at the carboxy-group (blue
circled region), but the MS/MS-fragments did not allow specifying a common C-atom. In
principle, the eligible fragments are based on the main MS-fragments of SAL (see Figure 3).
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An overview of all HLM/RLM-TPs is displayed in Figure 5, where SAL is divided into
three structural regions (carboxy-, spiroketal-, and carbonyl- groups). The main observed
modification was oxidation (mostly hydroxylation) and, in the end, several positions of the
fragments were possible for hydroxylation. In general, the C-atom for hydroxylation was
more dependent on intrinsic reactivity (ter. C > sec. C > prim. C) than steric constraints. [27]
Analogues to the EC-TPs the MS/MS-data with associated fragment part of the RLM/HLM-
TPs are given in Supplementary Materials Tables S4–S6.

Ten structural different TPs were identified, five forming a potassium-complex and
five forming a sodium-complex. Three TPs showed an accurate mass of 821.445 (K-complex,
di-oxidation) eluting at different retention times. TP-H1 showed a different fragmentation-
pattern than TP-H3 and TP-H4/R1. It is assumed that TP-H3 and TPH4/R1 are stereoiso-
mers of each other because of their similar fragmentation pattern and their small retention
time difference. TP-H2 and TP-H5 (+O/−H) showed an accurate mass of 819.429, and the
fragmentation pattern results in different positions for the modification reactions. TP-H8
(m/z 819.451) was sodium-based, and a tri-oxidation was occurring. The intensity is very
low, resulting in less MS/MS-fragmentation and less structural information. The calculated
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molecular formula of TP-H10 (m/z 787.461) indicates oxidation and di-dehydration as
modification reactions, but the evaluation of the fragmentation pattern gave evidence for
a di-oxidation with dehydration at another region of SAL. Some K-TPs and Na-TPs showed
the same modification (e.g., TP-H6 and TP-H11/R4; TP-H5, TP-H7, and TP-H9/R3), but
a comparison showed that the modification reactions are occurring at different structural
parts of SAL. For example, the oxidation takes place at the carbonyl-fragment for TP-H6
(K-based) and for TP-H11/R4 (Na-based) at the spiroketal-fragment. Of course, there were
modifications at the same fragment for both types as oxidation at the spiroketal (e.g., TP-H1
to H5 and TP H8, H10, and H11).

The identification of metabolic degradation products of SAL is sparsely discussed in
literature so far. The group of Olejnik et al. conducted studies with human and rat cells and
identified up to 20 metabolites of SAL by LC-MS/MS. Hydroxylation as mono-, di-, and
tri-hydroxylation was identified as main modification reaction. This is in accordance with
the results of the RLM/HLM-TPs described above. A further comparison is impossible,
based on different analytical measurement techniques (HRMS and TripleQuad MS). The
mass accuracy of a Triple Quad-system is unsatisfactory to distinguish the mass difference
between a Na–K exchange and hydroxylation (0.02 Da).

3. Materials and Methods
3.1. Chemicals

Salinomycin monosodium salt hydrate (purity 93%, VetranalTM) was purchased from
Sigma-Aldrich (Steinheim, Germany). KH2PO4 was purchased from Chemsolute (Rennin-
gen, Germany) and K2HPO4 from Carl Roth (Karlsruhe, Germany). NADPH tetrasodium
salt was obtained from Carl Roth (Karlsruhe, Germany). Potassium biphthalate was ob-
tained by Fluka Chemika (Buchs, Switzerland). Acetonitrile and methanol were purchased
from Chemsolute (Renningen, Germany). Ammonium formate was purchased from Fluka
Chemika (Buchs, Switzerland) and formic acid from Merck (Darmstadt, Germany). Ultra-
pure water was produced by a Purelab Flex 2 system, ELGA Veolia Water technologies
(Celle, Germany). All standard chemicals were of p.a. grade an all solvents (acetonitrile,
methanol) of LC-MS grade.

3.2. ECR/ESI-HRMS

The electrochemical system consisting of a ROXYTM potentiostat (Antec Scientific,
Zoeterwoude, The Netherlands) and an electrochemical flow-through cell. The instrument
was controlled via Dialogue Elite software (Antec Leyden) version 2.0.0.81. Online coupling of
the electrochemical cell to an electrospray ionization source of a TripleTOF® 6600 Quadrupole
Time-Of-Flight (QTOF) mass analyzer (Sciex, Darmstadt, Germany) was used for recording of
mass voltammograms. The QTOF system was controlled via Analyst® TF1.8.0 including data
processing. Additional in-house scripts of the statistical working environment R (REF) [28]
were used for data processing. Graphical representation of the three-dimensional mass
voltammograms were created by Origin 2019 (OriginLab, Northampton, MA, USA). The
SAL-solvent mixture consisting of 20 µM SAL in methanol:acetonitrile:water (3:1:1; v/v/v)
with 1 mM ammonium formiate, was passed through the cell by a Legato® 110 dual rate
system syringe pump (KD Scientific, Hollison, MA, USA) with a flow rate of 40 µL/min.
The EC cell consist of a three-electrode arrangement including a titanium auxiliary electrode
(inlet-block of the cell), a HyREFTM-reference electrode (Pd/H2), and a glassy carbon (GC)
working electrode. The applied potential was ramped between 0 and 2.5 V with a scan rate
of 10 mV/s controlled by the potentiostat. The GC-working electrode was activated before
each measurement by a manufacturer-provided pulse-cleaning program. The EC-cell was
connected to the ESI-HRMS, and the experimental parameters for MS-detection are given in
Table 4. A mass voltammogram was recorded three times to ensure the reproducibility of the
measurements. Control measurements were performed by using the solvent without analyte.
Next to the online measurements, aliquots were collected in a HPLC-vial from the EC-cell and
were used for further offline LC-HRMS measurements.
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Table 4. Parameters of the ESI-HRMS for the ECR/MS measurements.

Experiments Parameters Mass Range Parameters

gas temperature 400 ◦C collision energy 40 V
ion source gas 1 (nitrogen) 55 L/min declustering potential 80 V
ion source gas 2 (nitrogen 55 L/min mass range 100–800 Da

curtain gas (nitrogen) 45 L/min
ion spray voltage floating +5500 V

3.3. Microsomal Assay

Rat liver microsomes (RLM) were purchased from Thermo Fisher Scientific (Pitts-
burgh, PA, USA). The RLM were prepared from Sprague Dawley male rats with a protein
concentration of 20 mg/mL and a CYP450 content of 319 pmol/mg protein. The total
protein content and CYP450 concentrations were provided by the manufacturer. Human
liver microsomes (HLM) were purchased from Thermo Fisher Scientific (Pittsburgh, PA,
USA). The HLM were prepared from 20 human female donors with a concentration of
20 mg/mL and a P450-specific content of 309 nmol/mg protein (concentration provided by
the manufacturer). Incubations with liver microsomes (LM) were carried out in a volume
of 200 µL. Microsomes (1.0 mg/mL microsomal protein) were mixes with 0.1 M potassium
phosphate buffer (pH 7.4), and 0.01 mM MgCl2. First, a pre-incubation for 5 min at 37 ◦C
took place; then, SAL (6.25 µmol/L) dissolved in ACN (total ACN amount < 3%) and
0.6 mM NADPH was added to the mixture to start the enzymatic reaction (incubation
time: 90 min, 37 ◦C, 800 rpm). To stop the reaction, 50 µL ACN (−20 ◦C) was added and
the sample was mixed thoroughly for 30 s (final SAL concentration: 5 µM). Afterwards,
the incubation mixture was centrifuged at 12 rpm. The supernatant was analyzed by LC-
HRMS (Agilent Technologies, Waldbronn, Germany/Sciex, Darmstadt, Germany). Control
incubations, where the amount of NADPH was replaced through potassium buffer, were
performed in duplicate. The reaction was performed in triplicate.

3.4. LC-HRMS

The LC-HRMS measurements of the electrochemical and microsomal tests were per-
formed by LC-HRMS using a TripleTOF® 6600 Quadrupole Time-Of-Flight (QTOF) mass
analyzer (Sciex, Darmstadt, Germany) connected to an Agilent 1290 Infinity II (Agilent
Technologies, Waldbronn, Germany), consisting of a 1290 Infinity II multisampler, a 1290
Infinity II flexible pump, a 1260 Infinity II diode array detector HS, and 1290 Infinity II
multicolumn thermostat. The installed software for operation of the system is Analyst®

TF1.8.0 (AB Sciex), and the data were processed by SciexOS and using in-house scripts of
the statistical working environment R (REF) [28]. The analytical column was a ZorbaxE-
clipse Plus C18, particle size 1.8 µm, 50 mm × 2.1 mm (Agilent Technologies, Waldbronn,
Germany), and the column oven was set to 25 ◦C. A mobile phase of (A) H2O + 0.1% formic
acid and (B) ACN + 0.1% formic acid was used for separation of the different samples.
The injection volume was 2 µL. The flow rate of the mobile phase was 0.8 mL/min, and a
gradient program was used for the separation. Starting was 50% of B, and, within 0.5 min, it
was raised to 90%. After 3.5 min, it was decreased to 50%, and the column was re-calibrated
for 3 min. The conditions for the TTOF are listed in Table 5, an information-dependent
acquisition (IDA) was included for MS/MS experiments. The mass accuracy of the used
Sciex TTOF is <2 ppm and was confirmed via a tuning run before any measurement. To
assign a potential sum formula and chemical structure to a measured ion mass, all possible
sum formulas within 3 ppm deviation around the respective m/z were calculated, allowing
only the elements C, H, O, Na, and K together with N, to account for adduct formation in
the ESI ion source. If more than one structural proposal remained, a fit of the isotopomer
distribution (sigma value) was used to rank candidates. Additionally, the modifications
in relation to SAL were calculated divided into gain and loss of atoms. Then, the best
proposal was selected with focus on reasonable gain and loss groups. MS/MS spectra,
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which were acquired in IDA mode, allowed a further inference of structural confirmation
of the precursor molecule.

Table 5. Parameters of the ESI-HRMS for the LC-HRMS measurements.

Experiments Parameters Mass Range Parameters

gas temperature 400 ◦C MS 1

ion source gas 1 (nitrogen) 50 L/min collision energy 10 V
ion source gas 2 (nitrogen) 55 L/min declustering potential 80 V

curtain gas (nitrogen) 45 L/min mass range 100–900 Da

ion spray voltage floating +5500 V MS 2

gas temperature 400 ◦C collision energy 85 V (LM)
70 V (EC)

collision energy spread 20 V
declustering potential 80 V

mass range 100–900 Da

4. Conclusions

In summary, the application of electrochemistry and assays with rat and human liver
microsomes were used to generate TPs of the drug SAL. The online ECR/HRMS set-up
led to 11 EC-TPs occurring by applied potential. Two of them were stable and could also
be found by offline LC-HRMS measurements. The liver microsome assay resulted in five
RLM-TPs and eleven HLM-TPs. The result of four identical TPs leads to the conclusion
that RLM is dispensable because of the nearly completely redundant TPs with HLM. The
evaluation of the accurate masses of the TPs shows decarbonylation as main modification
reaction type for electrochemistry and oxidation (hydroxylation or epoxidation) as the
main modification reaction for liver microsome assays. While additional MS/MS data led
to predicted structures for both EC-TPs, the observed modifications of liver microsome
TPs could only be assigned to a specific region of SAL. This is the first study that used
accurate mass determinations to characterize TPs of SAL leading to the identification
of 14 structurally different TPs. Noteworthy are the cation-exchanged TPs of SAL. The
TPs found by online ECR/HRMS showed ammonia- and sodiated-sodium-complexes.
However, the potassium-based TPs of the liver microsome assay(s) are more prominent.
The results of our study contribute to a better understanding of the biotransformation
process of SAL and to improve/facilitate the residue analysis of SAL in biological and
environmental samples.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/antibiotics11020155/s1, Figure S1: Base-peak-chromatogram of EC-treated SAL-solution; Figure S2: Lit-
erature known ESI-fragmentation pathway of SAL; Table S1: Optimization of the EC-MS measurements;
Table S2: Fragment scheme of fragment ions observed in the MS/MS spectra of SAL; Table S3: Fragment
scheme of fragment ions observed in the MS/MS spectra of the EC-TP-5 and EC-TP-7; Table S4: Fragment
scheme of fragment ions observed in the MS/MS spectra of the TP-R2 to TP-R4; Table S5: Fragment
scheme of fragment ions observed in the MS/MS spectra of the TP-H1 to TP-H6; Table S6: Fragment
scheme of fragment ions observed in the MS/MS spectra of the TP-H7 to TP-H11.
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