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Simulation of Hot Isostatic Pressing in a Single-Crystal Ni
Base Superalloy with the Theory of Continuously
Distributed Dislocations Combined with Vacancy Diffusion

Titus Feldmann, Bernard Fedelich,* and Alexander Epishin

1. Introduction

Single crystals of nickel-base superalloys are commonly used as
blade material in the hottest sections of gas turbines or aero
engines. After casting and heat treatment, the components con-
tain pores of various sizes[1–3]: Larges irregular pores of size up to

50 μm form during solidification (S-pores,
see Figure 1a) and small round pores of
size up to 10 μm form during the homoge-
nization heat treatment (H-pores, see
Figure 1b). It has been shown (see, e.g.,
the study by Epishin[4]) that pores are
detrimental to the fatigue strength of the
alloys as they favor crack initiation.
Hence, hot isostatic pressing (HIP) is
widely performed to reduce the porosity.
However, HIP is a costly process that can
only be performed in a narrow-parameter
window and bears the risk of altering the
microstructure by recrystallization and
incipient melting. For example, HIP of
the widely used single-crystal superalloy
CMSX-4[5] is carried out at 1288 �C in an
argon chamber under the pressure of
103MPa. At this temperature, the strength-
ening γ0 precipitates are almost completely
dissolved and the material is very soft. In
consequence, efforts have been made in

the recent past to better understand the mechanisms of pore clo-
sure during HIP and develop numerical models of pore shrink-
ing under HIP that would allow for process optimization.[3,6–8]

A preliminary condition for the development of such models
is that the clarification of the physical mechanisms of porosity
decrease. In turn, this question can only be answered if the dom-
inant deformation mechanisms under HIP conditions are iden-
tified. In principle, two mechanisms can be expected: dislocation
creep and vacancy diffusion creep. In a series of short-term
(<10 h) creep tests, the deformation behavior of the alloy
CMSX-4 at 1288 �C,[9] and of a γ�phase alloy with a similar com-
position to CMSX-4 in a broader temperature range,[10] were
investigated. The results can be summarized as follows:
ð111Þ 011h i octahedral glide is the dominant deformation
mechanism at 1288 �C for short-term creep. The orientation
dependence of the creep strength is high and agrees with octa-
hedral glide. Also, the creep exponent lies between 5 and 6 and is
fully consistent with the dominance of dislocation creep. In both
alloys, the characteristic microstructure at 1288 �C consists
of subgrains separated by low-angle boundaries (LAB).
Dislocations were hardly observed within the subgrains. It
was conjectured in the study by Epishin et al.[10] that dislocations
are nucleated at the LABs, glide across the subgrains, and finally
reach the opposite LABs where they rearrange to maintain a
low-energy dislocation structure.
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Single-crystal components made of nickel base superalloys contain pores after
casting and homogenization heat treatment. Hot isostatic pressing (HIP), which

is carried above the γ0 -solvus temperature of the alloy, is industrially applied to
reduce porosity. A modeling of HIP based on continuously distributed disloca-
tions is developed in a 2D setting. Glide and climb of straight-edge dislocations,
as well as vacancy diffusion, are the deformation mechanisms taken into account.
Thereby, dislocation glide is controlled by dragging a cloud of large atoms, and
climb is controlled by vacancy diffusion. Relying on previous investigations of the
creep behavior at HIP temperatures, it is assumed that new dislocations are
nucleated at low-angle boundaries (LAB) and move through subgrains until they
either reach the opposite LABs or react with other dislocations and annihilate.
Vacancies are created at the pore surface and diffuse through the alloy until they
are either consumed by climbing dislocations or disappear at the LABs. The field
equations are solved by finite elements. It is shown that pore shrinking is mostly
controlled by vacancy diffusion as the shear stresses at the LABs are too low to
nucleate a sufficient amount of dislocations.
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Consistent with the observed dominance of octahedral glide,
crystal plasticity (CP) was applied to simulate pore shrinking.[6,7]

The first simulations[6] assumed gas-free pores and largely over-
estimated the rate of pore shrinking. This is also true for the
more recent simulations[7] at the beginning of HIP (<1 h).
In addition, the plasticity localizes at corners and the pores read-
ily lost their initial spherical symmetry, which is not the case in
experiments.[11] Considering the case of additively manufactured
(AM) parts, Prasad et al.[7] assumed that argon gas, which is
present in the AM build chamber, remains trapped in the pores.
When the pores shrink, the gas pressure increases and increasingly
opposes further pore shrinking, hence significantly reducing the
porosity reduction rate. However, it is not clear whether gas also
remains trapped in the pores of cast alloys. Indeed, the solidifica-
tion of single-crystal turbine blades is a vacuum technology and the
amount of gas inside the pores should be limited. In addition, fol-
lowing the study by Levinsky,[12] it should be expected that the gas
trapped in the voids partly dissolves at the pore/metal interface
according to Sievert’s law when its partial pressure increases.
Hence, simulations assuming a constant gas amount in the pores
necessarily underestimate the porosity decrease rate.

In parallel, simulations of pore shrinking based on the
mechanism of vacancy diffusion creep were developed in other
studies.[3,11] More specifically, the stationary vacancy diffusion
equation was solved in a hollow sphere containing a spherical pore,
the exterior surface representing a LAB. The calculations assumed
that vacancies form at the pore surface and diffuse to the LAB
where they are annihilated. Taking into account measurements
of the initial pore size distribution, a remarkable agreement with
the porosity decrease detected by synchrotron tomography was
reported in the study by Epishin et al.[3] In addition, the remaining
porosity observed by scanning electron microscopy (SEM) after
0.5 h of HIP was reasonably well predicted in a pressure range
between 15 and 100MPa. A higher deviation was observed for
a pressure of 150MPa, for which the porosity decrease was under-
estimated. The good agreement of the estimates of porosity
decrease by the diffusion model and its overestimation by the crys-
tal viscoplasticity models provide a strong argument for the domi-
nance of vacancy diffusion during pore shrinking.

However, as octahedral glide was shown to be the dominant
deformation mechanism under HIP conditions, the question
arises as to why vacancy diffusion appears to control porosity
reduction during HIP. As a matter of fact, the applicability of
classical viscoplasticity at the porosity scale (<100 μm) is

questionable, as its implicitly assumes that perfect dislocation
sources are everywhere available. However, as mentioned earlier,
it is likely that under HIP conditions, the dislocations are emitted
at the LABs and move across the subgrains before they reach the
next LABs. Hence, a model that extends classical viscoplasticity to
dislocation nucleation at LABs and transports through the sub-
grains is desirable to resolve this contradiction.

In accordance with the previous considerations, this article
presents the development of a continuum dislocation/vacancy
model at the scale of the subgrains (also called dislocation cells
or mosaic blocks in the study by Bruckner et al.[13]) to simulate
pore shrinking during the HIP process. These subgrains, which
are separated by LABs, correspond to substructures of the
dendrites. They have a misorientation lower than 0.5� while
the misorientations between the dendrites can be as high as
2�–3�.[13] Hence, at this level, it is not realistic to assume a
uniform distribution of dislocation sources as usual in CP.
While climb was shown in the study by Epishin et al.[9] to play
a minor role for uniaxial creep, it could influence the process of
pore shrinking due to the complex stress state around a pore.
Hence, the porosity reduction model should take into account:
1) dislocation transport away from the sources, which are
assumed to be located at the LABs, 2) pore shrinking due to
vacancy diffusion and dislocation creep, 3) dislocation glide
and climb, 4) dipole annihilation by climb, and 5) back-stresses
due to short-range interactions between dislocations.

To simplify, a 2D model is considered, consisting of a disk
bounded by LABs containing a circular pore and in which
straight-edge dislocations move on three different slip systems.
The model has been formulated in the small strains/small rota-
tions framework. Hence, it is not appropriate to simulate full pore
shrinking but rather to identify the relative magnitudes of the two
main pore closure mechanisms: vacancy diffusion and dislocation
creep. Due to these restrictions, the present simulations have a
qualitative character. It should be alsomentioned that an extension
to 3D would dramatically increase the complexity of themodel due
to the much larger number of unknowns and the necessity to
account for the balance of curved dislocations.[14]

This article is organized as follows. First, in Section 2, the
notations are introduced and the field equations resulting from
the balance equations as well as the kinematics of glide and climb
in a 2D crystal are summarized. At the scale considered here, it is
expected that short-range interactions between dislocations
(usually called back-stresses in constitutive modeling) play a role.

Figure 1. Scanning electron microscope views of a) S-pores and b) H-pores.
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An energy-based extension of the back-stress derived by
Groma[15] to include multiple slip systems and climb is proposed
in Section 3. Dislocation mobility is assumed to be controlled by
dragging of large solute atoms around the core by diffusion
(Cottrel atmosphere). The calculation of the corresponding drag
coefficient for glide and climb is developed in Section 4. In agree-
ment with the available transmission electron microscopy (TEM)
observations,[9,10] it is assumed that the interior of the subgrains
is initially free from dislocations. Instead, it is assumed that dis-
locations are emitted at the LABs. The intensity of the dislocation
sources has been identified by comparison with the creep rates
measured with the single-crystal superalloy CMSX-4 at 1288 �C
in Section 5. Finally, simulations of pore shrinking with the the-
ory developed in this work are presented in Section 6. The model
parameters have been chosen for the alloy CMSX-4, as described
in Appendix 1. The influence of pore size and position, elastic
anisotropy, as well as the magnitude of the vacancy diffusion
coefficient are investigated.

2. Presentation of the Field Equations and Model
Variables

This section introduces the notations used in this article, the
most important assumptions and simplifications, the relevant
balance equations, and summarizes the kinematic relations
for dislocation glide and climb. As already mentioned earlier,
the present theory has been developed in a 2D setting. In accor-
dance, straight-edge dislocations parallel to the z axis move in the
(x,y) plane. A distinction is made between the dislocation level
(microscopic scale) with a singular displacement field ũðx, tÞ
and the continuum level (mesoscopic scale) with a smooth dis-
placement field uðx, tÞ.

2.1. Kinematics of CP with Dislocation Climb

In the following sections, the basic notations for dislocations loops
in 3D and the derivation of the 2D kinematics from 3D rectangular
dislocations are summarized for definiteness. The unit line vector
along the dislocation is ξ and the normal vector to ξ in the glide
plane is denoted by ζ (see Figure 2). In accordance with the con-
vention used in the study by Hirth et al.,[16] the Burgers vector is
defined as an integral along a closed-circuit C around the disloca-
tion loop ℒ taken in the right-handed sense relative to ξ

b ¼
I
C

∂ũ
∂l

dl ¼ ũ� � ũþ ¼ �ũ (1)

and corresponds to the opposite of the jump ũ of the displacement
across the surface cut by the dislocation.

We consider an arrangement of three glide systems g ¼ 1, 2, 3,
making an angle of 60°, with unit normal vector ng and unit glide
vector mg , such that ðmg ,ng , ezÞ is right handed (see Figure 3).
Each slip system includes two dislocation types denoted by the
superscript s ðs ¼ þ,�Þ, depending on the location of the additional
atomic half plane with respect to the glide plane. In a 3D picture,
these dislocations can be envisioned as the long segments of rect-
angular closed loops, as shown in Figure 2. Becauseþb and�b are
possible Burgers vectors for any glide system, two dislocation types,
þ and�, are possible, respectively whenever b ⋅ ζ < 0 and b ⋅ ζ > 0
(see Figure 2), which provides the connection to the 2D description.
In total, six types of dislocations ðg, sÞ are considered.

At the continuum level, the average distortion rate β
: in caused

by N dislocations of length L denoted by the superscript I, with
the Burgers vector bI , and moving with their respective velocities
ṽI in the volume V is

β
: in ¼ N L

V

X
I

bI ⊗ ðξI � ṽIÞ (2)

Note that the inelastic distortion is related to the inelastic
strain ϵin by ϵin ¼ 1

2 ðβin þ ðβinÞT Þ. The total dislocation number
N can be decomposed in the contributions Ngs for each disloca-
tion type ðg, sÞ. The corresponding dislocation densities are intro-
duced as ρgs ¼ Ngs L=V and the average dislocation velocities at
the slip system level are denoted vgs. The overall dislocation
density of the slip system g is ρg ¼ ρgþ þ ρg� and the density
of geometrically necessary dislocations (GNDs) for the system
g is κg ¼ ρgþ � ρg�. The velocity vgs is decomposed in a glide
and a climb component according to

- -
+ +

g
m

g
n

ezg
b = b m

g
b = -b m

+ +- -

Figure 2. Geometry of dislocation loops with b ¼ bmg and b ¼ �bmg .
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Figure 3. The three-slip systems and six dislocation types of the 2Dmodel.
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vgs ¼ vgsglm
g þ vgscln

g , s ¼ þ, � (3)

After some rearrangements, the resulting inelastic distortion
rate is

β
: in ¼ b

X
g

ðρgþvgþgl � ρg�vg�gl Þmg ⊗ ng

þ ð�ρgþvgþcl þ ρg�vg�cl Þmg ⊗ mg

(4)

In the case of pure glide, and assuming symmetry, that is,
vgþgl ¼ �vg�gl ¼ vggl, Equation (4) becomes

β
: in ¼

X
g

γ
: gmg ⊗ ng (5)

and one recovers the usual Orowan equation with

γ
: g ¼ bðρgþvgþgl � ρg�vg�gl Þ ¼ bðρgþvggl þ ρg�vgglÞ ¼ bρgvggl (6)

The volumic part of the inelastic distortion rate (4) is

trðβ
: inÞ ¼ trðϵ: inÞ ¼ b

X
g

ð�ρgþvgþcl þ ρg�vg�cl Þ (7)

If σ denotes the stress tensor at the continuum level, the
resolved shear stress (RSS) for the system g is introduced as

τg ¼ ng ⋅ σ ⋅mg (8)

and the stress component responsible for climb is

ςg ¼ mg ⋅ σ ⋅mg (9)

With these last definitions, the inelastic power immediately
results from the inelastic distortion rate (4) as

σ∶β
: in ¼ b

X
g

τgðρgþvgþgl � ρg�vg�gl Þ þ ςgð�ρgþvgþcl þ ρg�vg�cl Þ

¼ b
X
g, s

τgsρgsvgsgl þ ςgsρgsvgscl
(10)

in which the glide and climb stress components for each dislo-
cation family ðg, sÞ are

τgs ¼
�
τg if s ¼ þ
�τg , if s ¼ � , ςgs ¼

��ςg if s ¼ þ
ςg , if s ¼ �

(11)

The dislocation density tensor α provides the resulting
Burgers vector db of the dislocations piercing a surface element
dS of normal vector n through the relationship db ¼ α ⋅ n dS
(see, for example, the study by Mura[17]), and is given in the pres-
ent case by

α ¼ N L
V

X
I

bI ⊗ ξI (12)

As mentioned earlier (see also Figure 2), for each slip system g,
the Burgers vectors bI ¼ bmg , bI ¼ �bmg and the line vectors
ξI ¼ ez, ξI ¼ �ez, are possible. In accordance, the dislocation
segments I can be rearranged into three slip systems g ¼ 1, 2, 3

and, respectively, two dislocation types ðþ,�Þ. Hence,
Equation (12) can be rewritten

α ¼ L
V
b
X3
g¼1

ðNgþ � Ng�Þmg ⊗ ez

¼ b
X3
g¼1

ðρgþ � ρg�Þmg ⊗ ez ¼ b
X3
g¼1

κgmg ⊗ ez

(13)

Note that the dislocation density tensor is also related to the
elastic and inelastic distortions (see, for example, the study by
Teodosiu[18]) by

α ¼ ∇� βel ¼ �∇� βin (14)

or in index notation αij ¼ ejkl βelil,k, in which ejkl is a component of
the permutation tensor (Levi�Civita symbol).

2.2. The Peach�Köhler Force on Gliding and Climbing
Dislocations

The Peach�Köhler force is the mechanical force exerted by the
microscopic scale stress field �σ̃ on individual dislocations
(see, e.g., the textbook by Hirth and Lothe[16]). With the notations
of Figure 2, the force acting on a dislocation segment reads

F̃PK ¼ b ⋅ σ̃� ξ (15)

The glide component F̃PK,g
gl ¼ F̃PK ⋅mg and the climb

component F̃PK,g
cl ¼ F̃PK ⋅ ng are found to be F̃PK,gþ

gl ¼ b τ̃g ,

F̃PK,g�
gl ¼ �b τ̃g , respectively, F̃PK,gþ

cl ¼ � b ς̃g , F̃PK,g�
cl ¼ b ς̃g ,

which are the microscopic counterparts of Equation (11) at the
continuum level.

2.3. Balance of Dislocation Density

The evolution of the dislocation density ðg, sÞ is governed by the
balance equation

ρ
: gs þ ∇ ⋅ ðρgsvgsÞ ¼ pgs � ωgs (16)

where pgs is a production and ωgs a sink term. Equation (16) cor-
responds to the local form of a balance equation that applies for
any conserved quantity in continuum physics (see, e.g., the text-
book by Gurtin et al.[19]). It has been also derived in the more
general case (without sources or sinks) of curved dislocations
by Mura (see, e.g., the textbook by Mura[17]). In the following
paragraphs, it will be assumed that dislocations are nucleated
in the LABs only and thus pgs ≡ 0. Hence,[20] dislocation annihi-
lation is due to gliding dislocations that meet a dislocation with
the opposite Burgers vector lying on a slip plane of vertical dis-
tance lower than the critical distance

dgcrit ¼
μb

8πð1� νÞjτg j (17)

Assuming symmetry between the systems þ and �, that is,
vgþgl ¼ �vg�gl ¼ vggl, the probability pgþ that a þ dislocation reacts
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with a � dislocation during dt is the probability to find a �
dislocation in a window of size 2jvggljdt� 2dgcrit, that is,

pgþ ¼ 4jvggljdgcrit ρg� dt. Hence, the sink term in Equation (16) is

ωgs ¼ ωgþ ¼ ωg� ¼ 4jvggljdgcrit ρgþρg� (18)

Note that the difference of Equation (16) forþ and� yields the
balance equation for the GNDs.

κ
: g þ ∇ ⋅ ðρgþvgþ � ρg�vg�Þ ¼ κ

: g þ ∇ ⋅ ðJgþd � Jg�d Þ ¼ 0 (19)

where the dislocation flux for the type ðg, sÞ is denoted
Jgsd ¼ ρgsvgs. Let n denote the outer normal vector of the LAB that
delimits the modeled region. The boundary conditions depend
on the direction of the local dislocation velocity as follows.
1) If vgs ⋅ n < 0, the LAB generates dislocations of the type
ðg, sÞ, as described in Section 5. 2) If vgs ⋅ n ≥ 0, the dislocations
move toward the LAB and are annihilated by reaction with dis-
locations approaching the LAB from the opposite side, without
altering the dislocation content of the LAB.

At a free surface (like the pore surface), no dislocations are
nucleated if vgs ⋅ n < 0. If vgs ⋅ n ≥ 0 the dislocations leave the
simulated region.

2.4. Diffusion of Vacancies

Let cvðx, tÞ denote the atomic vacancy concentration ð0 ≤ cv ≤ 1Þ.
The connection between vacancy conservation and climb
deformation at the continuum scale has been analyzed in
the study by Geers et al.[21] If Jv denotes the vacancy flux, the
vacancies’ balance equation is

c
:
v ¼ �∇ ⋅ Jv þ trðϵ: inÞ (20)

where trðϵ: inÞ is given by Equation (7). The vacancy flux is
proportional to the gradient of the diffusion potential μv

Jv ¼ �Mv∇μv (21)

where the mobility coefficient is given by Mv ¼ Dv Ω
kT cvð1� cvÞ

and the diffusion potential by (see the study by Gao et al.[22])

μv ¼
kT
Ω

ln
cv

1� cv
þ Qv

kT
� 1
3
trσΔV r

kT

� �
(22)

The diffusion potential Equation (22) depends on the vacancy
formation energy Qv and � 1

3 trσΔV r, which is the energy release
when an atom is removed. Inserting the flux (21) into
Equation (20) and taking into account (22) with the simplifica-
tions cv � 1 and 1

3 jtrσΔV rj � Qv yields

c
:
v ¼ DvΔcv þ trðϵ: inÞ (23)

Let us denote by cv0 the equilibrium concentration of vacan-
cies at the considered temperature, that is

cv0 ¼ exp �Qv

kT

� �
(24)

At the external boundary ∂V of the solid V, the diffusion
potential is given by μv ¼ n ⋅ σ ⋅ n, which leads under the simpli-
fications mentioned above to the following Dirichlet boundary
condition (BC)

cv ¼ cv0 exp
Ωn ⋅ σ ⋅ n

kT

� �
on ∂V (25)

2.5. Mechanical Problem

Without volume forces and acceleration forces, the balance of
momentum at the continuum level is given by

∇ ⋅ σ ¼ 0 (26)

It is completed by the BC σ ⋅ n ¼ f , where f is the prescribed
traction on ∂V , and Hookes law

σ ¼ C∶ðϵ� ϵinÞ (27)

for the total strain ϵ ¼ 1
2 ð∇uþ ∇uT Þ and the stiffness tensor C.

3. Identification of the Back-Stresses

3.1. Free Energy

In addition to the external stress, an additional contribution to
the mechanical force on dislocations arising from short-range
interactions between dislocations must be considered. The cor-
responding back-stresses that must be subtracted from the exter-
nal stress can be identified from statistical considerations[15,23] or
from energy-based approaches.[24,25] As statistical approaches are
not available for multiple slip and climb, we resort here to the
second type of approach. The back-stresses and the resulting
forces on the dislocations are identified from the dissipation
inequality. For the total free energy, the following form is
assumed

Ψ ¼
ZZZ

V
ðψel þ ψ in þ ψ chemÞ dV þ

ZZ
S
ψ surf dS (28)

where ψel ¼ ψ elðϵelÞ ¼ 1
2 ϵ

el∶C∶ϵel is the elastic energy, ψ in the
microscopically stored elastic energy by the dislocation struc-
tures, ψ chem ¼ ψ chemðcvÞ the chemical energy, and ψ surf the sur-
face energy of the LABs due to the dislocation networks. After the
study by Wulfinghoff et al.,[25] a regularized free energy function
of the dislocation density tensor α

ψ inðαÞ ¼

8>><
>>:
aμbjjαjj ln jjαjj

α0

� �
þ aμb

2
α0 if jjαjj > α0

aμb
2α0

jjαjj2 else
(29)

is assumed, where a is a numerical parameter, μ the shear mod-
ulus, and α0 the regularization factor. According to Equation (12),
the dislocation induced free energy is merely a function of the
GNDs at the slip system level, that is, ψ inðαÞ ≡ ψ inðκgÞ.
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3.2. Application of the Dissipation Inequality

For simplicity, the derivation will not be carried out in the most
general context but restricted to the assumptions made in the
following simulations. Specifically, these assumptions and
simplifications are as follows. 1. The dislocation content of the
LABs is not affected by the dislocation nucleation process con-
sidered in Section 5 or by other dislocation interactions with
the LABs for symmetry reasons. Whenever a dislocation moves
toward the LABs, on the other side, a dislocation with opposite
Burgers vector moves at the same velocity toward the LAB and
both annihilate at the LAB as pictured in Figure 4. In accordance,
the LABs constitute perfect sinks for dislocations similar to free
surfaces. Furthermore, the surface contribution to the free
energy ψ surf remains constant and its time derivative vanishes.
2. The material velocity at the continuum level v is assumed to be
smooth everywhere, including across the LABs (in contrast to the
dislocation velocities). 3. The LABs are perfect sinks for vacan-
cies, similar to free surfaces. Physically, this means that vacan-
cies are transported very fast along the LABs without altering the
energy state of the LABs.

Following another study,[19] the dissipation (free-energy
imbalance) due to the dislocation motion and vacancy
diffusion is

PDiss ¼ PW þ PFlow � Ψ̇ ≥ 0 (30)

where PW is the power of the external forces, which is given by

PW ¼
ZZ

∂V
f ⋅ v dV (31)

and PFlow is the energy flow due to vacancy diffusion and dislo-
cation transport. This energy flow is characterized by the poten-
tial μv for vacancy diffusion, respectively, and μgsd for dislocation
transport. Let n denote the outward unit normal of the boundary
of the solid V. Having in mind the assumptions made above,
PFlow must 0 surface ∂V as well as at the LABs, thus

PFlow ¼ �
ZZ

∂V
μv Jv ⋅ n dS�

X
I

ZZ
LAB I

μv Jv ⋅ n dS

�
X
g, s

ZZ
∂V

μgsd Jgsd ⋅ n dS�
X
I

X
g, s

ZZ
LAB I

μgsd Jgsd ⋅ n dS

(32)

In the preceding equation, the brackets ⟦x⟧ denote the jump
of the quantity x across a LAB and a summation is made on the
individual portions I of the LABs bounding two adjacent sub-
grains (see Figure 5). The normal vector n of the LAB I points
outward the “þ” subgrain.

Applying the Gauss theorem to the dissipation Equation (30)
along with the Equations (28), (31), (32), taking into account the
stress BC σ ⋅ n ¼ f on ∂V , the equilibrium Equation (26), the
diffusion equation (20), the dislocation balance equation (19),
and the definition of the dislocation flux, Jgsd ¼ ρgsvgs, we can
transform the dissipation into

PDiss ¼
ZZZ

V
σ∶ϵ̇in dV þ

ZZZ
V

σ� ∂ψel

∂ϵel

� �
∶ϵ̇el dV

�
ZZZ

V
∇μv ⋅ Jvþμvtr ϵ̇inð Þð ÞdV

þ
ZZZ

V
μv�

∂ψ chem

∂cv

� �
ċv dV �

X
g, s

ZZZ
V
∇μgsd

⋅ ρgsvgsð ÞdV þ
X
g

ZZZ
V

�μgþd þ ∂ψ in

∂κg

� �
∇ ⋅ ρgþvgþð Þ

þ �μg�d � ∂ψ in

∂κg

� �
∇ ⋅ ρg�vg�ð ÞdV

(33)

Following the classical Coleman�Noll argument that
PDiss ≥ 0 must hold for all constitutive processes, the relations

σ ¼ ∂ψel

∂ϵel
, μv ¼

∂ψ chem

∂cv
, μgþd ¼ ∂ψ in

∂κg
¼ μgd,

μg�d ¼ � ∂ψ in

∂κg
¼ �μgd

(34)

follow. In the first and the second remaining integrals of
Equation (33), the inelastic strain rate is rewritten at the slip sys-
tem level, taking into account Equations (7) and (10). After some
rearrangements we finally obtainFigure 4. A symmetric LAB acting as a source or a sink.

n

n

+

-

Figure 5. Convention for the outward normal n at LAB delimiting two
subgrains.
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PDiss ¼
ZZZ

V

X
g

ρgþvgþgl � ρg�vg�gl
� �

b τg � ∇μgd ⋅m
g

� �
dV

þ
ZZZ

V

X
g

ρgþvgþcl � ρg�vg�cl
� �

� �b ςg � ∇μgd ⋅ n
g þ bμv

� �
dV �

ZZZ
V
Jv ⋅ ∇μv dV

(35)

3.3. Identification of the Thermodynamic Forces

The first terms in the second brackets of the two first volume
integrals in Equation (35) respectively correspond to the glide
and climb components of the Peach�Köhler force at the slip
system level, as can be recognized from a comparison with
Equation (10). Hence, the back-stresses can be identified to be

τgsb ¼

8>><
>>:
1
b
∇μgd ⋅m

g if s ¼ þ

� 1
b
∇μgd ⋅m

g if s ¼ �
(36)

for glide and

ςgsb ¼

8>><
>>:
1
b
∇μgd ⋅ n

g if s ¼ þ

� 1
b
∇μgd ⋅ n

g if s ¼ �
(37)

for climb. The last term bμv in the second bracket of the climb
part of Equation (35) corresponds to the osmotic force (compared
with Equation (65)). Accordingly, the total climb force is

Fgs
cl ¼ Fmech,gs

cl þ Fosm,gs
cl ¼

��b ςg � ∇μgd ⋅ n
g þ bμv if s ¼ þ

b ςg þ ∇μgd ⋅ n
g � bμv if s ¼ �

(38)

while the total glide force is

Fgs
gl ¼ Fmech,gs

gl ¼
�
b τg � ∇μgd ⋅m

g if s ¼ þ
�b τg þ ∇μgd ⋅m

g if s ¼ � (39)

Recalling Equation (21) for vacancy diffusion, and as the dis-
location densities ρgs are always positive, the positivity of the dis-
sipation (35) is ensured if we choose constitutive laws of the form

vgsgl ¼
1

Bdrag
gl

Fgs
gl (40)

vgscl ¼
1

Bdrag
cl þ Bv

cl

Fgs
cl (41)

provided that Bdrag
gl > 0 and Bdrag

cl þ Bv
cl > 0. Note that in the

following section, the constitutive laws Equations (40) and (41)
are directly derived from physical assumptions concerning the
mechanisms retarding dislocation motion at the HIP
temperature, which allows for the identification of the constants

Bdrag
gl , Bdrag

cl , and Bv
cl. Introducing Equation (12) of the dislocation

density tensor in the free energy (Equation 29), the back-stresses

can be further concretized. It is interesting to consider the special
case in which only one slip system is activated. The microscopic
free energy (Equation 29) becomes

ψ inðαÞ ¼

8>><
>>:

aμb2jκg j ln bjκg j
α0

� �
þ aμb

2
α0 if bjκg j > α0

aμb
2α0

b2jκg j2 else
(42)

and the glide component of the back-stress becomes

τgb ¼ aμb
1
jκg j ∇κ

g ⋅mg (43)

in the nonregularized case. At very high temperature, statistically
stored dislocations are expected to be annihilated very fast by
climbing, so that jκg j � ρg and τgb � aμb 1

ρg ∇κ
g ⋅mg . The

back-stress can be identified with that obtained by Groma[15] after
a coarse-graining procedure if a ¼ 1

2πð1�νÞ. Hence, the

Equations (36) and (37) generalize this result to multiple slip
and climb.

4. Evaluation of the Dislocation Velocity

4.1. Diffusion Equation for a Cottrel Atmosphere

It is assumed that the dislocation mobility is controlled by
dragging a cloud (Cottrell atmosphere) of large solute atoms
(rhenium and tungsten) by diffusion. Indeed, with a combina-
tion of transmission electron microscopy, atom probe tomogra-
phy, and phase-field modeling, it has been shown in the study by
Wu et al.[26] that Re segregates at dislocations and retard their
motion. In addition, according to the study by Fleischmann,[27]

the creep resistance of the γ� matrix increases by a factor of 20
when increasing the Re content from 0 to about 3 at%. Then, the
dislocation velocity ṽd results from the equilibrium of the forces
(per unit length) on the dislocation

F̃PK þ F̃drag þ F̃osm ¼ 0 (44)

The drag force expresses the interaction of the moving dislo-
cation with the solute atoms. It is generally assumed to be a linear
form of the velocity, which can be written as F̃drag ¼ �Bdrag ⋅ ṽd,
where Bdrag is the diagonal matrix

Bdrag ¼ Bdrag
gl 0

0 Bdrag
cl

" #
(45)

The osmotic force F̃osm accounts for the effect of local devia-
tions of the vacancy concentration with the equilibrium concen-
tration as a climb dislocation either consumes or generates
vacancies. Its component in the glide direction vanishes.
Taking into account the equilibrium Equation (44), the disloca-
tion velocity can be expressed as

ṽd ¼ ðBdragÞ�1 ⋅ ðF̃PK þ F̃osmÞ (46)

The problem of solute drag by diffusion has been investigated
by several authors[16,28–30] in the ideal case of a straight disloca-
tion. As solutions for climb could not be found in the literature,
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the diffusion problem of the solute atoms was reanalyzed by FE
for glide and climb. The following presentation follows
closely.[30] The diffusion problem for the solute atoms I (I ¼ Re
or W), with their respective atomic concentration c̃I and volume
ΩI , is solved in a coordinate system moving with the dislocation
of velocity ṽd. To consequently emphasize the fact that the con-
centration of the solute atoms I is defined at the dislocation level,
the notation c̃I is used in this section. The diffusion flux of the
elements I is

J̃I ¼ �DI c̃Ið1� c̃IÞ
ΩkT

∇WI �
DI

Ω
∇c̃I �

c̃I
Ω
ṽd (47)

where Ω is the atomic volume of the alloy, DI the mutual diffu-
sion coefficient of the element I, and W I the variation of energy
when a solvent atom is replaced by a solute atom I, that is

W I ¼
AI y

x2 þ y2
(48)

In the last equation, the prefactor AI, which is given by

AI ¼
μb
3π

1þ ν

1� ν
ðΩI �ΩÞ (49)

characterizes the elastic interaction between solute and solvent
atoms due to their difference of size. The interaction potential
in Equation (48) becomes singular when r ! 0. Hence, a regu-
larized version has been used

W I ¼
AIy

x2 þ y2 þ r2c
(50)

where rc � b. Following the study by Sakamoto et al.,[30] the value
rc ¼ 2 b=3 has been taken. The steady state is assumed and the
conservation of species I reads

∇ ⋅ J̃I ¼ 0 (51)

which, together with the simplification c̃I � 1, leads to

Δc̃I þ ∇ ⋅
c̃I
kT

∇W I þ
c̃I
DI

ṽd
� �

¼ 0 (52)

in the plane perpendicular to the dislocation. The boundary value
problem (BVP) is completed by the boundary condition
c̃Ið∞Þ ¼ cI,0, where cI,0 is either the atomic concentration of
Re or W at equilibrium. Once the Equation (52) has been solved
for c̃I , the dragging force per unit length on the dislocation due to
the solute element I is found by integrating the force �∇W
exerted by a solute atom weighed by the volume concentration
c̃I
Ω on the whole domain, that is

F̃dragI ¼ 1
Ω

ZZ
c̃I ∇W dS (53)

Note that if the dislocation velocity vanishes, the equilibrium
concentration distribution of the solute I around the dislocation
is given by

cIeq ¼ cI,0 exp �WI

kT

� �
(54)

In accordance, the force F̃dragI can as well be evaluated by

F̃dragI ¼ 1
Ω

ZZ
ðc̃I � cIeqÞ∇W dS (55)

as the force exerted by the equilibrium distribution on the dislo-
cation vanishes. In practice, the BVP (Equation 52) has been
solved on a disk of radius rext ≫ b, with the boundary condition

c̃IðrextÞ ¼ cI,0, and F̃dragI has been computed by Equation (55) to
compensate for the finiteness of the disk. According to the
literature,[16,28–30] the drag force increases with the dislocation
velocity until a maximum is reached at the critical value
vcI � DIkT

AI
.

4.2. Glide Velocity

There is no osmotic force in the case of pure dislocation glide
and the dislocation velocity follows from the component of
Equation (44) in the glide direction mg

0 ¼ F̃PK
gl þ F̃drag

gl ¼ F̃PK
gl � Bdrag

gl ṽdgl (56)

At the (continuum) slip system level follows from
Equation (56)

vgsgl ¼
1

Bdrag
gl

Fmech,gs
gl (57)

where Fmech,gs
gl is given by Equation (39).

4.3. Climb Velocity

The derivation of the climb velocity follows closely the presenta-
tion in the study by Geers et al.[21] and is briefly summarized for
clarity. It is assumed that the jog concentration along the dislo-
cation line is large enough so that the dislocation can be regarded
as a perfect sink or source, which corresponds to the diffusion-
limited regime identified by Balluffi.[31] In accordance,
vacancy equilibrium is satisfied along the dislocation, and climb
is controlled by vacancy bulk diffusion.

A two-scale problem is considered: the (mesoscopic)
continuum scale, which corresponds to the solution of
Equation (23), and the (microscopic) dislocation scale, in which
the vacancy concentration c̃v is searched in a hollow cylinder
around the core of a single dislocation. To simplify, the work
done by the pressure when an atom is removed due to the vol-
ume change ΔV r is neglected, which amounts to assuming that
1
3 jtrσ ΔV rj � Qv. The diffusion potential simplifies to

μ̃v ¼
kT
Ω

ln
c̃v

1� c̃v
þ Qv

kT

� �
(58)

Introducing the equilibrium concentration of vacancies with-
out dislocations cv0 given in Equation (24), the diffusion potential
can be rewritten as
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μ̃v ¼
kT
Ω

ln
c̃v
cv0

� �
(59)

At the microscopic scale, when a dislocation climbs, vacancies
are emitted or absorbed, depending on the climb direction (see
Figure 6). If for example an excess of vacancies is available in the
core region, an osmotic force appears, which drives the disloca-
tion in the direction for which vacancies are consumed.
Moreover, in accordance with the hypotheses made earlier,
the local vacancy concentration around the core c̃vk corresponds
to the equilibrium concentration. The osmotic force at the dislo-
cation level acts in the direction of the normal vector to the glide
plane ng and is given by (see, e.g., the textbook by Hirth and
Lothe[16])

F̃osm
cl ¼ � kT

Ω
ðb ⋅ ζÞ ln c̃vk

cv0

� �
(60)

bearing in mind the sign conventions introduced in Section 2.
The climb velocity and the vacancy flux around the dislocation

core are related due to mass conservation. The relationship
between the climb velocity and the vacancy concentrations in
the dislocation core region c̃vk and far away from the dislocation
c̃v∞ has been obtained (see, e.g., the study by Bako et al.[32]) by
solving the stationary diffusion problem for a hollow cylinder of
internal radius rc ≊ b and external radius r∞ and with the bound-
ary conditions cvðrcÞ ¼ c̃vk and cvðr∞Þ ¼ c̃v∞

ṽdcl ¼
2πDv cv0

ðb ⋅ ζÞ lnðr∞=rcÞ
c̃vk
cv0

� c̃v∞
cv0

� �
(61)

The external radius r∞ is typically taken as a characteristic dis-
tance between dislocations. The equilibrium Equation (44) in the
climb direction provides the second necessary condition.

0 ¼ F̃PK
cl þ F̃drag

cl þ F̃osm
cl ¼ F̃PK

cl � Bdrag
cl ṽdcl �

kT
Ω

ðb ⋅ ζÞ ln c̃vk
cv0

� �
(62)

The set of Equations (61) and (62) is a nonlinear system that

allows to determine ṽdcl and c̃vk. Assuming that jc̃vk�cv0j
cv0

� 1, it is

advantageous to linearize Equation (62) to finally obtain

ṽdcl ¼
1

Bdrag
cl þ Bv

cl

F̃PK
cl � kT

Ω
ðb ⋅ ζÞ c̃v∞

cv0
� 1

� �� �

� 1

Bdrag
cl þ Bv

cl

ðF̃PK
cl þ F̃osm

cl Þ
(63)

where the drag coefficient due to retardation by vacancy diffusion
is defined as

Bv
cl ¼

b2kT lnðr∞=rcÞ
2πDv cv0 Ω

(64)

Following the study by Geers et al.,[21] the vacancy density far
away from the dislocation c̃v∞ is identified with the vacancy den-
sity at the (mesoscopic) continuum level, that is, cv ≡ c̃v∞, which
is obtained by solving the diffusion equation, Equation (23).
Turning now to the continuum slip system level, we can infer
from Equation (63) the dislocation climb velocities for each slip
system

vgþcl ¼ 1

Bdrag
cl þ Bv

cl

Fmech,gþ
cl þ kT

Ω
b ln

cv
cv0

� �� �

¼ 1

Bdrag
cl þ Bv

cl

ðFmech,gþ
cl þ bμvÞ

(65)

vg�cl ¼ 1

Bdrag
cl þ Bv

cl

Fmech,g�
cl � kT

Ω
b ln

cv
cv0

� �� �

¼ 1

Bdrag
cl þ Bv

cl

ðFmech,g�
cl � bμvÞ

(66)

Note that for all slip systems, the dislocation velocity at the
continuum level can finally be expressed in the compact form

vgs ¼ M ⋅ ðFPK,gs þ Fb,gs þ Fosm,gsÞ (67)

where the mobility matrix M is given by

M ¼

1

Bdrag
gl

0

0
1

Bdrag
cl þ Bv

cl

2
6664

3
7775 (68)

in the axes of the slip system g, which according to Equation (40)
and (41) ensures dissipation positivity.

4.4. Solution of the Diffusion Problem by FE

The BVP (Equation 52) has been solved by FE with a mesh made
of triangular quadratic elements. The external radius has been

sink source

Figure 6. Climbing dislocation as a source or sink of vacancies.
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taken as rext¼ 103b. The FE mesh is focused at the dislocation
core, as can be seen in Figure 7.

The drag force exerted by either Re or W solute atoms has
been calculated with the material constants provided in
the Appendix 1 for several given glide velocities.
The results are plotted in Figure 8. As expected, a quasilinear
regime is observed until the velocity vcI is reached, after which
the drag force drops. Furthermore, the FE results are in good
agreement with the quasianalytical solution derived by
Fuentes-Samaniego et al.[29] for v � vcI. In the linear regime,
the drag coefficients are found to obey a law of the form

Bdrag
gl ¼ αdrag

cI,0A2
I

ΩDIkT
, (69)

where αdrag is a numerical factor. The value αdrag ¼ 3 has been
found to reasonably approximate the quasilinear regime for both
W and Re, as can be seen in Figure 8, for the example of W.

The total drag force is the sum of the contribution of Re and

W, F̃drag ¼ F̃dragW þ F̃dragRe . For easier comparison with the applied

stress levels, the total drag force Fdrag
gl per unit line is divided by

the Burgers vector and is plotted in Figure 9. It can be seen

that the quasilinear regime applies up to an RSS level of
about 10MPa.

The total drag coefficient is then

Bdrag
gl ¼ αdrag

cW,0 A2
W

ΩDWkT
þ αdrag

cRe,0 A2
Re

ΩDRekT
(70)

leading to the value Bdrag
gl ¼ 3.7� 103 Nm�2 s at 1288 K.

The drag force opposing climb has been also computed and
the results are presented for W in Figure 10. Higher resistance
against climb than against glide can be observed. Accordingly, an

increased drag coefficient Bdrag
cl ¼ βclB

drag
gl with βcl ¼ 3 reason-

ably matching the FE results has been applied for climbing.
Nevertheless, it should be acknowledged that the present calcu-
lation oversimplifies the problem at hand as for example the dis-
location dissociation in partials (see, e.g., the study by Sills[33]) is
neglected. In the case of climb, this simplification is expected to
result in a lower bound for the real drag force. Accordingly, this
approach can only provide an estimate of the order of magnitude
of the real drag coefficient.

The radius r∞ in Equation (64) is calculated by

r∞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

gs ρ
gs

q� ��1
with a maximum value equal to the sub-

grain radius if the dislocation density is too small. With the
parameters indicated in the appendix and with r∞ ¼ 36 μm,
the drag coefficient for vacancy diffusion Equation (64) is found
to be Bv

cl � 5.1� 105 Nm�2 s with the lower bound for Dv and

Figure 7. FE mesh for the resolution of the diffusion equation,
Equation (52).

FE

Linear

Ref.
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- 4

0.001 0.010 0.100 1 10
10

- 4
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Figure 8. Normalized drag force due to dislocation glide computed by FE
for W. Comparison with the linear model and with the solution obtained by
Fuentes-Samaniego et al.[29]

FE

linear model

10-4 0.001 0.010 0.100 1 10
0.01

0.10

1

10

100

1000

Figure 9. Total drag force per unit dislocation line scaled by the Burgers
vector. Comparison with the linear model.
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10- 4 0.001 0.010 0.100 1 10
10- 4

0.001

0.010

0.100

1

10

p
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Figure 10. Normalized drag force due to dislocation glide and climb com-
puted by FE for W.
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Bv
cl � 3.1� 103 Nm�2 s with the upper bound. In contrast, the

aforementioned FE calculations suggest that Bdrag
cl � 104 Nm�2 s

at 1288 K. It follows from these considerations that in the case of
slow vacancy diffusion, dislocation climb is mainly controlled by
vacancy diffusion and in the case of fast diffusion, both effects
(vacancy diffusion and solute drag) are comparable.

5. LABs as Dislocation Sources

5.1. The Dislocation Flux at LABs

The nucleation of dislocations at grain boundaries has been
experimentally observed[34] and numerous attempts have been
made to perform a mechanical analysis of the nucleation prob-
lem[35–39] at either grain boundaries or LABs. The present model
assumes that dislocations are nucleated at LABs (see Figure 11),
which also act as obstacles to dislocation glide. After having
reached the opposite LABs, the dislocations reorganize, thereby
reducing their energy. This recovery process inside the LABs is
believed to control the creep rate. However, there is no estab-
lished model to describe this complex process. Hence, it has
been decided to assume a stress-dependent nucleation rate
νnucðτgsÞ at the LABs and to fit it to the measured creep rates.
However, the required quantity for the simulation is the disloca-
tion flux vector Jgsnuc at the LAB, for which it is further assumed
that it only has a glide component Jgsnuc in the direction of mg .
If the LAB is perpendicular to the slip plane of the system
ðg, sÞ, the relationship

Jgsnuc ¼ λgs νgsnuc (71)

holds, where λgs is the surface density of the ðg, sÞ sources in the
LAB. In accordance with the previous considerations, Jgsnuc ¼
JnucðτgsÞ is assumed to be a function of the local RSS τgs. The
nucleation rate of a Frank�Read source νnucðτgsÞ is controlled
by the local dislocation glide velocity and has been estimated
in other studies.[40,41] Accordingly, if the glide velocity vgsgl is pro-

portional to the shear stress τgs, then νnucðτgsÞ must behave like
τgs for large stresses. A flux function consistent with this property
and Equation (71) is

JnucðτÞ ¼ τ
a1τnm

1 þ a2τnm
(72)

5.2. Relationship to the Creep Rate

If the creep rate is controlled by the nucleation rate at the LABs,
the stationary creep rate can be estimated with some simplifica-
tions as follows. The dislocation flux ρgsvgsgl must be divergence

free according to Equation (16) if sources and sinks are absent.
This flux must be exactly balanced by the inward flux at the LAB,
that is, Jgsnuc ¼ ρgsvgsgl . From these considerations for the shear

creep rate γ
: gs ¼ b Jgsnuc and the overall creep rate in a solid speci-

men oriented along the 001h i direction is

ϵ
: in ¼ 8f 001 γ

: gs ¼ 8f 001b J
gs
nuc (73)

where f 001 denotes the Schmid factor of the octahedral slip
systems in a 001h i specimen. The parameters of Equation (72)
have been fit to the measured creep rates and are found to be
a1 ¼ 2.1� 10�39 Pa�nm�1 m�1s�1, a2 ¼ 6.6� 10�40 Pa�nm , and
nm ¼ 5.5.

5.3. Boundary Condition for the Transport Equation and Model
Calibration

The previous estimate needs to be adapted to the 2D model at
hand. For this purpose, the creep tests have been simulated with
a representative volume element (RVE) consisting of a circular
2D computational cell, as used for the pore shrinking simula-
tions, however, without pores. The tensile axis is taken perpen-
dicular to one slip plane, so that the two remaining slip systems
are equally activated. Finally, a correction factor ϑnuc has been
applied to Equation (72) and has been adjusted to the experimen-
tal creep rate.

The scalar dislocation flux required in the variational formu-
lation of the balance Equation (16) is ϕgs

nuc ¼ Jgsnuc ⋅ n, where n is
the outward normal vector of the LAB. At the locations of the
LABs for which nucleation is active, that is, for which
(vgs ⋅ n < 0), the prescribed dislocation flux is finally obtained as

ϕgs
nuc ¼ ϑnuc JnucðτgsÞmg ⋅ n (74)

where Jnuc is given by Equation (72).
With the previous boundary condition, the value of

ϑnuc ¼ 1.56 has been found to achieve a reasonable agreement
with the measured creep rates, as can be seen in Figure 12.Figure 11. Frank�Read source in a LAB.
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6. Simulations of Pore Shrinking

An outline of the simulation procedure is provided in
Appendix 2. The simulations a priori depend on a number of
parameters, like the pore size and its location with respect to
the LAB or the value of the vacancy diffusion coefficient
(see Appendix 1). In the following, the influence of these
parameters is investigated by performing a number of compara-
tive simulations of pore shrinking under HIP conditions for the
alloy CMSX-4. The simulation parameters are summarized in
Table 1.

6.1. Model of Pore in a Representative Volume (Surface)
Element

Following other studies,[3,11] a disk-shaped subgrain surrounded
by LABs and containing a circular pore is taken as the represen-
tative computational cell (see Figure 13). The size of the subgrain
has been determined from the synchrotron tomography data pre-
sented in the study by Epishin et al.[3] A number of 2685 pores
were counted in a volume of 5.4� 108 μm3, which corresponds
to an average volume of 2.0� 105 μm3 per spherical cell and a

radius RLAB ¼ 36m. With the measured porosity of about
0.2%, this corresponds to a spherical pore of radius
Rpore,0 ¼ 4.7m. This value is also in agreement with the maxi-
mum of the pore size distribution reported in the study by
Epishin et al.[3]

The BC for vacancy diffusion is given by Equation (25).
A pressure of p ¼ �n ⋅ σ ⋅ n ¼ 103MPa is continuously applied
during a time interval of 100 s and then maintained on the exter-
nal boundary, while the pore surface remains traction free. The
more complex BC for dislocation transport are described in
Sections 2.3 and 5.3.

A value for the factor α0 that controls the regularization of the
free energy (Equation (29)) has to be defined. The factor α0 can be
envisioned as a lower limit for the dislocation density, that is,
below which a dislocation density ceases to be meaningful for
the considered problem. Taking into account the previous
dimensions, a dislocation density limit of ρ0 ¼ 500 μm�2 has
been taken, which corresponds to a mean distance between
dislocations of about of about 1=

ffiffiffiffiffi
ρ0

p ¼ 0.04 μm and
α0 ¼ bρ0 ¼ 0.13 μm�1.

Let us denote Apore ¼ πR2
pore the pore area and Acell ¼ πR2

LAB

the area of the computational cell. The interpretation of the
simulation results requires the definition of a porosity decrease
measure. Unfortunately, a straightforward comparison of the
porosity with measurements is difficult as the ratio of the areas
Apore=Acell largely differs from the ratio of the corresponding
volumes R3

pore=R3
LAB. To mitigate the effects of this discrepancy,

the results are presented in terms of relative porosity referred to
the initial area, which is defined as

ωporeðtÞ ¼
AporeðtÞ
Apore,0

(75)

The porosity decrease has two components: The first one is

vacancy diffusion. Its contribution A
: v
pore is calculated by integrat-

ing the vacancy flux Jv ⋅ n around the pore surface[11] and then

Exp. data

RVE

5 10 15 20
10-8

10-7

10-6

10-5

10-4

10-3

Figure 12. Creep rate of the uniaxial tensile creep tests. Experimental data
and RVE simulations.

Table 1. Conditions of the pore shrinking simulations. Simulation no. 1e
has been performed without dislocation nucleation (only vacancy
diffusion).

Simulation No. Rpore ½μm� Elasticity Dv Pore location Pressure [MPa]

1a 4.7 Isotropic Dlow
v Centered 103

1b 4.7 Cubic Dlow
v Centered 103

1c 4.7 Cubic Dup
v Centered 103

1 d 4.7 Cubic Dup
v Centered 150

1e 4.7 — Dup
v Centered 103

2a 9.4 Isotropic Dlow
v Centered 103

2b 9.4 Isotropic Dup
v Centered 103

3 4.7 Isotropic Dlow
v Noncentered 103

n

n p

p

p

p

p

[001]

[010]

p

p

p

BAL

Figure 13. Arrangement of a pore in a circular subgrain surrounded by a
LAB.
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integrated during the simulation to obtain a variation ΔAv
pore < 0

of the pore area. The second one results from the inelastic defor-
mations (dislocation creep). Its contribution is evaluated by cal-
culating the deformation of the initially disk-shaped pore and its
area change, ΔAin

pore < 0. Thereby, the pore area right after load-
ing is taken as reference to account for elastic deformations. In
summary, the pore area is updated during the simulation as
Apore ¼ Apore,0 þ ΔAv

pore þ ΔAin
pore.

6.2. Centered Pore

6.2.1. Small Pore

First, the case of a central pore of initial size Rpore,0 ¼ 4.7 μm is
considered. A part of the simulations has been performed with
cubic elasticity and with the constants indicated in the Appendix.
The ½001� axis is taken parallel to the horizontal slip plane (see
Figure 13). Unfortunately, the introduction of crystal axes needed
to define the elastic constants destroys the symmetry between the
three slip systems. It is therefore interesting to consider also the
isotropic case, for which the symmetry between the slip systems
is maintained, and which is more comparable to the 3D case in
this respect. The corresponding isotropic elastic constants have
been estimated in the Appendix.

Figure 14 shows the distribution of the RSS in the hollow disk
right after loading for isotropic elasticity. The RSS of the consid-
ered slip system vanishes on the symmetry lines. Figure 15 com-
pares the RSS for isotropic and cubic elasticity on the path shown
in Figure 14. The RSS are localized around the pore and are very
low in the isotropic case on the external surface (<2MPa), where
the dislocation sources are located. With cubic elasticity, higher
shear stresses up to 7.5MPa are observed on the external bound-
ary (LAB).

In the case of elastic isotropy (simulation No. 1a), Figure 16
shows the dislocation densities for one slip system and all six slip
systems right after loading (100 s) and after 500 s. The dislocation
densities remain extremely low (about 10�2 m�2). This is due to
the low RSS at the sources, which are hardly activated. However,

the dislocation motion qualitatively corresponds to the expected
mechanism, which is schematically represented in Figure 17:
dislocations are emitted at the LABs. They glide until they reach
the symmetry line where the RSS vanishes. From there, they con-
tinue their motion by pure climb. Thereby, they consume vacan-
cies emitted at the pore surface. Due to the low dislocation
density, the pore mainly shrinks by vacancy diffusion in such
a situation, as shown in Figure 18. However, the magnitude
of the porosity reduction is much too low in comparison with
the measurements.[3]

If cubic elasticity is taken into account (simulation no. 1b), the
higher RSS at the LAB leads to increased dislocation nucleation
and thus a higher contribution of dislocation creep, as can be
seen in Figure 19. Interestingly, the vacancy flux at the pore sur-
face is also increased due to dislocation climb toward the pore, as
schematically shown in Figure 17.

The previous simulations have been performed with the lower
bound for the vacancy diffusion coefficient, that is, Dv ¼ Dlow

v
and the overall porosity decrease after 1 h remains very low.
If the upper bound Dv ¼ Dup

v is assumed, Figure 20 shows that
vacancy diffusion largely controls the porosity decrease, even in
the case of cubic elasticity.

It should be mentioned that the measurements have shown
that after 0.5 h the porosity is roughly halved.[3] Figure 20 shows
that a reasonable order of magnitude for the porosity decrease is
obtained with the high value, Dv ¼ Dup

v , of the vacancy diffusion
coefficient for pure Ni. Figure 21 compares the HIP simulations
with the small pore. For reference, the porosity decrease due to
pure vacancy diffusion without dislocation creep (simulation no.
1e) is also represented. It is clear that the diffusion coefficient has
the largest influence on porosity decrease. It is also interesting to
see that dislocations significantly increase the porosity reduction
rate with respect to pure vacancy diffusion.

Finally, a simulation (no. 1d) has been performed for a higher
external pressure ðp ¼ 150MPaÞ. As can be expected, a compari-
son of Figure 20 and 22 shows an increased contribution
of dislocation creep with respect to the standard condition
ðp ¼ 103MPaÞ. It is worth mentioning that the assumption of
pure vacancy diffusion leads to an approximately linear depen-
dence of ΔApore on the external pressure. In contrast, the stress
dependence of dislocation creep is superlinear, as results from
the nucleation rate (72). Indeed, for better comparison, the

Figure 14. RSS distribution (in MPa) around a pore. Isotropic elasticity.
The straight lines show the three glide planes. The red line is parallel to the
glide plane of the considered system. The gray line represents the path for
the plot in Figure 15.

Figure 15. RSS (in MPa) on the path shown in Figure 14 and for the same
slip system.
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results of simulation no. 1c have been scaled by the factor
150/103 and represented in Figure 22. It can be verified that
the porosity decrease calculated by the full model has a superlin-
ear dependence on p. It is also recalled that the pure diffusion
model underestimates the porosity reduction after 0.5 h for
p ¼ 150MPa.[3] From these considerations, it can be concluded
that the contribution of dislocation creep to porosity reduction
becomes significant when the external pressure is increased.

6.2.2. Large Pore

The previous simulations have only exhibited a relatively low dis-
location activity, mainly due to the low RSS at the LAB, leading to
a low dislocation nucleation rate. To trigger a higher activity, the
case of a large pore with radius Rpore ¼ 9.4 μm is considered in
this section. Indeed, Figure 23 shows that dislocation creep
becomes the dominant mechanism for Dv ¼ Dlow

v .
For Dv ¼ Dup

v , Figure 24 shows that the contribution of
vacancy diffusion is much higher than in the previous case as
expected. However, it is also interesting to notice the significant
contribution of dislocation creep and to compare it with the case
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Figure 16. Dislocation density plots (in μm�2) for simulation no. 1a. For one slip system (horizontal glide plane) after a) 100 and b) 500 s. For all slip
systems after c) 100 and d) 500 s.

Figure 17. Schematic of the deformation process: dislocation gliding and
then climbing toward the pore.

Figure 18. Relative decrease of the porosity. Centered small pore, isotro-
pic elasticity, Dv ¼ Dlow

v . Simulation no. 1a.
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of the small pore in Figure 20. In contrast to the small pore situ-
ation, it is clear that dislocation creep can no longer be neglected.
Here, it should be reminded that the experimental pore size his-
tograms presented in the study by Epishin et al.[3] showed that
large pores (of diameter larger than 25 μm) already disappeared
after 1 h HIP. In contrast, the predicted histogram (based on
pure vacancy diffusion) still includes such large pores. The pres-
ent results suggest that this discrepancy might be due to the con-
tribution of dislocation creep that increases with the pore size.

6.3. Noncentered Small Pore

To demonstrate the importance of the position of the pore with
respect to the LAB, the case of a pore located at coordinates
x ¼ 18.2m, y ¼ 0m is considered in this section. Usually, the
pores are close to the LABs or interdendritic regions. The simu-
lation results (no. 3) show that only two slip systems are activated,

Figure 19. Relative decrease of the porosity. Centered small pore, cubic
elasticity, Dv ¼ Dlow

v . Simulation no. 1b.

Figure 20. Relative decrease of the porosity. Centered small pore, cubic
elasticity, Dv ¼ Dup

v . Simulation no. 1c.

Figure 21. Relative decrease of the porosity. Centered small pore. The leg-
end indicates the simulation number according to Table 1.

Figure 22. Relative decrease of the porosity. Centered small pore, cubic
elasticity, Dv ¼ Dup

v , p ¼ 150MPa. Simulation no. 1 d. Comparison with
the results of simulation no. 1c scaled by 150/103.

Figure 23. Relative decrease of the porosity. Centered large pore, isotropic
elasticity, Dv ¼ Dlow

v . Simulation no. 2a.

Figure 24. Relative decrease of the porosity. Centered large pore, isotropic
elasticity, Dv ¼ Dup

v . Simulation no. 2b.
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in contrast to the centered pore. Figure 25 shows the RSS distri-
bution for one of the most stressed slip systems. The comparison
with Figure 14 demonstrates that with a noncentered pore,
higher shear stresses are locally attained on the LAB. In accor-
dance, Figure 26 shows that the local dislocation densities are
much higher (locally up to 8m�2) than with the centered pore.
Hence, a higher contribution of dislocation creep to pore shrink-
ing is generally expected. Qualitatively, the motion is reminiscent
of the previous case: the dislocations glide until they stop gliding
and accumulate on a line where the sum of external and disloca-
tion RSS vanishes and the motion continues by climb.

Indeed, the comparison of Figure 27 with Figure 18 shows
that the closeness of the pore to the LAB enhances dislocation
creep, whose contribution to pore shrinking becomes compara-
ble with vacancy diffusion. In addition, the dislocations climbing
toward the pore consume vacancies emitted at the pore surface
(see Figure 17), which further accelerates pore shrinking. It
should be mentioned that due to the highly localized character
of the dislocation concentrations, a locally very fine mesh would
be necessary to capture details of the dislocation distributions in
these areas. Unfortunately, the numerical time step is dependent
on the element size (see Appendix 2), which in practice hinders
the use of a focused mesh in this region.

6.4. Limitations of the Continuous Model

Theoretically, the mean distance between the dislocations should
be small in comparison with the relevant geometrical dimen-
sions to allow for a definition of dislocation density. In practice,
this requirement cannot be satisfied in the present situation as at
the beginning of the process, the subgrains are dislocation free.
In fact, for the same reason, many applications of either local or
strain-gradient CP at this scale in the literature are a priory ques-
tionable. Indeed the plasticity theory implicitly assumes that the
use of plastic strains and hence of dislocation densities is mean-
ingful at this scale. In particular, this issue was already raised in
the study by Berdichevsky et al.[42] Note that a conventional (2D)
strain-gradient CP model is retrieved in the present model if the
divergence term in Equation (16) is discarded.

To address this question in-depth, a comparison of the results
with discrete dislocation (DD) simulations would be needed. For
example, the comparisons of DD simulations of a crystalline
material containing an elastic reinforcement with predictions
of strain-gradient CP reported in the study by Bittencourt
et al.[43] show that a remarkable agreement can be obtained if
the scaling parameters of the nonlocal terms are adequately
adjusted. Unfortunately, the interactions between DDs and a
pore are mathematically complex (see, e.g., the study by Li[44]

or Ruffini[45]) and the authors are not aware of solutions for
DDs that would enable a full DD simulation of the HIP process
in conditions comparable with the present article.

(a) (b)

Figure 26. Dislocation density (in μm�2) for all slip systems after a) 100 and b) 500 s (simulation No. 3).

Figure 25. RSS distribution (in MPa) around a noncentered pore. The
lines show the three glide planes. The red line is parallel to the glide plane
of the considered system.

Figure 27. Relative decrease of the porosity. Noncentered small pore, iso-
tropic elasticity, Dv ¼ Dlow

v . Simulation no. 3.
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In support of the present work, one can argue that in regions
with very low dislocation densities, the disturbance of the stress
field is negligible. The contribution to the free energy and the
back-stresses also becomes minor as it corresponds to the
regularized part, that is, the quadratic function of the dislocation
density measure, of Equation (29). Hence, it can be reasonably
assumed that the error resulting from the discreteness of dislo-
cations in low-density areas is limited when looking at integral
results, as the pore shrinking rate. In addition, simulations with-
out back-stresses performed by the authors suggest that the influ-
ence of back-stresses, and thus of the short-range dislocation
interactions, is limited in the present problem. However, it could
be observed that the back-stress has a diffusive character and is
thus greatly beneficial for the stability of the simulations.

7. Conclusion

A model for porosity annihilation in single-crystal nickel-base
superalloys under HIP conditions has been developed. The
model considers diffusion and dislocation creep around pores
as the pore shrinking mechanisms. Due to the simplifications
made, in particular, the two-dimensionality and the fact that
the geometry is not updated, it is difficult to make quantitative
comparisons with experimental measurements of porosity
decrease during HIP like in other studies.[3,6,7] However, the fol-
lowing conclusions can be made.

1) At the scale of the pores, it is mandatory to consider the
heterogeneity of dislocation sources. In this work, it has been
assumed that LABs are the only sources. The simulations of dis-
location motion around the pore suggest that the location of the
pore with respect to the dislocation sources plays a significant
role: As the pore itself is the sole source of shear stresses, there
is only little dislocation nucleation when the pore is sufficiently
far away from the sources. In accordance, pore shrinking should
be mostly controlled by vacancy diffusion. This could explain the
overestimation of the pore shrinking rate by conventional CP as
CP implicitly assumes that perfect dislocation sources are homo-
geneously distributed.

2) A large uncertainty exists regarding the value of the effective
vacancy diffusion coefficient Dv. The porosity reduction pre-
dicted with the coefficient of pure Ni has the correct order of
magnitude, in agreement with the results presented in the study
by Epishin et al.[3] In contrast, the simulations performed with
the much lower value estimated for CMSX-4 in the study by
Zhu et al[46] consistently underestimate the porosity reduction.

3) In the case of large pores and high external pressure
(150MPa), the simulations suggest that the contribution of dis-
location creep is no longer negligible, which could explain the
discrepancies of the pure diffusion model mentioned in the
study by Epishin et al.[3]

Appendix 1: Numerical Values of the Physical
Parameters

This appendix presents the numerical values of the physical
constants used for all calculations performed at the HIPing tem-
perature, which is taken as T ¼ 1288 °C.[6]

Elastic Constants

The elastic constants of the alloy CMSX-4 were determined by
the resonance method between room temperature (RT) and
T ¼ 1300 °C in the study by Epishin et al.,[47] leading to the esti-
mates c11 ¼ 185GPa, c12 ¼ 155GPa, and c44 ¼ 69GPa at
T ¼ 1288 °C.

As seen earlier, the classical treatment of solute drag by diffu-
sion around a moving dislocation assumes isotropic elasticity.
Unfortunately, there is no obvious choice of the appropriate
equivalent isotropic constants to be used in this solution. The
bulk modulus κcubic ¼ ðc11 þ c12Þ=3 ¼ 165GPa is independent
of the crystal orientation and is identical to that of a polycrystal.
Hence, it is natural to keep its value for the equivalent isotropic
constants, that is, κcubic ¼ κiso. However, the shear modulus for a

001h i plane is equal to c44 but is equal to
3c44ðc11�c12Þ
c11�c12þ4c44

¼ 20GPa for
shear in a 111h i plane. For definiteness, the isotropic shear mod-
ulus has been chosen in such a way that the prefactor Kcubic con-

tained in the energy per line unit Wcubic
L ¼ Kcubicb2

4π log R
r0

� �
of the

straight-edge dislocation of the anisotropic material matches that

of the energy per line unit W iso
L ¼ μisob2

4πð1�νisoÞ log
R
r0

� �
of the isotropic

solution, that is, Kcubic ¼ μiso
ð1�νisoÞ. The expression of Kcubic as a

function of the components of the stiffness ðc11, c12, c44Þ is given
in the study by Hirth et al .[16] After solving the resulting system
of equations, the values μiso ¼ 42GPa and νiso ¼ 0.38 are
obtained. Note for comparison that these values are also close
to the values μiso ¼ 38GPa and νiso ¼ 0.39 found by averaging
of the crystal constants after the Voigt�Reuss�Hill procedure
for an isotropic polycrystal. In the following, the subscript iso will
be omitted to simplify the notations.

Atomic Volumes

The atomic volumes at RT for Re and W have been taken to
ΩRe ¼ 1.47� 10�29m3 and ΩW ¼ 1.57� 10�29m3.[48] With the
thermal dilatation coefficients provided in other studies,[49]

respectively,[50] these atomic volumes take the values
ΩRe ¼ 1.51� 10�29 m3 and ΩW ¼ 1.60� 10�29m3 at the HIP
temperature. The value of the atomic volume for the alloy
CMSX-4 at RT has been deduced from the average lattice spacing
aCMSX�4 ¼ 3.6� 10�10 m,[51,52] leading to ΩCMSX�4 ¼ Ω ¼
1.16� 10�29 m3 at RT and ΩCMSX�4 ¼ Ω ¼ 1.24� 10�29 m3 at
the HIP temperature thermal dilatation coefficients provided
in the study by Epishin et al.[47] In accordance, the Burgers vector
has the magnitude b ¼ 2.6� 10�10 m at T ¼ 1288 °C.

Vacancies’ Concentration

The atomic concentration of vacancies at equilibrium c0v is given
by (see, e.g., the study by Link et al.[53])

c0v ¼ exp
Sfv
R

 !
exp �Hf

v

RT

 !
(76)

where Sfv ¼ 2.06R andHf
v ¼ 158.2 kJmol�1 are, respectively, the

entropy and enthalpy vacancy formation in Ni and are taken from
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the study by Link et al..[53] From these values it follows that the
atomic vacancy concentration at the HIPing temperature is
c0v ¼ 4� 10�5.

Diffusion Constants

According to the study by Violin et al.,[54] the diffusion coefficient
for vacancies Dv is related to the self-diffusion coefficient Ds by
the relation

Dv ¼
Ds

ξ c0v
(77)

where ξ is a correlation factor equal to 0.781 for face centered
cubic (FCC) crystals. The coefficient for self-diffusion in nickel
is given in the form[55]

Ds ¼ Ds,0 exp � Qs

RT

� �
(78)

where Ds,0 ¼ 2.26� 10�4 m2 s�1 and Qs ¼ 287 kJmol�1. At the
HIP temperature, Ds ¼ 5.63� 10�14 m2 s�1 follows from
Equation (78). This value is used in the study Epishin et al.[3]

and is close to the valueDs ¼ 5.34� 10�14 m2 s�1 resulting from

the data presented in the study by Maier et al.[56] However, it can
be expected that the alloying elements considerably retard diffu-
sion phenomena. Indeed, an effective coefficient Deff

s that takes
into account the alloying elements was derived for CMSX-4 in the
study by Zhu et al.,[46] which can be written as

Deff
s ¼ Deff

s,0 exp �Qeff

RT

� �
(79)

where the effective activation energy Qeff and the prefactor Deff
s,0

are weighted averages of the contributions of the different sol-
utes. For the activation energy, an arithmetic average leading
to Qeff ¼ 324.8 kJmol�1 is indicated. For the prefactor Deff

s,0 ,

an arithmetic average leads to Deff
s,0A ¼ 1.29� 10�4 m2 s�1 and

Deff
s,A ¼ 1.75� 10�15 m2 s�1 at the HIP temperature. However,

the authors recommended the use of a harmonic mean for creep
modeling, leading to the pre-factor Deff

s,0H ¼ 2.56� 10�5 m2 s�1

and Deff
s,H ¼ 3.47� 10�16 m2 s�1 at the HIP temperature.

From what precedes, the values Dup
s ¼ 5.63� 10�14 m2 s�1

and Dlow
s ¼ 3.47� 10�16 m2 s�1 can be respectively regarded

as an upper and a lower bound for the effective self-diffusion
coefficient of the CMSX-4 alloy. With these values, Equation (77)

Figure 28. Flowchart of simulation.
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provides the following bounds of the vacancy diffusion coeffi-
cient Dup

v ¼ 1.8� 10�9 m2 s�1 and Dlow
v ¼ 1.1� 10�11 m2 s�1.

The interdiffusion coefficient for rhenium in nickel has been
measured in the study by Epishin et al.[57] and is given in the
form

DRe ¼ DRe,0 exp �QRe

RT

� �
(80)

where DRe,0 ¼ 1.2� 10�4 m2 s�1 and QRe ¼ 317 kJmol�1.
At the HIP temperature, follows from Equation (80)
DRe ¼ 2.9� 10�15 m2 s�1. The interdiffusion coefficient for
tungsten in nickel has been measured in the study by Epishin
et al.[58] and is given in the form

DW ¼ DW,0 exp �QW

RT

� �
(81)

where DW,0 ¼ 2.5� 10�4 m2 s�1 and QW ¼ 310 kJmol�1.
At the HIP temperature, follows from Equation (81)
DW ¼ 1.1� 10�14 m2 s�1.

The chemical composition of the alloy CMSX-4 is given, for
example, in other studies.[59,60] For the elements tungsten and
rhenium, an atomic concentrations of cW ¼ 0.02, respectively,
and cRe ¼ 0.01 are indicated.

Appendix 2: Numerical Solution of the Model
Equations

The model equations have been solved by finite elements (FEs)
with the open-source program FEniCS.[61] Full details of the
numerical methods will be provided in a projected paper.[62]

The resolution of transport equations is challenging. Indeed,
the classical Galerkin methods or finite difference schemes lead
to oscillating solutions but the usual procedures to alleviate these
oscillations induce artificial diffusion. The flux-corrected
transport method[63–65] was developed to obtain an optimal
compromise between spurious oscillations and diffusion. It is
well suited for FE with nonstructured meshes. In particular,
the positivity and conservation of the densities are guaranteed.
This method has been implemented in FEniCS to take care of
dislocation transport by glide and climb.

The application of the displacement-based Galerkin method to
calculate the stresses has been found to lead to numerical
instabilities, which are due to the fact that the stresses are not
computed directly from the GND densities but rather from
the plastic strains. To avoid these instabilities, it has been chosen
to calculate the stresses directly from the GND densities, follow-
ing a procedure proposed by Fressengeas.[66]

Figure 28 shows the simulation sequence. The solutions of the
eight partial differential equations (momentum balance, vacancy
diffusion, and the six transport equations of the dislocations den-
sities) are executed sequentially. Hence, the numerical coupling
between those solutions is weak. A strong coupling might be pos-
sible but would require a considerable amount of implementa-
tion work. The time integration of the transport equations is
semiimplicit: When solving the equations for the system
ðg, sÞ, the values of ρgsðtþ ΔtÞ are updated but the values

ρklðtÞ for the other slip systems ðk, lÞ 6¼ ðg, sÞ are taken at the start
of the increment. The same applies for the vacancy concentration
cvðtÞ. Stability and convergence require sufficiently small time
steps as usual for the numerical solution of transport equations:
As a rule, the time increments must be smaller than the time
needed by dislocations to cross an element and thus must be
reduced with mesh refinement.
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