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Abstract. The study deals with the determination of the influence of an externally applied 

oscillating magnetic field on the melt pool dynamics in high power laser beam and hybrid laser 

arc welding processes. An AC magnet was positioned under the workpiece which is generating 

an upward directed electromagnetic force to counteract the formation of the droplets. To 

visualise the melt flow characteristics, several experiments were carried out using a special 

technique with mild steel from S355J2 with a plate thickness of up to 20 mm and a quartz glass 

in butt configuration. The profile of the keyhole and the melt flow were recorded with a high

-speed camera from the glass side. Additionally, the influence of the magnetic field orientation to 

the welding direction on the filler material dilution on laser hybrid welding was studied with 

variating oscillation frequency. The element distribution over the whole seam thickness wa

s measured with X-ray fluorescence (XRF). The oscillation frequency demonstrated a great 

influence on the melt pool dynamics and the mixing of the elements of the filler wire. The high

-speed recordings showed, under the influence of the magnetic field, that the melt is affected 

under strong vortex at the weld root, which also avoids the formation of droplets. 

1.  Introduction 

Despite the availability of high-power laser systems within the range beyond 100 kW on the market, the 

use of high-power laser beam welding (LBW) for thick metal sections at industrial scale are still under 

discussion. Its application for plate thicknesses greater than 15 mm has certain technological limitations. 

One of the limiting factors is the formation of sagging due to the gravitational forces or the hydrostatic 

pressure often observed during welding in flat position (1G). For that reason, the arc-based welding 

processes are usually implemented for welding of thick-walled structures with wall thicknesses above 

15 mm. However, these are less productive as compared with high-power LBW cause of lower 

penetration depth. Hence, multi-layer technology is used for welding of thick metal plates. It leads to 

high heat inputs and distortion or thermal induced residual stress of the plates as well as reworks 

hindrances such as flame straightening thus expend more time and cost. 

Several investigations were conducted to identify the maximum boundaries of the single-pass high

-power LBW or hybrid laser-arc welding (HLAW) and their challenges and physical backgrounds.

 Similar challenges or defects are to be expected for high-power LBW or HLAW. Single-pass HLAW 
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was produced up to 28 mm metal thickness using a laser power of just 19 kW with an electromagnetic 

weld pool support system [1] or HLAW of 25 mm thick plates using cut-wire, which was filled within 

an air gap between workpieces, with ceramic or flux backing and also up to 50 mm depth by double 

sided welds approach showed successful outcomes [2]. Multilayer high-power LBW, especially HLAW 

technique was demonstrated in [3] for one sided steel welds ranging in thickness from 28 mm to 32 mm 

in two to five layers. Laser beam welding process under vacuum conditions [4,5], laser submerged arc 

hybrid welding [6], or narrow-gap laser-arc hybrid welding [7] were conducted successfully for deep 

penetration weld joints. As reported in the studies dealing with single-pass high-power LBW, the 

formation of sagging or drop-outs is a major challenge during welding. Guidelines for preventing the 

drop-outs were reported in [8], where the increase of the welding speed or laser power is recommended 

for the prevention of those defects. The main physical background of this recommendation lies in the 

fact, that with increasing welding speed the geometrical sizes of the seam is changed to thinner seam 

width. This leads to the increase of the surface tension which counteracts the hydrostatic pressure on the 

root part. Hence, the stability criterion is dependent on geometrical dimensions of weld seams and is 

defined in conformance with [9] as shown in Equation 1: 

                              h x w < 2 lcap
2,                                      (1) 

where h is the plate thickness, w is the root width, lcap = [γ/(ρg0)]1/2 is the capillary length, γ is the surface 

tension coefficient, ρ is the density of the melt, and g0 is the gravitational acceleration. The geometrical 

sizes on the root side of the weld pool and the stability criterion for liquid steel is shown in Figure 1 

according to [9]. 

  

Figure 1. Geometrical sizes on the root side of the weld pool (left) stability criterion 

for liquid steel (right) [9]. 

 

Another typical problem associated with the application of high-power HLAW or wire feed LBW at 

deep penetration is the inadequate and non-uniform distribution of filler wire elements over the entire 

seam depth which may deteriorate mechanical properties especially in the root part. The high-power 

LBW seams are characterized by a high cooling rate, why deteriorated mechanical properties can be 

observed, especially at LBW of high-strength steels. So, the use of a filler wire and a homogeneous 

mixing of the filler wire plays an integral role to achieve the required mechanical properties. In [10] it 

was reported that the Charpy impact toughness of a single-pass hybrid laser-arc welded 25 mm thick 

structural steel plate is decreased up to 60 % in the root part (laser-dominated zone) compared to the top 

part (arc-dominated zone). Thereby, the decrease in cooling time over depth, the resulting microstructure 

and grain size, together with the inhomogeneous mixing have a great impact on the mechanical 

properties. Studies dealing with the improvement of the dilution are already known. In [11] the influence 

of the arc mode during HLAW on the dilution was studied, where a pulsed or modified spray modes 

were recommended. Another effective method to improve the filler wire dilution is to weld thick plates 

with a small air gap of 0.3 mm to 0.4 mm as reported in [12,13]. The effectiveness of trailing GMAW 

configuration in the mixing of the melt during the welding of 10 mm thick plates was noted in [14]. The 

same approach was shown in [15]. Additionally, the shielding gas containing more than 2 % O2 produces 

a more homogenous distribution of alloying elements [15]. The impact of the welding parameters such 

as laser beam power, wire feed speed and resulting arc power, distance between the two heat sources 
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and the configuration was studied in [16]. It was found that with increasing laser power and arc current, 

the filler wire mixing was improved. With a distance of 2 mm to 6 mm between the wire tip extension 

and the laser beam, promising results could be achieved.  

As the state-of-the-art shows, the challenges during high-power LBW or HLAW of thick-walled 

steels, especially the formation of drop-outs and inhomogeneous filler wire mixing is well known. 

Methods with the adaptation of the welding parameters for the prevention of an inhomogeneous mixing 

were developed for welds with a thickness of up to 15 mm. For thicker plates an additional external 

force may be needed to influence the melt flow dynamics for a better mixing behaviour. Therefore, 

external magnetic fields were applied in some studies such as in [17-21]. A magnet with a low frequency 

in the range of 10 Hz to 20 Hz was applied for the improvement of the element distribution for LBW of 

3 mm thick aluminum plate [17-19]. In [20] an external magnetic field was applied for wire-feed LBW 

of 10 mm thick austenitic stainless steel to improve the mixing behaviour. It was found that a bulging 

region is formed, which narrows the metal transfer channel from the top to the bottom region. A change 

of the magnetic field orientation of 10° to 20° to the welding direction was recommended numerically 

as well as experimentally to eliminate the bulging phenomenon, thus providing a downward transfer 

channel for the melt flow. An approach to prevent sagging and to improve the filler wire mixing at 

single-pass HLAW of steel plates with a wall thickness of 20 mm was demonstrated in [21]. Therefore, 

an AC magnet was positioned under the workpiece and operated with a frequency of approx. 1.2 kHz.  

The goal of this study is to describe the melt flow characteristics in detail and to show the influence 

of the magnetic field orientation and oscillation frequency on the filler wire mixing during high-power 

LBW and HLAW.        

 

2.  Experimental Setup 

2.1.  Laser beam welding experiments in steel-glass configuration 

The high-power fibre laser IPG YLR-20000 with a maximum output power of 20 kW was used as the 

laser beam source. The emission wavelength and beam parameter product were 1070 nm and 

11 mm x mrad, respectively. The laser radiation was transmitted through an optical fibre with a core 

diameter of 200 µm. A laser-processing head BIMO HP has been selected, which provides a 

magnification of 2.8 so that the laser beam can be focused into a spot with a diameter of 560 µm. To 

detect the keyhole during high-power laser beam welding a special setup was necessary. Welding trials 

in butt joint configuration of 25 mm thick structural steel plate (S355J2) and quartz glass were 

conducted. A groove with the dimensions of 80 mm x 8 mm x 0.5 mm was milled on the steel plate and 

filled with an austenitic powder 316L-Si with Ni as tracing element for the later evaluation. Side views 

of the molten pool were taken with help of a highspeed camera Fastcam 1024PCI and interference band-

pass filter at 808 nm and band width of 20 nm. The frame rate and the frame size were 2000 fps and 

1200 pixels to 1200 pixels, respectively. An oscillating magnetic field generated by an AC 

electromagnet was applied to the root side of the weld specimen, where the magnetic field was 

perpendicular and induced electric current parallel to the welding direction. The schematic 

representation of the experimental setup is shown in Figure 2. The LBW experiments on steel-glass 

configuration were performed using a laser beam power of 18.7 kW at a welding speed of 0.9 m min-1 

and a focal position of -7 mm. The AC magnet was operated at an oscillation frequency of 1.2 kHz and 

a magnet power of 2.1 kW ± 200 W. To protect the arc on the top side from a deflection due to the 

oscillating magnetic field, the frequencies have been selected in the kHz range, where the skin layer 

depth is less than the plate thickness. For the evaluation of the high-speed recordings the displacements 

in the melt-glass interface were estimated and then the velocities were calculated using the optical flow 

algorithm according to Lucas-Kanade method. 
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Figure 2. Experimental setup for LBW in steel-glass configuration.  

 

For metallographic inspection, longitudinal sections of the laser beam welded samples were cut. 

After polishing and etching the samples using 2 % nital solution, the mixing of the powder over the 

thickness was evident. 

2.2.  Hybrid laser-arc welding experiments 

The HLAW experiments were performed using the same laser source as described in Section 2.1. 

Additionally, a welding machine Cloos Quineo with a maximum current of 600 A was used as an arc 

power source. The laser optics and GMAW torch were mounted on the robot arm, where the laser axis 

was positioned 90° to the weld specimen surface and the GMA torch was tilted 25° relative to the laser 

axis. The processing head and the magnet remained in a fixed position during the welding, where the 

specimens were moved by an external axis. The experiments were carried out on 20 mm thick structural 

steel plates (S355J2) in butt joint configuration with an arc leading position and a distance of 4 mm 

between the two heat sources and under the following welding parameters: laser beam power of 

17.7 kW; welding speed of 1.3 m min- 1; focal position of the laser beam of -5 mm; wire feed speed of 

13 m min-1; stick-out of 18 mm; shielding gas mixing consisted of 18% CO2 in Ar with a volume flow 

rate of 20 m min-1. A Ni-based solid wire Thermanit625 (ERNiCrMo-3 according to AWS A-5.14) with 

a diameter of 1.2 mm was used as a filler wire. Figure 3 shows the setup for the HLAW experiments. 

Different magnetic field orientation and oscillating frequencies were tested to determine the influence 

of the magnetic parameters on the filler wire mixing. 
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Figure 3. Experimental setup for HLAW of 20 mm thick S355J2 in butt joint 

configuration with 15°-turn of the magnetic field orientation.  

 

To evaluate the metal mixing, the Ni-content was measured then with the X-ray fluorescence method 

(XRF) over the whole seam thickness. 

2.3.  Welding materials 

For the experiments structural steel plates of S355J2 with a thickness of 20 mm and 25 mm were used. 

The filler wire diameter was 1.2 mm. The particle size distribution of the powder was between 53 µm 

and 106 µm. The chemical composition of the materials used are listed in Table 1.    

 

Table 1. Chemical composition of materials used, shown in wt-%. 

Material/Element C Mn Si P S Cr Ni Mo Cu Nb Fe 

S355J2 0.08 1.3 0.29 0.019 0.004    0.08  bal. 

Thermanit 625 0.03 0.2 0.25   22 bal. 9  3.6 < 0.5 

316L-Si powder 0.01 0.5 2.1 0.02 0.01 16.9 11.9 3   bal. 

 

3.  Results and discussion 

3.1.  Laser beam welds 

The LBW experiments in steel-glass configuration were conducted to observe the prevention of the 

drop-outs and to evaluate the melt flow characteristic in dependence on the external applied AC 

magnetic field. First, the magnetic field orientation was unchanged, so that the oscillating magnetic field 

was perpendicular to the welding direction, while the generated Lorentz force is directed upwards to 

counteract the hydrostatic pressure. The laser beam was positioned on the front edge of the magnet poles 

(see Figure 4), so that the drop, which is formed at the rear side of the molten pool is in the middle of 

the magnet poles, where the magnetic field density is high enough to suppress the drop-out pushing the 

melt upwards. Figure 4 shows three images of the high-speed records, where the start of the formation 

of a drop-out (t0) can be seen clearly. After a time-step of Δt = 5 ms (10 frames) the volume of the droplet 

is increased. In the middle of the magnet poles, the electromagnetic pressure compensates the droplet, 

which is visible on the right-hand side of Figure 4.   
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Figure 4. Highspeed images of LBW steel-glass configuration during droplet 

formation (left and middle) and its prevention through the electromagnetic pressure 

(right). 

 

With a turn of the magnet poles 45° to the initial state, a vortex on the root part is formed due to the 

inhomogeneous course of the electric current and its concentration in the weld pool. By turning the 

magnetic field orientation, a rotational component of the Lorentz force is formed. This vortex is visible 

on the Figure 5. Additionally, the melt pool geometry can be recognized in terms of a liquid movement. 

Due to the Marangoni convection on the free surfaces the weld pool length in the top surface as well as 

in the root is large. The melt pool geometry can also be observed on the welded specimen, especially in 

the end crater area, see Figure 6. It correlates with the high-speed images and the assumption that this 

area actually reflects the melt pool geometry. The seam profile at the start due to the ramp time of 450 ms 

for the laser power from 0 kW to 18.7 kW can be seen clearly. 

 

 

Figure 5. Melt pool geometry of LBW sample with electromagnetic support with turn 

of the magnetic field orientation of 45°. 
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Figure 6. Laser beam welded specimen in steel-glass configuration with the marked 

melt pool geometry. 

 

Figure 7 shows the velocity vectors for a sequence of LBW sample with electromagnetic support. 

These analyses can clearly show the flow directions and their velocities. Also, the shape of the molten 

pool can be estimated as a virtual transition boundary between non-zero and nearly zero displacements. 

 

 

Figure 7. Velocity vectors estimated using optical flow algorithm of LBW sample with 

electromagnetic support with turn of the magnetic field orientation of 45°. 

 

The velocities vary between 0.01 m s-1 and 1 m s-1 depending on the distance from the keyhole and 

the temperature as well as the viscosity. The flows that can be on the laser beam path e.g. on the keyhole 

wall have two directions, downwards and upwards. The upward and downward flows are mainly driven 

by the vapor velocity in the keyhole. The Marangoni flow can also be observed on the surface of the 

molten pool, as shown by the vectors on the surface from left to right and are marked with the yellow 

lines. The influence of the magnet induced Lorentz force can be observed in the weld root. A drop 

formation can be seen in Figure 7. The Lorentz force acts against the gravitational force and hydrostatic 

pressure and pushes the melt again in the weld pool. This leads to the formation of a vortex in the weld 

root region. It is evident, that two different vortexes are formed on the top side and weld root 

respectively. On the top surface, the additional elements from the powder are mixed well, where the 

vortex in the root leads to a material flow within the base material. As it can be seen in Figure 7, a 

necking region with a low melt flow velocity is formed between the two vortices. This phenomenon 

appears to the separation in the material transport from the top to the weld root due to the opposite 

vortices which are formed in the top part and root part and are separated by a necking region. The melt 

pool geometry correlates with the geometry in Figure 6.      

As it can be seen on Figure 8, a weld-through was guaranteed and the drop-outs were prevented by 

the externally applied magnetic field in every case. Furthermore, the distribution of the austenitic powder 
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316L-Si which was filled into the prefabricated groove before welding, can be seen. For this analysis 

the magnetic field orientation was variated between 0° and 45° in steps of 15°. With an orientation of 

the magnetic field transverse to the welding direction (0°-case), the powder can be measured at a depth 

up to 13 mm. With a turn of the magnet poles of 15°, the depth of the mixing area decreases to 12.3 mm. 

For a 30° and 45°-turn of the magnetic field orientation, the depth of mixing decrease to 11.5 mm and 

9.7 mm respectively. These new findings contradict with the results published in [21], where a turn of 

the magnetic field orientation was recommended. Although, there is vortex in the root part which may 

be helpful for a better mixing or homogenous distribution of the additional wire or powder, but because 

of the separation of the melt flow movement and the necking in between the two regions, which is 

described above, the effectiveness of the filler wire or powder transport to the root part is decreased. As 

it can be seen in Figure 7, a high vortex is formed due to the rotation of the magnetic field orientation 

especially in the root part. A slight vortex across the entire material thickness would be more helpful for 

the element transport and mixing behaviour.   

 

 

Figure 8. Longitudinal sections of the laser beam welded specimens in steel-glass 

configuration, filled with an austenitic powder 316L-Si: variation of the magnetic field 

orientation of 0°, 15°, 30° and 45° perpendicular to the welding direction (from to top 

to bottom). 

3.2.  Hybrid laser-arc welds 

An example of HLAW plate with electromagnetic weld pool support is shown in Figure 9. The visual 

test of the welded joint did not reveal imperfections, such as incomplete fusion or lack of penetration. 

The root quality meets the requirements related to quality level B according to ISO 12932. A weld-

through is guaranteed over the entire seam length. The AC magnet was operated with an oscillation 

frequency of 1.2 kHz at a power of 2.1 kW and a magnetic flux density of 157 mT.    
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Figure 9. The top surface and the root of the hybrid laser arc welded joint with 

electromagnetic weld pool support technique using 17.7 kW laser power and 9.8 kW arc 

power at a welding speed of 1.3 m min−1. 

 

The influence of the oscillation frequency on the element mixing was investigated. Therefore, the 

magnetic field orientation was turned 30° transverse to the welding direction and the frequency was 

variated between 0.8 kHz, 1.2 kHz and 1.7 kHz. According to the skin layer theory, the oscillating 

frequency has a major influence on the depth, where the magnetic field and the induced eddy currents 

have an impact on the melt flow. With increasing oscillation frequency, the skin layer depth decreases 

where a strong Lorentz force is formed in a thin layer. With decreasing oscillation frequency, the filler 

wire mixing was improved as the formed Lorentz forces are distributed over the entire thickness of the 

plate. A homogenous distribution of the additional filler wire is reached to a depth of approx. 16 mm. It 

is known that with decreasing oscillating frequency the skin layer depth increases. For a frequency of 

800 Hz, the estimated skin layer depth corresponds to 20.5 mm and reaches the entire seam thickness, 

so that a better mixing takes place. The results of the Ni distribution over the entire seam thickness by a 

turn of the magnetic field orientation of 30° and variation of the oscillating frequency are shown in 

Figure 10.      

 

 

Figure 10. Ni distribution of a single-pass HLAW with electromagnetic weld pool 

support by a turn of the magnetic field orientation of 30° and variation of the 

oscillating frequency, measured by XRF 

4.  Conclusion 

Full penetration LBW in steel-glass configuration for 25 mm thick S355J2 were performed for different 

designs of the orientation of the external oscillating magnetic field. Thereby, high-speed images were 

taken with a high-speed camera. The formation of the drop-outs on the weld seam root and their 

prevention due to the electromagnetic pressure provided with an AC magnet could be recorded. The root 
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quality could be classified in the highest evaluation group B according to EN ISO 12932. By turning the 

magnetic field, a rotational component of the Lorentz force was generated, which forms a strong vortex 

in the weld seam root. The velocity vectors were estimated using an optical flow algorithm and confirm 

the vortex in the root. Nevertheless, a strong vortex in the root was not helpful for a better mixing of the 

additional austenitic powder throughout the entire seam thickness. However, the oscillating frequency 

shows a high impact on the mixing behaviour due to the change of the skin layer depth. A low frequency 

of just 0.8 kHz was helpful to transport the filler wire into the seam root part at HLAW of 20 mm thick 

S355J2 plates. 
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