Supporting Information

Shedding light onto the spectra of lime, part 2: Raman spectra of Ca and Mg carbonates, and the role of *d*-block element luminescence

Thomas Schmid^{1,2*}, Ronja Kraft¹, Petra Dariz^{2,3}

 ¹ BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
² School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

³ Bern University of Applied Sciences, Bern University of the Arts, Conservation-Restoration, Fellerstr. 11, 3027 Bern, Switzerland

*correspondence to thomas.schmid@bam.de

Fig. S1: Excerpts from Raman spectra of dehydrated hydromagnesite **(a, b)** (compare Fig. 1 "300°C) and hydromagnesite **(c-e)** (compare Fig. 1 "RT" and "100°C" in the main text) acquired with a spectral resolution of 0.2-0.3 cm-1 (see Experimental section for details) and deconvoluted by using linear combinations of Lorentzian functions.

Fig. S2: Luminescence emission spectra of MgO synthesised by calcination of 5 g hydromagnesite in a laboratory furnace at the mentioned temperatures for 4 h. The different intensity scales of **(a)** and **(b)** consider the variations in intensity over approximately four orders of magnitude.

Fig. S3: Stokes/anti-Stokes test revealing the origin of the shown spectral pattern from luminescence.

Fig. S4: Ruby luminescence of Al₂O₃:Cr³⁺ emitted by a sapphire disk. While **(a)** shows the well-known spectroscopic pattern dominated by the sharp R₁ and R₂ lines, the axis break in **(b)** enables a closer look at the vibrational side bands. The spectrum also contains the most prominent Raman band of corundum.

Fig. S5:Locally observed lime luminescence emission triggered in CaO by mixing 5 g highly pure CaCO3 (\geq 99%;
magnesium content specified as \leq 0.02%) with 25 mg Cr2O3 prior to calcination at 1100°C.

Fig. S6: (a) Baseline-corrected (line across the shown spectral range) and normalised (Intensity(R) := 1) luminescence spectra of MgO synthesised by calcination of hydromagnesite (see Fig. S2) showing trends in intensity ratios of R line and vibrational sidebands, and (b) normalised spectra without prior baseline correction revealing relative intensity variations of the underlying broadband luminescence.

Fig. S7: Ratios of the luminescence band intensities Stokes-shifted by (a) 271 cm⁻¹ or (b) 438 cm⁻¹ from the *R* line, respectively, and the *R* line intensity as functions of calcination temperature (derived from Fig. S6).

Fig. S8: Transmitted light micrographs **(a, b)** and Raman/luminescence map **(c)** of an unhydrated binder remnant in a meso Portland cement stone. In contrast to Fig. 5 in the main text, the stoichiometry of the calcium aluminoferrite phase $Ca_aAl_bFe_cO_z$ (z = a+(3/2)b+(3/2)c) varies, revealing a solid-solution series between C_4AF (Ca_2AlFeO_5) and C_6A_2F ($Ca_6Al_4Fe_2O_{15}$).

Fig. S9: Selected spectra from the Raman microspectroscopic images shown in Fig. 5 or Fig. S8, respectively, compared with reference spectra of β -Ca₂SiO₄ (β -belite), Ca₂AlFeO₅ (brownmillerite, C₄AF), Ca₆Al₄Fe₂O₁₅ (C₆A₂F),^[2,28,29] and Ca(OH)₂ (portlandite)^[1] from our own collection, confirming their assignments. As previously demonstrated^[29], the stoichiometry of the calcium aluminoferrites was determined by Gauss fitting of the broad characteristic band at 742 cm⁻¹ to 756 cm⁻¹ for exact wavenumber determination. The band position of around 742 cm⁻¹ in Fig. 5 speaks for C₄AF, while some spectra in Fig. S8 reveal this band at higher wavenumbers, speaking for members of the solid-solution series between C₄AF and C₆A₂F.

Fig. S10: Portlandite spectra acquired as part of the Raman map shown in Fig. 5 in the main text. Trace **(1)** is assigned to Ca(OH)₂ and contains an additional band discussed in the main text, while trace **(2)** reveals the spectral signature of a mixture of portlandite with (Mg,Ca,Fe)S.

Fig. 11: Lime luminescence spectra from different spots in the Raman map shown in Fig. 5 in the main text: (a) shows the raw data, and in (b) the spectra were normalised (Intensity(R) := 1) for better comparability.