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Abstract: To date, the destructive extraction and analysis of drilling cores is the main possibility
to obtain depth information about damaging water ingress in building floors. The time- and cost-
intensive procedure constitutes an additional burden for building insurances that already list piped
water damage as their largest item. With its high sensitivity for water, a ground-penetrating radar
(GPR) could provide important support to approach this problem in a non-destructive way. In this
research, we study the influence of moisture damage on GPR signals at different floor constructions.
For this purpose, a modular specimen with interchangeable layers is developed to vary the screed
and insulation material, as well as the respective layer thickness. The obtained data set is then
used to investigate suitable signal features to classify three scenarios: dry, damaged insulation, and
damaged screed. It was found that analyzing statistical distributions of A-scan features inside one
B-scan allows for accurate classification on unknown floor constructions. Combining the features
with multivariate data analysis and machine learning was the key to achieve satisfying results. The
developed method provides a basis for upcoming validations on real damage cases.

Keywords: non-destructive testing; ground-penetrating radar; signal features; material moisture;
classification; machine learning; moisture measurements; building floors; civil engineering

1. Introduction

More than half of the building insurance claims in Germany (53%) are caused by piped
water damage, which entailed costs of over 3 billion Euro in 2019 alone [1]. One reason
for this, apart from generally ageing pipe systems, is that water leakage often remains
unrecognized until signs of degradation become noticeable. At that point the extent of
damage is already critical, which underlines the demand of an accurate determination and
localization of water ingress.

Neutron probes [2] are already successfully applied on building floors to localize the
source of damage and to identify affected areas. The radiated fast neutrons lose most
of their kinetic energy when colliding with low-mass atoms. This is especially true for
hydrogen. As a result, the fast neutrons are transformed into slow (thermal) neutrons,
which are then detected by a counter tube inside the probe. Given that, the method is highly
sensitive to moisture, however it cannot distinguish between chemically bound or fluid
water. Therefore, a calibration must be done by the destructive extraction of drilling cores.
These cores are also the only possibility to obtain additional information about the depth of
moisture penetration. This is a time- and cost-intensive procedure, especially for building
floors, where knowledge about the affected layer is essential to plan and perform efficient
renovations. Here, ground-penetrating radar (GPR) can serve as a suitable addition to the
neutron probe in order to classify common moisture damages in layered building floors in
a non-destructive way.
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The sensitivity of GPR for water has already been proven in many publications,
especially in geophysics [3,4]. However, in civil engineering (CE), GPR is also increasingly
being applied for non-destructive moisture measurements on building materials like
asphalt, concrete, and screed [5–10]. Here, various methods have already been established.
However, their adequate use and suitability highly depends on the particular case. Due
to numerous possible uncertainties, like the given structure, installed materials, and layer
thicknesses, interpreting GPR results is not straightforward and requires the expertise of
trained personnel. These uncertainties often influence the same signal features that are
used for moisture measurements (see Section 1.1). Here, relying on only one feature, as it is
done in most of the related publications [11], can lead to high uncertainty.

In contrast, this work pursues the strategy of combining different features, which
allows the use of multivariate data analysis. It aims to achieve an automated classification
of three scenarios: (1) the dry state, (2) damaged insulation, and (3) a damaged screed,
all of them on unknown floor constructions. This is accomplished by a machine learning
approach trained with novel radargram features that consider the spatial continuity of the
present damage. The features are extracted from an experimentally measured data set,
including varying materials and layer thicknesses. Before discussing the methodology in
Section 2, a short introduction to moisture measurements with GPR is given.

1.1. Moisture Measurement with GPR

Besides the mostly negligible conductivity and magnetic permeability, the electric per-
mittivity ε is the governing material parameter for moisture measurements with GPR [12,13].
This gets particularly clear by comparing ε for dry concrete and water. Whereas the for-
mer lies between 2 to 9 [14], the latter shows values around 81. This difference causes a
significant rise for wet concrete (between 10 to 20), which influences various propagation
characteristics of the electromagnetic (EM) waves. By analyzing specific time-, amplitude-,
or frequency-based features of the received signals, these water-related influences become
measurable. A detailed review of those features typically used for moisture measurement
with GPR in CE is presented in [11]. However, a short overview is given in the following.
First, the velocity v of an EM wave is directly related to ε. For non-magnetic conditions,
as it is usually the case in building materials, it can simply be calculated as follows [14,15]:

v =
c√
ε
=

2D
T

, (1)

where c is the velocity of EM waves in free space, and T the two-way travel time in a
material with the thickness D. Comparing the dry state of a material, sent and reflected
pulses are received later for rising moisture content. Furthermore, the intensities and thus
the measured amplitudes are reduced due to higher attenuations, caused by generally in-
creased conductivity and more frequently occurring scattering events on water-filled pores.
Filled pores also lead to Rayleigh scattering [16], which is one way to explain the observable
shift of the received signals to lower frequencies for higher moisture content. Another
explanation is given with the presence of dielectric dispersion, presented in the popular
models of Debye [17] and Cole–Cole [18]. It describes the rising imaginary part of ε and
the resulting absorption of higher-frequency components close to the relaxation frequency,
which is 10 GHz to 20 GHz for free water [15,19], but can be smaller for porous materials.
Another important characteristic of EM waves is the occurrence of reflection and transmis-
sion on material boundaries with different permittivities. With ε1 and ε2 of two mediums,
an EM wave travelling from medium 1 to medium 2 is reflected by the amount of the
reflection coefficient r ∈ [−1, 1], which is calculated as follows [20]:

r =
√

ε1 −
√

ε2√
ε1 +

√
ε2

(2)

.
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Therefore, the amplitude of a reflection wave (RW) is highly influenced by the bound-
ary’s permittivity contrast, from which it originates. Figure 1 shows this simplified ray-
based principle with an exemplary screed plate above air, forming such a permittivity
contrast. It also presents the usually performed collection of multiple reflection signals (A-
scans) along a survey line, whereas the offset between the transmitter (T) and receiver (R)
stays constant (common-offset configuration). The recorded A-scans can then be combined
in a radargram (B-scan) that offers the opportunity to visualize spatial deviations caused
by inhomogeneities, like the presence of reinforcements or water-damaged areas.
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Figure 1. Principle of GPR. Multiple A-scans collected along a survey line form a B-scan.

The most dominant wave-type in an A-scan is the direct wave (DW), which travels
the shortest path between T and R and is therefore recorded first. As shown, it is a
superposition of an air and a ground wave and is generally used as a time reference for the
following RW, since the moment of emitting the pulse (time zero) is unknown [21].

Typical signals and their respective features measured on layered floor constructions
are discussed in Section 2.5.

2. Materials and Methods

Figure 2 shows the general procedure of the work presented in this section. After in-
troducing the designed modular test specimen in Section 2.1, the conducted experiments
to obtain a dataset of three damage scenarios are discussed in the Sections 2.1–2.4. In
Section 2.5, various features are extracted to train and test different classifiers, which are
shown in Section 2.6.

Modular test specimen
Insulation damage

84 x 2 measurements

Dry
84 x 2 measurements

Screed damage
84 x 2 measurements

Dataset
504 measurements

Feature extraction
Classififcation

training and test

2.1 2.1 – 2.4 2.5 2.6

Figure 2. Schematic of the work steps presented in Section 2 divided by their respective subsections.

2.1. Modular Test Specimen

To study multiple different floor constructions, we designed a modular specimen
(Figure 3), in which the screed and insulation layer can be exchanged in various ways
according to the requirements of the experiment. The inner dimensions of 84 cm length,
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84 cm width, and 30 cm height ensure sufficient space for the individual square-shaped
parts with an edge length of 80 cm. Table 1 shows the variations of the chosen materials and
their thicknesses that are believed to cover most floor setups in practice. Polyethylene (PE)
foil is used to create a moisture barrier above and below the insulation. The influence of
the laminate flooring and the concrete base layer on the presented classification method is
considered to be negligible compared to the screed and insulation layer. Therefore, and with
regard to the experimental effort, the flooring and base layer remained unchanged for the
entire test series.

The cement and anhydrite screed were both chosen with the popular compressive
strength C25 and the consistency class F5. The production process was carried out as
instructed by the manufacturer. To guarantee efficient handling of the 60 kg to 100 kg heavy
specimens, threaded sleeves were embedded in each corner. This allowed the temporary
use of ring bolts to lift the plates.

The amount of different materials and thicknesses (Table 1) allows for the simulation
of 84 different floor constructions for each of the three scenarios (252 setups in total).
The experimental implementation of water damage in the insulation and screed layer is
described in the following sections.

Figure 3. Modular test specimen with screed, insulation, and concrete base layer.

Table 1. Used materials and layer thicknesses for the screed (top) and insulation layer (bottom).

Material Thickness D [cm] Density [g·cm−3] Porosity * [%]

Cement screed (CT) 5, 6, 7 1.92 20.76
Anhydrite screed (CA) 5, 6, 2.05 27.18

Expanded polysterene (EP) 2, 5, 7, 10 0.027 -
Extruded polysterene (XP) 2, 5, 7, 10 0.037 -
Glass wool (GW) 2, 6, 10 0.061 -
Perlites (PS) 2, 6, 10 0.092 -

* Measured with mercury intrusion porosimetry.

2.2. Water Damage in Insulation Layer

To evaluate the resulting damage of added water, HIH-5030 humidity sensors were
embedded in the insulation material, as shown in Figure 4. For EP, XP, and GW, this was
accomplished with drilling holes of 3 cm diameter and depths varying from 50% to 75% of
the respective insulation thickness. Top sealing was attained with waterproof tape. For the
fine-grained PS, drilling holes were not necessary because the sensors could be placed easily.
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Figure 4. Evaluation of the resulting insulation damage through the use of embedded humidity sensors.

After adding equal amounts of water in all four sides of the setup, the moisture could
spread for at least 12 hours to ensure stable conditions. In practical investigations, a thresh-
old of 80% relative humidity is often considered as an adequate reason for renovations,
since it provides optimum growth conditions for mould [22]. Following that, a setup
was labeled as “damaged” only if all three sensors S3 to S5 exceeded this critical value.
Thereafter, the measurement procedure, which is discussed in Section 2.4, was conducted
for each of the six screeds.

2.3. Water Damage in Screed Layer

The quantification of screed moisture was carried out using the direct Darr method [23],
which captures the loss of water by weighing samples before and after an oven-drying
procedure. With the wet sample weight Ww and the dry sample weight Wd, the dry basis
moisture content Md is calculated as follows:

Md =
Ww −Wd

Wd
(3)

.
Moisture content above 4 weight percent (wt%) and 0.5 wt% were valued as dam-

age for cement and anhydrite screed, respectively. Due to preliminary investigations of
the screed’s hydration process, Wd was already known for each sample. Consequently,
the sample’s moisture content could be obtained by measuring Ww only. With 1.7 wt% to
2.3 wt% for CT and around 0.1 wt% for CA, these were rather low before simulating the
damage. Therefore, we first flooded each sample by submersing them in water for 30 min
(CT) or 10 min (CA). The moisture could then spread and evaporate for at least 2 days
before the actual damage was induced. In consideration of practical screed damage that
usually occurs after flooding from above, we then constantly poured water on top of the
plates for 10 min. Besides continually weighing the samples, additional nuclear magnetic
resonance (NMR) measurements were performed with the MOUSE [24,25] to obtain depth-
resolved moisture distribution during the described saturation process. Figure 5 presents
the exemplary NMR results with their respective water content measured on the 5 cm thick
CT and CA screed.

Compared to CA, the CT screed shows an unbalanced water ingress for the sample’s
top and bottom side after the submersion. We explain this with a lower porosity of CT,
not allowing the air in the bottom to be displaced towards the upper areas. The porosity
also allows the water to spread more in CA after two days of rest. Nevertheless, sprinkling
the samples resulted in quite a similar moisture distribution for both screed types with
sufficiently high moisture content to be labeled as damage. After that, the screed was
measured with all 14 insulation setups.
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Figure 5. NMR measurements showing the depth-resolved moisture distribution during the satura-
tion process of the 5 cm CT (left) and CA (right) screed.

2.4. Hardware and Measurement Procedure

The GPR measurements were carried out with the SIR 20 from GSSI and a 2 GHz
antenna pair (bandwidth 1 GHz to 3 GHz) in common-offset configuration. As shown
in Figure 6, the ground-coupled antenna pair is moved along two defined 40 cm survey
lines that run from quadrant IV to I (1) and along the insulation joint (2). These joints were
present for EP, XP, and GW, though not for the fine-grained PS. With 250 scans/meter, each
survey line includes 100 A-scans to form one B-scan. An A-scan contains 512 samples
covering a 11 ns time window.

Furthermore, each floor construction was investigated with a Troxler neutron probe
placed in the setup center. To reduce the influence of individual deviations, 10 successive
measurements with a respective time interval of 15 seconds were averaged.

R
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In
su
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ti
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III IV

1

2

II

40 cm

Figure 6. Measurement procedure with 40 cm long radar survey lines 1 and 2. The neutron probe is
placed in the center of the construction.

2.5. Feature Extraction
2.5.1. A-Scan Features

As discussed in Section 1.1 previously, there are several signal features enabling the
measurement of water with GPR. Before presenting the ones chosen in this work, it is
important to understand the typical signal shapes that occur on layered floor constructions.
Figure 7 gives an exemplary A-scan showing three prominent amplitude peaks and their
respective origin in the setup. Since the direct wave (ADW) partly travels through the
superficial ground, it is influenced by the underlying nearest materials, here by the floor
cover and the screed. The first reflection arises from the border between screed and insula-
tion and is mostly recognized in the second dominant amplitude peak ARW1. After that,
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ARW2 shows the second reflection’s amplitude, originating from the insulation-concrete
interface below.
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Figure 7. Exemplary A-scan with three prominent amplitudes influenced by present material interfaces.

All described reflection waves can interfere, especially for dry or thin layers, where
resulting higher velocities or short traveling paths impede a clear separation in time. This
is also why quantitative statements about actual water content cannot be reliable for such
layered floor constructions. However, classifying the investigated scenarios is still possible
and will be performed with the following signal features:

• Feature F1: ADW - Amplitude of direct wave [6–8]
• Feature F2: ARW2 - Amplitude of second reflection [6–8]
• Feature F3: fRW2 - Dominant frequency of second reflection (STFT) [26]
• Feature F4: ARW1/ADW - Ratio between the amplitudes of first reflection and direct

wave [9]
• Feature F5: fRW1/ fDW - Ratio between the dominant frequencies of first reflection

and direct wave

The presented signal features cover all relevant signal parts, with insulation damage
mostly influencing the second and first reflection and screed damage causing variations in
the first reflection and the direct wave. However, the same features are also influenced by
underlying layer thicknesses and different material types. Therefore, another preprocess-
ing step is needed to overcome these construction-specific dependencies, which will be
achieved by the B-scan features presented in the following section.

2.5.2. B-Scan Features

To achieve a damage classification independent of the underlying floor construction,
we calculate the following scalar statistical values for each 1× 100 A-scan feature vector
~F1 to ~F5, each including the respective feature elements F1 to F5 for all 100 A-Scans within
one B-scan.

• Feature FA: Standard deviation of ~F1

• Feature FB: Standard deviation of ~F2

• Feature FC: Span of ~F3

• Feature FD: Standard deviation of ~F4

• Feature FE: Span of ~F5

These measures for statistical distributions along a recorded survey line are motivated
by the assumption that water damage often shows inhomogeneous deviations inside the
respective B-scan. Such deviations can also be suitable to evaluate the spatial continuity of
present damage. Both findings were generally recognized during our studies and will be
discussed in the results Section 3. For the lower resolved frequency features, the span is
expected to achieve better variance compared to the standard deviation, which works well
on amplitude features with a higher resolution and range of values.

Figure 8 summarizes the discussed processing steps including the extraction of A-scan
feature vectors out of B-scans and the following reduction to scalar B-scan features. The val-
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ues shown for FA to FE are derived from the depicted A-scan feature plots (normalized by
their means). They do not represent the actual values that were used for classification, since
those were standardized with the StandardScaler function from the Scikit-Learn library. It
does a mean removal for all features and scales them to unit variance, which is usually
required by the classifiers discussed in Section 2.6. Regarding the magnitudes of amplitude,
time, and frequency values, which are widely apart from each other, this step is necessary to
avoid a baseless and unwanted dominance of certain features during the training process.
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Figure 8. Processing steps to extract A- and B-scan features.

2.5.3. Feature Selection

The choice of this specific A- and B-scan feature set was made based on the achieved
scores using the univariate feature selection method SelectKBest from the Scikit-Learn
library in Python [27]. Using the f_classif scoring function, it estimates the degree of linear
dependency between random variables (here, the features and damage scenario) by using
the F-test. The five features presented before performed best in a set of 22 potential features
including amplitude, time, and frequency values/ratios of each relevant reflection type in
Figure 7. To avoid the use of insufficient input variables, which would impede efficient
computation, only these five features were used to train the classifiers (next section), and
all others were discarded. The respective scores of the chosen feature set will be shown in
Section 3.2.

2.6. Classification of Damage Scenarios

With 84 different floor constructions for each of the three scenarios and two survey
lines measured, a data set of 504 B-scans was produced, from which the features mentioned
above were extracted. With this data, we trained the following four classifiers in standard
configuration (default parameters only), which are all included in the Scikit-Learn library.
The default parameters can be found in the respective documentation (e.g., default kernel
of SVM: radial basis function):

• Multinomial logistic regression (MLR)
• Random forest (RF)
• Support vector machine (SVM)
• Artificial neural network (ANN)

The ANN consisted of two hidden layers with five neurons each (according to the num-
ber of features). To get a statistical comparability of the accuracies achieved, a k = 20-fold
cross-validation was applied for all classifiers using the cross_val_score function from
Scikit-Learn. Here, the parameter cv (cross-validation generator) was defined with Shuf-
fleSplit(n_splits = 20, test_size = 0.2, random_state = 0) which produces 20 random splits of
training and test data sets with a size of 80% and 20%, respectively. All classifiers were
cross-validated with the same set of splits, which includes 20 consecutive training and test
procedures for each classifier. The results were then statistically evaluated (mean and stan-
dard deviation) and are shown in Section 3.2. However, before discussing the classification,
an impression of the collected data shall be given with exemplary measurement results
from the experiments.
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3. Results
3.1. Measurements at Modular Specimen

Figures 9 and 10 show the measurement results of all three scenarios at one respective
floor construction. The first covers the configuration of a 7 cm CT screed combined
with a 10 cm EPS insulation. The B-scans on top also contain text information about the
underlying moisture states of screed and insulation, as well as the performed neutron
probe measurement. All exemplary radar results were collected along survey line 1 (see
Figure 6).
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Figure 9. Measurements at a 7 cm CT and 10 cm EPS floor construction for the scenarios: (a) Dry,
(b) damage insulation, and (c) damage screed. The bottom (d–f) shows the respective A-scan vector
plots for each B-scan (top).

According to the general assumption mentioned in Section 2.5.2, the dry measurement
in (a) has a homogeneous reflection pattern, whereas the two damage scenarios in (b) and
(c) present clear deviations at specific time-spans. For the insulation damage in (b), we
see amplitude changes in the second (RW2) and third (RW3) reflection around 2.5 ns to
3 ns, which come from the affected layer. Water added to EPS usually gathers inside the
insulation joints, and from there, it slowly penetrates the material. Therefore, the areas of
higher attenuation were located horizontally around the survey line’s center, where the
joint is crossed. These deviations become even clearer by considering the respective A-scan
feature vector plots below each B-scan. Compared to the relatively flat lines for the dry
measurement in (d), F2 (ARW2) particularly shows significant variations in (e), which is also
captured by an increased standard deviation (FB). These deviations are not immediately
recognizable in the B-scan, since the third reflection RW3 shows a more significant variance.
Insulation of 10 cm thickness usually developed two reflections, whereby the latter and
therefore third reflection was not covered by the used feature set. However, due to their
interference, RW2 also experienced a change in amplitude and is therefore suitable for
recognizing damage. Since the neutron probe is more sensitive to moisture closer to its
radiation source, a small amount of water inside the insulation is not sufficient to cause a
significant increase.

In the case of screed damage in (c), the water induces deviations which appear in
earlier time-spans, like in the direct wave DW or the first reflection RW1. As shown in
Figure 5, all screed samples were poured from above, which is why the DW experiences a
significant drop in its amplitude compared to other scenarios. ADW is especially sensitive to
superficial material properties and is therefore an appropriate feature to recognize flooding
damage. In this case, F4 being the ratio of ARW1 and ADW shows a high dynamic in (f).
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This is also because an unexpected reflection occurs at around 1.4 ns right after the direct
wave, which was not present in other scenarios. The reason could be a steep water gradient
providing a strong permittivity contrast and therefore a new reflector. This assumption is
supported by the highest NMR amplitude measured for the 7 cm CT among all screeds,
which was around 90 at the sample’s surface. The other screeds had values of around
60 and did not show an extra reflection (compare Figure 10). Here, the new reflection
at around 1.4 ns is interpreted as RW1, whereby the former RW1, originating from the
screed bottom, is then seen as RW2. After a decrease of ARW1 between A-scans 50 and 65, it
completely disappears between 70 and 80, causing a shift in reflection-counting. This leads
to dominant jumps for F2 and F4, which cause an increased standard deviation and support
the feature’s sensitivity for water-induced deviations. The neutron probe is also capable of
recognizing the increased moisture content with a difference of 4 digits compared to the
dry measurement.

Figure 10 gives another example of a 5 cm CA screed and 6 cm GW floor construction.
As before, the dry scenario in (a) shows a flat reflection pattern compared to notable
deviations in the second reflection caused by a damaged insulation (b). Like with EPS,
the water tended to accumulate in the joints between the GW plates and was slowly
absorbed by the material. In this case, it formed a stronger permittivity contrast on the
insulation’s bottom, which resulted in an increased reflection amplitude in the survey line’s
center (see Equation (2)). This gets especially clear by considering Figure 11, in which
parts of the GW insulation (measured by survey line 1) are shown. As all three plates were
flipped by 90 degrees, the bottom edge belongs to the insulation joint between quadrants
IV and I. The fact that only the first and lowest plate 1 shows marks of water ingress at this
specific edge underlines the explanation of a strong permittivity contrast, which forms a
thin reflector above the concrete plate. In this case, the neutron probe measures a slight
increase due to an overall lower depth of the setup.
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Figure 10. Measurements at an 7 cm CA and 6 cm GW floor construction for the scenarios: (a) dry,
(b) damage insulation and (c) damage screed. The bottom (d–f) shows the respective A-scan vector
plots for each B-scan (top).

Another interesting difference to the example before can be seen in the damaged screed
scenario (c), which is even more representative for the whole measured data set. Like with
all other screeds (except the 7 cm CT) the induced moisture damages appear comparatively
homogeneous and do not show the expected deviations. This can be explained by an
evenly distributed moisture gradient throughout the whole sample. The most dominant
influence is the overall reduced amplitude for DW, RW1, and RW2, which becomes clear by
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comparing the dry scenario. However, it is not a clear indication for water without this prior
knowledge. Nevertheless, by considering the values of FA, FD and FE in (f), small increases
can be registered, which might be sufficient to recognize the damage by trained classifiers.
The validity of this statement shall be reviewed in the following section. Again, the screed
damage is more visible for the neutron probe than moisture in the insulation layer.

1 2 3 3
2
1

6 cm0 cm – 2 cm 2 cm – 4 cm 4 cm – 6 cm

Figure 11. Water ingress (dark dyeing) in the 6 cm GW insulation. The pictures show the respective
bottom of each used insulation plate (40 cm × 40 cm × 2 cm) in quadrant IV.

3.2. Damage Scenario Classification

Table 2 shows the achieved mean accuracies with the standard deviation of all trained
classifiers mentioned in Section 2.6. By using the features presented in Section 2.5, all
algorithms were capable of correctly recognizing 84.3% to 88.3% of the considered damage
scenarios, without further knowledge about the underlying material or layer thickness.
With regard to the broad variations considered in this data set, these accuracies are quite
satisfying. To provide a better understanding of the presented results, Figure 12 shows
confusion matrices containing each used classifier for the individual layer thicknesses of
insulation and screed.

For a perfect classification with 100% accuracy, all confusion matrix cells (entries)
except the main diagonal would be zero, which means that every scenario would have
been classified correctly. Knowing that, the highest deviation of that perfect case gets
immediately visible in Figure 12, which lies in the mid column of the top left matrix. It
shows that more than half of the measured scenarios with a damaged insulation of 2 cm
thickness were classified as dry. This can be explained by the low amount of water (around
0.5 L), that was necessary to cause relative humidities above 80%. Especially for GW and PS,
the inserted water was absorbed by the outer edges and did not penetrate into measured
areas. As a reference, Figure 13 again shows the flipped GW plate after the measurement
with no signs of water ingress on the bottom edge (insulation joint between quadrant IV
and I). Due to the significant number of unaffected B-scans, the classification results in
Table 2 also show the accuracies for the excluded 2 cm insulation. All classifiers achieved a
higher score and comparable standard deviations.

Table 2. Statistical comparison (k = 20-fold cross-validation) of the achieved accuracies for all
trained classifiers.

Classifier Accuracy (%) Accuracy * (%)
Mean Std Mean Std

MLR 86.4 3.0 89,7 3.1
RF 88.3 3.7 92.2 2.6
SVM 84.3 3.3 86.6 3.9
ANN 88.2 3.6 93.5 2.5

* Cases with insulation depth of D = 2 cm excluded.
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Ins. D = 2 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

Ins. D = 5 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

100,0% 0,0% 0,0% 100,0% 0,0% 0,0% MLR
100,0% 0,0% 0,0% 95,8% 4,2% 0,0% RF
100,0% 0,0% 0,0% 100,0% 0,0% 0,0% SVM
97,9% 2,1% 0,0% 100,0% 0,0% 0,0% ANN
55,3% 38,3% 6,4% 0,0% 100,0% 0,0%

53,2% 44,7% 2,1% 4,2% 95,8% 0,0%

59,6% 34,0% 6,4% 0,0% 100,0% 0,0%

44,7% 48,9% 6,4% 0,0% 100,0% 0,0%

12,5% 0,0% 87,5% 8,3% 0,0% 91,7%

6,3% 0,0% 93,8% 4,2% 0,0% 95,8%

16,7% 0,0% 83,3% 16,7% 0,0% 83,3%

2,1% 0,0% 97,9% 0,0% 0,0% 100,0%

Ins. D = 6 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

Ins. D = 7 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

91,3% 8,7% 0,0% 78,3% 17,4% 4,3%

87,0% 8,7% 4,3% 91,3% 8,7% 0,0%

95,7% 4,3% 0,0% 87,0% 13,0% 0,0%

78,3% 21,7% 0,0% 78,3% 21,7% 0,0%

29,2% 70,8% 0,0% 0,0% 100,0% 0,0%

37,5% 62,5% 0,0% 4,3% 95,7% 0,0%

29,2% 70,8% 0,0% 0,0% 100,0% 0,0%

8,3% 91,7% 0,0% 8,3% 91,7% 0,0%

12,5% 4,2% 83,3% 8,3% 0,0% 91,7%

8,3% 0,0% 91,7% 4,2% 0,0% 95,8%

12,5% 4,2% 83,3% 8,3% 0,0% 91,7%

0,0% 0,0% 100,0% 0,0% 0,0% 100,0%

Ins. D = 10 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

 Scr. D = 5 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

100,0% 0,0% 0,0% 91,1% 8,9% 0,0%

100,0% 0,0% 0,0% 96,4% 3,6% 0,0%

100,0% 0,0% 0,0% 92,9% 7,1% 0,0%

95,8% 0,0% 0,0% 85,7% 14,3% 0,0%

12,5% 87,5% 0,0% 23,2% 75,0% 1,8%

6,3% 93,8% 0,0% 35,7% 62,5% 1,8%

8,3% 91,7% 0,0% 25,0% 73,2% 1,8%

2,1% 97,9% 0,0% 19,6% 78,6% 1,8%

10,4% 0,0% 89,6% 23,2% 0,0% 76,8%

6,3% 0,0% 93,8% 16,1% 0,0% 83,9%

14,6% 0,0% 85,4% 23,2% 0,0% 76,8%

4,2% 0,0% 95,8% 5,4% 0,0% 94,6%

 Scr. D = 6 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

 Scr. D = 7 cm ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

100,0% 0,0% 0,0% 96,4% 1,8% 1,8%

100,0% 0,0% 0,0% 92,9% 5,4% 1,8%

100,0% 0,0% 0,0% 100,0% 0,0% 0,0%

96,3% 1,9% 1,9% 92,9% 7,1% 0,0%

27,3% 72,7% 0,0% 20,0% 76,4% 3,6%

20,0% 80,0% 0,0% 14,5% 85,5% 0,0%

23,6% 76,4% 0,0% 21,8% 74,5% 3,6%

10,9% 87,3% 1,8% 12,7% 85,5% 1,8%

0,0% 0,0% 100,0% 8,9% 1,8% 89,3%

0,0% 0,0% 100,0% 1,8% 0,0% 98,2%

0,0% 0,0% 100,0% 19,6% 1,8% 78,6%

0,0% 0,0% 100,0% 0,0% 0,0% 100,0%

ALL ^ Dry
^ Dmg. 

Insulation
^ Dmg. 
Screed

95,8% 3,6% 0,6%

96,4% 3,0% 0,6%

97,6% 2,4% 0,0%

91,6% 7,8% 0,6%

23,5% 74,7% 1,8%

23,5% 75,9% 0,6%
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Figure 12. Combined confusion matrices for the individual insulation (green) and screed (gray) thicknesses considered in
the experiment. The classifier’s accuracies within one cell are presented in the same order as in Table 2. Rows and columns
include the actual and the predicted (^) scenario, respectively. The blue confusion matrix summarizes the overall accuracies
for each scenario.
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1 2 cm
0 cm – 2 cm

1

Figure 13. Water ingress (dark dyeing) in the 2 cm GW insulation. The picture shows the bottom of
the used insulation plate (40 cm × 40 cm × 2 cm) in quadrant IV.

Additionally, for insulations of 6 cm thickness which only included GW and PS,
the respective confusion matrix contains 8.3% to 37.5% false-negatives for damaged insula-
tions. Since the GW of 6 cm already showed a measurable influence in Figures 10 and 11,
the wrongly classified scenarios are located in the PS data set. In fact, survey line 1 for
PS of 6 cm thickness presents a smooth reflection pattern, which is exemplarily shown in
Figure 14b). Unfortunately, the structure of PS did not allow referencing pictures like for
GW; however, the similarity between dry and damaged insulation suggests that no water
penetrated in the measured area.
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Figure 14. Measurements at a 6 cm CT and 6 cm PS floor construction for the scenarios: (a) dry,
(b) damaged insulation, and (c) damaged screed. The bottom (d–f) shows the respective A-scan
vector plots for each B-scan (top).

In general, most of the wrong classifications are false-negatives, which are represented
by entries left of the main diagonals. Besides the mentioned reasons for damaged insula-
tions, the damaged screed scenario also shows around 5% to 20% of measurements that
were classified as dry in nearly every confusion matrix. With regard to the mostly homoge-
neous reflection patterns shown in Figures 10 and 14, these results are rather satisfying. It
shows that even the slight deviations in FA, FD and FE, as discussed in the previous section,
are mostly sufficient to recognize the considered screed damages.

Overall, the four used classifiers achieved similar accuracies in all matrix entries.
Only the damaged screed scenario reveals a more significant trend with a comparatively
poorly-performing SVM, while ANN shows the best results.



Appl. Sci. 2021, 11, 8820 14 of 16

Looking at the achieved scores of each extracted feature can give a better insight
into the data’s structure and their decisive components. Table 3 points out FB as the
best-performing feature, followed by FC and FA.

Table 3. Achieved scores of the applied B-scan features.

Feature Origin in A-Scan Score

FA ADW 0.61
FB ARW2 1.0
FC fRW2 0.95
FD ARW1/ADW 0.48
FE fRW1/ fDW 0.41

The reasons for these scores become clearer by considering the selected scatter plots in
Figure 15 with standardized values. Combining the best-performing, RW2-related features
FB and FC shows a good separation of the damaged insulation scenario with a broad
distribution of possible values. However, due to the discussed appearance of smooth
reflection patterns, the damaged screed is mostly indistinguishable from the dry scenario.
In this case, features regarding DW and RW1 are obviously more decisive, which can be
seen by a better separation in the middle and left scatter plot. However, the separation is not
that clear as for the damaged insulation with FB and FC, which explains the comparatively
lower scores. The blue outliers belong to the 7 cm CT screed shown in Figure 9, where the
extra reflector caused an unusually strong deviation in FD.
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Figure 15. Scatter plots showing the feature combination of FB & FC (left), FB & FD (middle) and FD

& FE (right).

4. Discussion

The results show that the proposed method regarding the horizontal distribution of
specific A-scan features in one B-scan is suitable to classify moisture damages in unknown
floor constructions. In a data set of 504 B-scans covering 252 different experimental setups,
84.3% to 88.3% of the scenario’s dry, damaged insulation, and damaged screed were
recognized correctly by the trained classifiers. A closer investigation of the produced
false-negatives often revealed the measurement of undamaged areas which underlines the
method’s sensitivity and suggest even higher accuracies. In particular, the combination
of amplitude and frequency features covering all relevant reflections in the GPR signal
contributed to the successful results. Therefore, this study generally proposes an enhanced
use of multivariate data analysis when performing moisture measurements with GPR.

The presented method also worked well as a supporting procedure for the neutron
probe. In particular, moisture inside the insulation layer was mostly undetected by the sole
use of the radiation measurement, whereas GPR achieved a satisfying sensitivity.

Since the data set only contained laboratory measurements under controlled con-
ditions, the method still needs to be validated in practical on-site investigations of real
damage cases. Here, unknown parameters like an unstable layer thickness or obstructive
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floor heating pipes could lead to misinterpretations which might produce an increased
number of false-positive classifications. Upcoming works by the authors will address
these questions. If satisfying accuracies can be achieved, the method will be capable of
significantly reducing the need for destructive drilling cores to classify underlying damage
scenarios, and therefore cut the costs of renovations.

Further, potential optimizations could be investigated regarding the classifiers’ con-
figurations, since only default parameters have been used so far. In addition, the use of
deep learning (ANN) to automatically extract novel, relevant features out of radargrams
(b-scans as input parameter) can be examined with the obtained dataset.
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ANN Artificial neural network
CA Anhydrite
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GPR Ground penetrating radar
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EM Electromagnetic
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NMR Nuclear magnetic resonance
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