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Abstract. High-strength fine-grained structural steels have great potential for weight-

optimized, efficient structures in many modern steel applications. Further advances in 

efficiency can be achieved through additive manufacturing and bionic design. Commercial 

high-strength filler materials for wire arc additive manufacturing (WAAM) are already 

provided by the consumable producers. Today, application would be strictly limited due to 

absence of quantitative findings or any guidelines for the industry regarding welding-related 

stresses and component safety during manufacturing and service. Hence, process- and material-

related influences and design-related restraint conditions associated with formation of residual 

stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM 

self-restraining cold cracking tests and easy applicable processing recommendations, enabling 

an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study 

focuses on determination of interactions between WAAM process parameters, resulting layer 

geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined 

reference specimens are automated welded using a special WAAM solid wire (yield strength 

>820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, 

but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible 

changes of microstructure and mechanical properties, defects and comparable high tensile 

residual stresses. 

 Introduction 1.

Due to economic and design aspects, high-strength fine-grained structural steels are nowadays 

increasingly applied in modern steel structures, e.g. in building construction, plant engineering and 

crane construction. By utilizing fine-grain structural steels with higher yield strengths (≥690 MPa), 

considerable weight reductions and lower processing costs can be achieved by reducing wall 

thickness. For example, by substituting S960QL for S235J2, the weight can be reduced by up to 78% 

[1, 2]. Current efforts towards lightweight construction result from the goal of reducing greenhouse 

gas emissions by up to 62% by 2030 compared to 1990. These requirements mean that process 

emissions in industry must be reduced by increasing energy, raw material and material efficiency [3]. 

This often leads to more complex components and structures. Today, additive manufacturing for the 

modification or production of high-strength components offers many economic advantages over 

conventional processes and a significant gain in design freedom, for example, to create bionic designs 

[4]. In addition, near-net-shape components can often save costly machining steps [5]. In particular, 

the use of high-strength fine-grain structural steels has great potential for weight-optimized, efficient 
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structures with high mechanical strength for many areas of steel construction. In conventional 

production, the most important welding process is gas metal arc welding (GMAW). Based on GMAW, 

the shape-giving process wire arc additive manufacturing (WAAM) has been developed in recent 

years. Furthermore, special welding wires for the production of high-strength components using 

WAAM, developed on the base of high-strength filler materials for joint welding, are already available 

on the market [6].  

WAAM is particularly suitable for generating complex structures due to its high deposition rates, 

process reliability and good automatability [4, 5]. The basic applicability for large-format components 

using welding robots has already been proven in several studies [4, 7]. Depending on the dimensions 

of the component, commercially available welding consumables as well as finished WAAM welding 

systems in various sizes are now available, with which components can be generated by multi-axis 

portals or robots [8]. Modified GMAW short arc processes are particularly suitable for large-volume 

components (e.g. Cold Metal Transfer, CMT) due to their high deposition rate at low heat input [9]. In 

welding experiments and accompanying numerical simulations, the high dependence of the 

temperature distribution and the resulting component geometry on the production parameters could be 

demonstrated [10, 11]. These studies confirmed that adequate heat conduction in the WAAM process 

represents a major challenge for the special microstructure of high-strength fine-grained structural 

steels. The necessary cooling rates to achieve the required microstructure and mechanical properties 

(e.g. t8/5 time for S690: approx. 5 s to 20 s) can only be achieved by limiting the component 

temperatures and heat input. For this purpose, build-up strategy and heat control (energy per unit 

length and preheating or interpass temperature) must be adapted in such a way that as little heat as 

possible is introduced during production [12]. With regard to the heat control of fine-grained structural 

steels, there are processing guidelines (e.g. EN1011-2, SEW088 [13, 14]) based on carbon equivalents, 

such as the CET. However, these are mainly based on tests on steels with lower strength. In addition, 

in guidelines for the design of structures, residual stresses are generally assumed to be equal to the 

yield strength in the weld [15].  

 

 

Figure 1. Complex interaction of 

influences on residual stresses in 

WAAM components.  

Hence, there is still a lack of quantitative information on the production-related stresses and 

component safety during manufacture and operation that would prevent extensive industrial 

application [12, 16]. Moreover, many applications require high dimensional accuracy and component 

integrity due to safety, cost and technological aspects. For the production of high-strength 

components, generative and machining production steps can be used in a complementary manner. For 

this purpose, however, as shown in figure 1 comprehensive knowledge of the complex interactions 

between the welding process and heat conduction during production, the metallurgical processes and 

the existing design influences on the residual stresses arise is necessary [17, 18]. Thus, in order to 

reliably avoid high welding-related residual stress levels and possible resulting crack formations 

during production or a pre-mature component failure, recommendations regarding welding process, 

heat control, build-up strategy, design and material selection are necessary [12, 19]. Furthermore, the 
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effects of separating processes by removing the substrate plate or by machining the preforms should 

be clarified, since these affect the residual stress state and may cause significant distortion of the 

components [20]. 

 In this regard, systematic investigations are currently being carried out in a research project of 

TU Chemnitz and BAM (FOSTA P1380/IGF 21162 BG). The present work deals with the basic 

relationships between the welding parameters, the resulting cooling time and the generated layer 

geometry. Furthermore, the resulting residual stresses are quantified and compared regarding the 

application of different welding or heat input values, respectively. 

 Experimental and materials  2.

2.1. WAAM processing system 

The configuration of the robot-supported WAAM system at TU Chemnitz consists of a 6 axis-robot 

system (KR 6 by KUKA) and a welding machine (TransPuls Synergic, TPS 5000, by Fronius). The 

robot controller, the central processing unit of the robot system, interprets the robot program codes and 

moves the manipulator along the programmed paths. A programmable logic controller (PLC) 

communicates with the external system components. Figure 2 shows the block diagram of the 

complete welding system. A robot interface serves as a link between the robot controller and the 

welding system. The commands for the welding system and motion of the robot are located in the 

corresponding program line of the robot program, which are interpreted and send by the controller to 

the robot (movement) and the welding system (welding commands). Besides the welding speed due to 

traveling speed of the robot, the modified short arc welding process CMT, used for these 

investigations, is adjusted due to the parameters wire feed speed, arc correction and dynamics. The 

used programming language for the robot system interface enables the integration of several functions 

allowing special commands for different movement modes or for the control of external systems 

components. The program is basically extracted and compiled from a CAD model via a slicer, which 

generates a tool path for the motion planning. This process is also parametric and real-time capable to 

react on differences or changes to the CAD geometry. These procedures were developed at TU 

Chemnitz. 

 

 

Figure 2. Signal and material flow of the robot-supported WAAM welding system; welding parameters 

(welding speed vT, volume flow per time V/t) determining layer width bS and height hS. 

2.2. Materials  

In the study, a special for WAAM developed high-strength filler material 10NiMnMoCr8-7-6 (3Dprint 

AM 80 HD, abbreviation: AM 80, by voestalpine Böhler Welding Germany) having a diameter of 

1.2 mm is used. Compared to conventional high-strength solid wire consumables of similar yield 

strength with a minimum of 790 MPa, e.g. G 79 5 M21 Mn4Ni1.5CrMo (EN ISO 16834-A), the 

modification of the composition for WAAM welding allows optimised deposition conditions for layer-

by-layer build-up. Furthermore, an increase in the manufacturing degrees of freedom is achievable 

and, with regard to welding heat control, extended processing windows, which still ensure the required 



WTK 2021
IOP Conf. Series: Materials Science and Engineering 1147  (2021) 012002

IOP Publishing
doi:10.1088/1757-899X/1147/1/012002

4

 
 
 
 
 
 

mechanical properties. Table 1 shows the chemical composition and mechanical properties of the 

investigated welding filler material. The substrate was a 4 mm thick plate of high-strength steel 

S690QL with a minimum yield strength of 690 MPa. According to the steel producers’ 

recommendations this allows welding in a similar working range regarding heat control for both 

substrate and filler material to ensure a proper fusion of the component to the substrate. In addition, 

due to the lower strength a rather higher ductility and thus moderate rigidity conditions are obtained 

when welding the components. 

 

Table 1. Chemical composition (in wt.-%, Fe balanced) and mechanical properties of filler material 

3Dprint AM 80 HD according to the producer (Böhler) in the recommended t8/5 range of 5 s to 20 s 

[6]. 

C Si Mn Cr Mo Ni Rp0.2 Rm A5 

0.09 0.40 1.70 0.35 0.60 2.00 820 MPa 920 MPa 20% 

2.3. Welding experiments 

During additive manufacturing, the robot moves the welding torch at a constant speed along a 

programmed path. The welding system presented in figure 2 feeds the filler wire with a defined wire 

feeding speed or volume flow, respectively. Assuming a rectangular layer cross-section, equation (1) 

describes the relationship between the layer width bS, height hS and the cross-section A: 

 𝐴 = 𝑏S ∙ ℎS =
𝑉

𝑡
∙
1

𝑣𝑇
  (1) 

Consequently, both wire feed and welding speed have an influence on the cross-section of the applied 

weld bead [4]. Furthermore, these parameters are the main influencing factors of the energy per unit 

length and thus also determine the flow and solidification behavior of the metallic melt by the amount 

of heat applied. In order to meet the requirements on geometric specifications, a systematic knowledge 

of these correlations in the desired parameter range is required. Hence, the focus of this study is on the 

systematic investigation of these welding parameters and their influence on the layer geometry. For 

this purpose, component geometries were manufactured as open hollow cuboids by applying 11 layer-

wise seams, as shown in figure 3a. The t8/5 cooling time was determined during the process by means 

of a thermocouple (type K) in the 5th layer. The process parameters for these experimental test series 

are shown in table 2. 

 

Table 2. Constant welding parameters for the experiments. 

Welding machine (TPS 

5000) characteristic  

Arc correc-

tion factor 

Dynamic 

factor 

Preheating 

temperature 

Interpass 

temperature 
Shielding gas 

C1622 –15% 4 20 °C 200 °C 98% Ar, 2% CO2 
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Figure 3. a) Open hollow cuboid with 11 layers, thermo couple type K (determination of t8/5 cooling 

time); b) non-destructive evaluation of test specimens using 3D scan: determination of web height and 

width in cross section A-A using bounding box. 

 

By systematically varying the parameters of the welding and wire feed speed, a total of 16 open 

hollow cuboids were produced (V1 to V16). The test matrix is presented in table 3. To evaluate these 

tests, a 3D scan of the components was performed (accuracy: ±0.05 mm). The side walls of the open 

hollow cuboids were analyzed with regard to web height and width in the symmetry planes of the test 

samples. Figure 3b shows this exemplary for one side by means of a digitized sample geometry in 

cross section A-A. For each hollow cuboid, web heights and widths were measured at four defined 

positions. The averaged layer dimensions height hS and width bS can be calculated using equations (2) 

and (3) with web height hi, web width bi and amount of layer n: 

 ℎ𝑆 =
1

4∙𝑛
∑ ℎ𝑖
4
𝑖=1  (2) 

 𝑏𝑆 =
1

4
∑ 𝑏𝑖
4
𝑖=1   (3) 

 

Table 3. Test matrix for determining the layer geometry dependent on welding and wire feed speed 

(bold test numbers: residual stress analysis performed). 

 
Welding speed [cm/min] 

20 30 40 50 

Wire feeding 

speed 

[m/min] 

2 V1 V5 V9 V13 

3 V2 V6 V10 V14 

4 V3 V7 V11 V15 

5 V4 V8 V12 V16 

2.4. Residual stress analysis 

X-ray diffraction (XRD) was used to analyze the local residual stresses transverse and longitudinal to 

the weld via the sin
2
Ψ-method. This was performed at several positions on the top layer of the hollow 

cuboid specimens to determine the effect of the heat input due to varied wire feeding and welding 

speed. The measuring lines are shown in figure 4. Two test specimens were analyzed from the test 

matrix: V7 (heat input E=0.43 kJ/mm, t8/5=20.2 s) and V9 (E=0.18 kJ/mm, t8/5=9.2 s) to observe the 

effect in lower and upper scope regarding the recommended t8/5 cooling time range of t8/5. Table 4 

shows the used parameters for the residual stress analysis. 
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Table 4. Parameters for residual stress analysis by means of XRD (sin2Ψ-method). 

Radiation: 

CrK 

Tupe power: 

30 kV/6.7 mA 

Collimator: 

2 mm 

Detector: 

Linear solid state detector 

Diffraction line: 

{211} 

Ψ-tilting: 

0° to ±45° 

Ψ-steps: 

9 

Measuring time: 

5 s 

 

 Results and discussion  3.

3.1. Microstructure 

Figure 5 shows a microsection of the weld metal of a generated wall after production with a constant 

interlayer temperature of 200 °C and a t8/5 cooling time of approx. 10 s. The cross section shows a 

suitable, fine-grained microstructure. Compared to conventional filler materials, e.g. G 79, the 

especially for WAAM developed welding wire (AM 80) tends to solidify more fine-grained at similar 

welding parameters in the recommended t8/5 cooling time range of 5 s to 20 s. 

 

 

 

 

Figure 4. Measuring lines for residual stress 

analyses at the test specimen. 

 Figure 5. Cross section of the weld metal 

(AM 80) for t8/5 cooling time of approx. 10 s. 

3.2. Layer and component dimension 

Table 5 summarizes the averaged layer widths bs and heights hs as a function of the welding and wire 

feed speed. Based on these measurement data for the component or layer geometry, the characteristics 

of the WAAM production in the investigated parameter range can be modelled. Figure 6 shows the 

contour plot of the average layer dimensions (width (a); height (b)) as a function of wire feeding vW 

and welding speed vT for the derived regression model. In the regression model vW and vT are highly 

significant. Also, the squared interaction of vT is significant for both bS and hS with a p value of 0.04 

and 0.01 respectively. The model qualities are high with R2=0.988 and R2=0.996, respectively.  

 

Table 5. Results for averaged layer geometry (bs, hs), heat input E and resulting cooling time t8/5 

dependent on welding speed vT and wire feed speed vW. 

 
Results 

Welding speed vT [cm/min] 

20 30 40 50 

Wire 

feeding 

speed  

vW 

[m/min] 

2 
bs [mm] / hs [mm] 

E [kJ/mm] / t8/5 [s] 

5.4 / 2.2 

0.36 / 12.6 

4.6 / 2.0 

0.24 / 10.4 

3.9 / 1.8 

0.18 / 9.2 

3.4 / 1.6 

0.14 / 5.8 

3 
bs [mm] / hs [mm] 

E [kJ/mm] / t8/5 [s] 

6.9 / 2.5 

0.51 / 19.4 

5.6 / 2.2 

0.34 / 14.0 

4.9 / 2.0 

0.25 / 11.8 

4.5 / 1.8 

0.20 / 9.1 

4 
bs [mm] / hs [mm] 

E [kJ/mm] / t8/5 [s] 

7.8 / 2.7 

0.65 / 25.6 

6.7 / 2.4 

0.43 / 20.2 

5.8 / 2.2 

0.32 / 14.2 

5.3 / 2.0 

0.26 / 13.0 

5 
bs [mm] / hs [mm] 

E [kJ/mm] / t8/5 [s] 

8.8 / 2.9 

0.79 / 40.0 

7.7 / 2.6 

0.53 / 26.4 

7.4 / 2.4 

0.40 / 18.2 

6.2 / 2.2 

0.32 / 13.8 
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Figure 6. Average layer width (a) and height (b) as a function of wire feeding and welding speed in 

the investigated parameter range (contour plots of the regression models). 

 

The layer width almost linearly increases with higher values for wire feeding speed and lower values 

for welding speed. For the layer height the same trend can be observed. Comparing both, it reveals that 

for higher values the influence of welding speed on the layer width decreases and then depends to a 

greater extent on the wire feeding speed, in contrast to the effect on the layer height. This finally also 

exhibits that the width and height of the generated layers depend largely on the energy per unit length 

used. In this context, figure 7a shows the contour diagram of energy per unit length as a function of 

wire feed rate and welding speed. The derived regression model for heat input shows highly 

significant effects for the wire feed rate, welding speed, their interaction, and a highly significant 

quadratic effect of welding speed with a model quality of R2=0.995. Compared to figure 6, as 

expected, increased layer heights and widths correlate with a higher heat input, so that an almost linear 

relationship exists. In addition, the cooling time t8/5 correlates with these results which is presented in 

figure 7b. 

 

 

Figure 7. Heat input E (a) and average of t8/5 cooling time (b) as a function of wire feeding and 

welding speed in the investigated parameter range (contour plots of the regression models). 

Moreover, figure 7a reveals that at higher welding speeds and also at higher wire feed rates, the layer 

width and the energy per unit length decouple to a certain extent. The influence of the welding speed 
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remains more or less the same even at higher values for the energy per unit length but is less 

pronounced on the layer width. This is due to the direct relationship between welding speed and heat 

input. A lower heat input ultimately results in reduced dilatation of the layers and an earlier 

solidification. A similar effect can be seen at higher wire feeding speeds. Here the influence of the 

welding speed on the heat input is even somewhat greater, but at the same time the influence on the 

layer width decreases somewhat in comparison, especially for high welding speeds. When welding 

high-strength fine-grained structural steels, the special microstructure requires a cooling rate to be kept 

within a tight interval (t8/5 cooling time range). The cooling time and thus the heat control during 

welding significantly affects the resulting mechanical-technological properties of the generated 

component. During WAAM, similar to multi-layer welding, each layer undergoes a complex heat 

treatment consisting of multiple cyclic heating and cooling. 

Figure 7b shows the contour plot of the last measurable t8/5 cooling times (i.e. with peak 

temperature >800 °C) of the 5th layer as function of welding speed and wire feed rate. In the derived 

regression model of the resulting cooling times, the wire feed rate and the interaction of wire feed rate 

and welding speed are highly significant. The model quality is high with R2=0.953. By comparison 

with the determined average t8/5 cooling times, a correlation with the heat input reveals. It is apparent 

that the influence of the wire feed rate on cooling time decreases as the welding speed increases 

towards lower values for the cooling time. This is mainly due to the relatively large influence on the 

layer width in this area. As a result, at high welding speed and with increasing wire feed rate, the layer 

width increases at a higher rate than the heat input. The increased layer width results in a better 

adhesion to the layers below and an enhanced heat transfer, which results in a faster heat dissipation 

from the welded layer. 

3.3. Residual stress analysis 

The residual stress analysis by means of XRD at the top layer of the two WAAM test specimens is 

presented in figure 8. Remarkably, the residual stresses in the transverse direction of the welded layers 

or walls for both specimens are significantly higher than those in the direction longitudinal to the 

weld, despite the high shrinkage restraint in the longitudinal direction caused by the underlying layers. 

Yet, it reveals that an increasing restraint in transverse direction in near the corner of the hollow 

cuboids causes for both specimen bodies the highest tensile residual stresses of approx. 350 MPa at 

these locations. The maximal longitudinal residual stresses are present in a certain distance of the 

corners. 

 

 

Figure 8. Residual stress distributions rs(x,y) and error range at the top layer of the WAAM test 

specimens: a) V9 (E=0.18 kJ/mm, t8/5=9.2 s) and b) V7 (E=0.43 kJ/mm, t8/5=20.2 s). 
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By comparison of both components, longitudinal tensile residual stresses reveal to be considerably 

higher in case of increased heat input for both side walls of the hollow cuboid, as shown for test V7 in 

figure 8b. Figure 9 reveals in particular for the short side walls a difference of approx. 150 MPa.  

 

 

Figure 9. Effect diagram of averaged transversal 

and longitudinal residual stress levels at the top 

layer of the short and long side walls of the 

hollow cuboids depending on the applied heat 

input E during welding. 

 

The higher heat input as well leads to higher transverse residual stresses, especially at the short side 

wall. According to the common concepts of residual stress evolution in steels with undergoing phase 

transformation this is primarily due to the higher volume of heated material combined with an 

increased restrained shrinkage initiating higher tensile stresses while cooling and, furthermore, due to 

the different microstructure developing at higher cooling times [17, 18]. It is assumed that shorter 

cooling times lead to a microstructure with a higher share of bainite and martensite instead of a ferritic 

microstructure. Thereby a higher volume expansion occurs during the phase transformation, the 

hindrance of which leads to the formation of compressive stresses or to compensation of arising tensile 

stresses [19, 21]. However, as figure 8a reveals for test V9, the gradients of the longitudinal stresses 

are higher at the long side wall of the specimen welded with lower heat input, which is due to local 

effects in connection with the phase transformation. The averages for the residual stresses longitudinal 

and transverse to the weld are shown in figure 9 in an effect diagram for the short and the long side 

walls dependent on the applied heat input during welding. It is noticeable that the mean longitudinal 

residual stresses over the long side wall are hardly affected depending on the heat input, which is 

assumed to be due to the relatively thin substrate plate of 4 mm and the resulting deformation during 

welding. The greatest effect can be observed with the short side walls which are supposed to be 

effectively restrained by the long side walls. Longitudinal and transversal residual stresses increase 

due to the higher heat input. 

 

 Conclusions 4.

In the present study, the influences welding speed and wire feed rate on the layer geometry, cooling 

time and residual stresses of additively manufactured components made of high-strength fine-grained 

structural steels were investigated. 

(1) Welding consumables specially developed for WAAM have a modified flow behavior, and in 

contrast to conventional filler metals, lead to an increased layer height with reduced widths. The 

cross sections of the additively welded walls show a suitable microstructure and that the special 

WAAM welding filler material AM 80 solidifies fine-grained. 

(2) An enlarged parameter range for the application of the filler material serves facilitating additive 

production steps, especially in the case of complex geometries. It can be assumed that this 

ultimately has a positive effect on the mechanical-technological properties, which is subject to 

further investigations in the research project. 
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(3) By deriving regression models, effects and interactions of the welding parameters on the target 

quantities were found, interpretations as operating characteristics of the WAAM system used 

are achievable. With these characteristic curves, suitable starting points for the calibration of the 

generation process can be identified and slicer programs can be optimized for the WAAM 

process. 

(4) The relationships shown also clarify the fundamental influence of welding and wire feeding 

speed on the cooling time and the residual stress build-up, which is superimposed by cooling 

time dependent effects, e.g. phase transformation. 

(5) The residual stresses are depending on the heat input or cooling time, respectively. For higher 

heat input, an increase in residual stress level were found, especially in transverse direction to 

the weld. The highest increase was found in the short side wall. The low effect in longitudinal 

direction of the long side wall is assumed to be due to low restraint of the applied substrate 

plate. 

These findings and correlations form the basis for the next steps of the planned investigations, e.g. 

with focus on the influences of component design and build-up strategy on the residual stress 

evolution. Additionally, the restraint during welding of the component will be significantly increased 

due to application of heavy and rigid substrate plates for further experiments. Furthermore, the effect 

of the heat control on the microstructure formation has to be clarified in detail, especially considering 

a homogeneous distribution with respect to the resulting component properties. 
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