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Machine learning predictions of surface migration
barriers in nucleation and non-equilibrium growth
Thomas Martynec1, Christos Karapanagiotis 2, Sabine H. L. Klapp1 & Stefan Kowarik 3✉

Machine learning is playing an increasing role in the discovery of new materials and may also

facilitate the search for optimum growth conditions for crystals and thin films. Here, we

perform kinetic Monte-Carlo simulations of sub-monolayer growth. We consider a generic

homoepitaxial growth scenario that covers a wide range of conditions with different diffusion

barriers (0.4–0.55 eV) and lateral binding energies (0.1–0.4 eV). These simulations are used

as a training data set for a convolutional neural network that can predict diffusion barriers and

binding energies. Specifically, a single Monte-Carlo image of the morphology is sufficient to

determine the energy barriers with an accuracy of approximately 10 meV and the neural

network is tolerant to images with noise and lower than atomic-scale resolution. We believe

this new machine learning method will be useful for fundamental studies of growth kinetics

and growth optimization through better knowledge of microscopic parameters.
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Data-driven materials science makes use of machine-
learning methods to accelerate the discovery and design
of novel materials with desired properties. In recent years,

there has been significant progress in predicting stable crystal
structures1–6 and finding promising compound materials through
combinatorial approaches using elements of the periodic table7–9.
Beyond this, also materials properties such as bandgaps10, or
thermoelectric efficiency11–13 have been predicted by using data
from crystal structure databases, high-throughput experiments14,
and material-modeling databases such as the Novel Materials
Discovery (NOMAD) repository15. These works demonstrate the
power of machine learning for materials discovery and explora-
tion. So far, however, most studies were concerned with equili-
brium material properties only. Therefore, it is of great interest to
see whether machine learning can also help to fabricate materials
by rationalizing time-dependent nonequilibrium processes, such
as nucleation and growth. In a few recent studies, machine
learning has already been suggested in the spirit of a phenom-
enological optimization, e.g., to count the number of nucleation
events and crystals16, as well as for phenomenological optimiza-
tion of process parameters from real-time datasets17. These stu-
dies have indicated that machine-learning techniques can indeed
help to handle the significant challenge of finding optimum
growth conditions. This is particularly important in the multi-
dimensional parameter space arising in the fabrication of thin
films of an ever-increasing number of novel materials found by
experiments or machine learning itself.

Controlled growth of crystalline thin films of novel materials is
indeed a crucial ingredient for device applications and rapid
prototyping of advanced materials. However, it is challenging to
achieve the desired material quality as device applications have
specific requirements regarding grain size and shape, defect
densities, and film roughness. Equilibrium considerations of the
surface- and interface energies lead to the simplified Bauer clas-
sification of epitaxial growth processes into layer-by-layer
(Frank–van der Merwe), layer-plus-island (Stranski–Krastanov),
or island (Vollmer–Weber) growth modes18. However, this
equilibrium picture disregards the fact that growth is intrinsically
a nonequilibrium phenomenon. On the atomic scale, thin-film
growth kinetics is governed by a large number of stochastic
processes that can occur in a myriad of local atomic environ-
ments. These include the arrival of adatoms (atoms, molecules, or
colloids) from the evaporator or a chemical precursor gas, and
different types of diffusion processes of adatoms on the crystal
surface, such as “free” diffusion on a terrace, diffusion involving
neighbors, or step-edge diffusion. Microscopically, surface diffu-
sion corresponds to hopping of adatoms between neighboring
adsorption sites on the crystal surface, with rates that crucially
depend on the (free) energy landscape. Based on an Arrhenius-
like ansatz for diffusion rates, the activation energies for hopping
include, already in the simplest case19, a barrier for free diffusion,
ED, an effective interatomic bond strength to neighboring ada-
toms (sometimes called “binding energy”), EB, and an
Ehrlich–Schwoebel barrier ES for crossing a step-edge. More
refined models involve a larger number of parameters pertaining
to specific diffusion processes20,21. The complexity of growth
stems from the fact that diffusion of adatoms is not independent
of each other but highly correlated as they can form islands and
crystal nuclei that hinder further movement22.

Modeling growth on an atomic level and understanding the
energy landscape and kinetics is challenging due to the wide
range of length- and timescales involved. One possibility to
determine energy barriers is via atomistic nucleation theory,
which predicts scaling relations, e.g., for the maximum of the
island density nx as a function of the growth rate and substrate
temperature23–26. Together with certain assumptions about the

coverage where nx is maximum, one can then determine ED from
an experimental Arrhenius plot of nx vs. inverse temperature.
This is achieved by determining the slope in a temperature region
where the critical island size i* is equal to one as illustrated in
Fig. 1a. To this end, one needs to perform a series of experiments
at different experimental growth conditions i.e., different tem-
peratures and/or growth rates and then evaluate the maximum of
nx using high-resolution techniques, such a scanning probe
microscopy27,28, high-energy electron diffraction29, or X-ray
scattering30. Despite this effort of isolating the influence of and
determining ED, the effective bond strength EB or, more generally,
a set of energy parameters describing surface migration with
different local atomistic environments is still unknown. Addi-
tional information is needed to estimate the dimer-binding
energy associated to nearest-neighbor interactions. This infor-
mation can for example come from a measurement of the
threshold temperature for the onset of Ostwald ripening in a
sample consisting mostly of dimers25. Alternatively, one can
analyze distinct slope changes in the Arrhenius plot for higher
temperatures where i* becomes larger than one22,31. Theoreti-
cally, all of these energy parameters can be obtained, in principle,
from the potential energy landscape (assuming that entropic, i.e.,
vibrational contributions to the free energy can be neglected32,33),
which can be calculated from density functional calculations in
the ground state, and corresponding molecular dynamics simu-
lations revealing the relevant processes. However, this is a rather
elaborate procedure32,33. Another route to determine the relevant
set of energy parameters involves a fitting procedure based on
kinetic Monte-Carlo (KMC) simulations21,30. However, finding
diffusion barriers (including effective energy parameters) such
that the resulting KMC morphologies fit experimental morphol-
ogies not only for one but several growth conditions (e.g., several
temperatures and deposition rates) are usually a laborious and
time-consuming procedure. Therefore, the required set of para-
meters is only known for selected systems such as Au34, Ag35,
Pt27,36, or fullerene C60

21,30.
Given these challenges, we here propose a new strategy to

determine microscopic growth parameters based on a combina-
tion of KMC and machine learning. Specifically, we demonstrate
that a convolutional neural network (CNN) can predict the
energetics of the underlying diffusion and binding events with
high accuracy from a single microscopic image of a sub-
monolayer film before the coalescence of islands (see Fig. 1b).
This makes it unnecessary to perform a series of time-consuming
experiments and simulations at different growth conditions. The
CNN performs well also if noise is introduced in the images and
the resolution is degraded to lower than atomic resolution. In this
study, such images are obtained from KMC snapshots. However,
our results indeed suggest that the analysis by CNNs is a com-
paratively simple way of extracting the parameters ED and EB
from experimental data of scanning probe microscope images of
thin-film growth in the sub-monolayer growth regime. We here
deliberately focus, as a proof of concept, on a simplistic
description involving only one (free) diffusion barrier and effec-
tive bond strength, but the approach can be generalized towards a
more refined description. Moreover, even within the present
description, we can obtain additional microscopic information by
analyzing specific processes e.g. at step edges.

Results
CNN architecture. We use a standard CNN architecture as
shown in Fig. 1c for predicting the diffusion energy barrier ED
and effective bond strength EB from KMC images of atomistic
sub-monolayer growth. Specifically, we use a deep VGG16-type
network37, which we found to perform well in comparison to
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other neural network architectures (see “Methods”). The CNN
uses an increasing number of 3 × 3 pixel filters in deeper con-
volutional layers. The CNN was first trained on noise-free images
of sub-monolayer morphologies at varying ED and EB, but with
fixed growth conditions which are defined as follows: coverage
θ ¼ 0:15, temperature T ¼ 273 K and deposition (or growth) rate
f ¼ 0:0167 monolayer=s. In a second step, training of the CNN is
performed with imperfect input data. Specifically, noise was
introduced such that in the KMC images a certain percentage of
lattice sites is filled or emptied at random. Further, Gaussian
smoothing with different standard deviations of the Gaussian
filter kernel was used as detailed in “Methods” to simulate the
limited image resolution of experimentally obtained scanning
probe images (e.g., scanning tunneling microscopy (STM) or
atomic force microscopy (AFM)).

KMC simulations of nucleation and growth. We employ KMC
simulations to generate a dataset for training and validation of the
CNN. In KMC simulations, nucleation and the subsequent
growth of islands occur via the two stochastic processes of ada-
tom deposition and surface diffusion. To this end, coarse-grained
particles (i.e., internal rotational and vibrational degrees of free-
dom are neglected) arrive with an effective deposition rate f
(given in monolayers/s) on randomly chosen sites i¼ m; nð Þ of a

discrete square lattice of lateral length L, where m; n 2 1; L½ �.
Subsequently, adatoms explore their immediate vicinity via sto-
chastic hopping processes to adjacent lattice sites, i ! j. At a
given substrate temperature T , these hopping rates are defined in
an Arrhenius-like manner according to the Clarke–Vvedensky
bond-counting Ansatz19

dij ¼
2kbT
h

exp �ED þ niEB þ sijES

kbT

� �
: ð1Þ

Depending on the local energetic environment of a particle at
site i, the activation energy EA ¼ ðED þ niEB þ sijESÞ for a dif-
fusion process i ! j, consists of up to three distinct energy
barriers which, in interplay with the effective deposition rate f
and the substrate temperature T , eventually determine the
resulting thin-film morphology. Here, ED represents the barrier
for free adatom diffusion, and the parameter EB corresponds to
the bond energy between neighboring particles in the lateral
direction, with ni being the number of in-plane bonds. For lateral
diffusion, sij ¼ 0, the barrier ES, representing the
Ehrlich–Schwoebel barrier, becomes irrelevant. In case of diffu-
sional moves across step-edges, sij ¼ 1, ES contributes to EA. We
apply periodic boundary conditions and the solid-on-solid con-
dition, which forbids vacancies and overhanging particles. The
surface coverage θ corresponds to the number of deposited
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Fig. 1 Conventional and machine-learning methods for determining surface migration barriers. a Comparison of a conventional fitting procedure to
extract surface migration barriers from surface growth experiments with (b) our proposed method of applying machine learning trained with simulated
data to predict energy barriers. c Image recognition can determine the atomistic energy parameters ED (diffusion barrier) and EB (bond strength) from a
single image of a thin film in the sub-monolayer growth regime. We use a deep learning CNN architecture very similar to the VGG16 network used in image
classification tasks. Convolutional layers Conv1_1 to Conv5_3 use a 3 x 3 pixel filter kernel and the number of filters increases from 16 to 128 in deeper
layers.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00188-1 ARTICLE

COMMUNICATIONS MATERIALS |            (2021) 2:90 | https://doi.org/10.1038/s43246-021-00188-1 | www.nature.com/commsmat 3

www.nature.com/commsmat
www.nature.com/commsmat


particles, which is the ratio of filled lattice sites to all lattice sites
L2 in the first monolayer. In our simulation, growth proceeds at a
constant speed via θ ¼ ft, with t being the simulation time. While
the adatoms (i.e., atoms, molecules, or colloids) are characterized
by the corresponding set of energy parameters, ED, EB and ES, the
attempt frequency is set to 2kbT=h, as given in Eq. (1). Here, kb
represents the Boltzmann constant, while h is the Planck con-
stant. We perform simulations on lattices with L ¼ 200 until a
coverage of θ ¼ 0:15, that is 15% surface coverage is reached. In
this study, we do not consider the Ehrlich–Schwoebel barrier, i.e.,
ES ¼ 0 eV. The exact value of ES is not critical for the mor-
phology, because we investigate the low coverage, sub-monolayer
regime and we have observed no second layer nucleation also for
ES ¼ 0:1 eV.

Our choice for the parameter range for ED and EB is driven by
two considerations. First, a broad range of real atomic and
molecular systems fall into the range of diffusion energies ED and
effective binding energies EB that we have chosen for our KMC
simulations21,27,30. Second, we chose the values for ED and EB
such that, at the given substrate temperature, we observe a large
variability in the resulting cluster shapes and islands densities.
The specific lattice geometry (square lattice) is chosen for
simplicity, but our approach can easily be generalized to other

geometries, e.g., triangular or honeycomb lattices. Within the
simulation range of the diffusion and binding energies,
0.4 eV ≤ ED ≤ 0.55 eV and 0.1 eV ≤ EB ≤ 0.4 eV, strongly
different surface morphologies emerge in the KMC simulations.
Some trends can be identified in Fig. 2a. For increasing ED,
molecular diffusion is hindered and adatoms are less likely to
diffuse to an existing nucleus so that more islands nucleate on the
substrate. Similarly, an increase in EB leads to increased
nucleation and higher island density. Different combinations of
ED and EB then result in varying island shapes ranging from
compact rounded to rectangular and dendritic islands with
different fractal dimensions.

We note that besides the island distribution and shapes, the
combination of ED and EB also controls the dominant micro-
scopic single-particle processes that occur on the lattice. This is
illustrated in Fig. 2b where we show the relative probability of
single-particle diffusion events. These were calculated by
monitoring the involved changes of atomistic neighborhood for
a fixed ED ¼ 0:425 eV and three distinct values of EB from 0.1 to
0.4 eV. In all histograms, diffusion of free particles as the most
prominent process is neglected. At the lowest bond strength
parameter of EB ¼ 0:1 eV, the most frequent processes are edge
diffusion, edge detachment as well as kink-detachment processes.

Fig. 2 KMC simulations of surface growth. a Surface morphologies obtained from KMC simulations of sub-monolayer growth for different values of ED and
EB at fixed adatom deposition rate f ¼ 0:0167 monolayer/s, temperature T ¼ 273 K, and coverage θ ¼ 0:15, result in a wide range of island sizes, island
densities, and compact or dendritic island shapes. The images shown have added noise and smoothing, i.e., lowered resolution, to mimic surface images
obtained from scanning probe microscopy experiments. The scale corresponds to 100 × 200 lattice sites, that is roughly 50 × 100 nm image sizes for
typical lattice constants in experiments. b Histograms of the probability of single-particle processes occurring on the lattice at ED ¼ 0:425 eV and three
different values for EB. ni is the number of lateral bonds of particles at site i before diffusion to site j, and nj is the number of bonds at site j after the diffusion
process.
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In contrast, particles in kink positions become essentially
immobile at EB ¼ 0:25 eV, leading to a vanishing probability of
kink processes. As EB is further increased to 0.4 eV, free
attachment processes are by far the most probable ones, while
there is only a very small probability for edge processes, that is,
particles have little chance to diffuse along or detach from cluster
boundary sites. A similar trend is observed when increasing ED at
fixed EB (not shown). We conclude that even within the present,
simplified picture, we can obtain microscopic information beyond
the parameters of ED and EB by analyzing the actual diffusion
processes corresponding to these parameters.

CNN training and prediction performance. The training dataset
consists of simulated images of surface growth (as shown in
Fig. 2a), which reveals a wide range of island sizes and densities.
For training of the CNN, the KMC images were altered through
varying amounts of random noise and Gaussian smoothing (see
“Methods”). For example, the training images of the surface
morphology in Fig. 2a contain background noise as random
pixels are flipped for 5% of the pixels. Further, smoothing via
convolution with a two-dimensional (2D) Gaussian with one
pixel (i.e., one lattice constant) standard deviation has been
applied.

We tested the performance of the CNN after the training
procedure with a separate test dataset consisting of 1800
individual KMC simulations (with the same fixed growth
conditions as used for training) that were not part of the training
dataset. That means, for each “true” value of ED and EB used in
the KMC simulations, the trained CNN predicts these energy
barriers. The predictions of the energy barriers, ED and EB, are
shown in Fig. 3. As can be seen, the plot of the predicted diffusion
barrier ED vs. the true ED of the KMC simulation (in Fig. 3a)
shows that, on average, the values predicted by the CNN (black
line) are very close to the true values (diagonal dashed line). To
better understand the deviation of individual ED predictions (blue
dots), Fig. 3b shows a density map of the absolute error of ED
predictions for various true ED and true EB values. The error is
fairly low across the whole density map with a mean prediction
error for ED of 4.5 meV.

Similarly, predicting EB from the test dataset of sub-monolayer
images works well as shown in Fig. 3c, since the mean predicted
value (black line) is close to the true binding energies EB (dashed
diagonal line) and the average prediction error of EB ¼ 9.1 meV is
low across the whole parameter range (see Fig. 3d). While the
error in EB is generally low over most of the ED–EB range, some
deviations occur for large ED and EB (area marked with a dashed
line in Fig. 3d). In this small parameter region, the CNN does not
predict the correct EB value but tends to predict a median value.
This may be a consequence of the low variation in island densities
in that parameter range, and the fact that it is harder to
distinguish dendritic or compact island shapes from each other
for very small islands as can be seen in the top right corner in
Fig. 2a.

Convolutional neural network performance with imperfect
data. We also studied the prediction accuracy of the CNN for
noisy data with added salt and pepper noise and data with a
limited resolution where smoothing has been applied as shown in
Fig. 4a, b. Here, our goal was to investigate whether image
recognition may, in principle, be applicable to imperfect experi-
mental images such as e.g., STM or AFM images. To this end, we
plot the coefficient of determination R2, which is defined as 100%
for perfectly accurate predictions and 0% when the accuracy
corresponds to the null hypothesis. This null hypothesis is
ED ¼ 0:475 eV and EB ¼ 0:25 eV, that is the mid-range values of

the parameter space of the investigated diffusion and binding
energies. The R2 measure of the accuracy is better suited than a
percentage or absolute error, because indeed for noisy images the
CNN tends to make wrong predictions close to the null
hypothesis. The R2 values have been calculated for the test dataset
across the full range of ED and EB values for an increasing noise
level. The results show a surprising tolerance of the CNN per-
formance to noise. Even for 60% of the pixels replaced by noise,

Fig. 3 CNN prediction performance of migration barriers. The CNN
determination of the diffusion barrier ED in (a) and binding energy EB in (c)
follow closely the true ED and EB values (predictions: blue dots, mean value:
black line, true values: diagonal dashed line). b The absolute prediction
error of ED is low across the whole parameter range with a mean deviation
of 4.5 meV. d The mean EB error across the whole parameter space is
9.1 meV, however, the EB predictions have larger errors for large true EB and
ED values where fractal islands become very small.
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the CNN still has an R2 value above 90%. Similarly, images with
lower than atomic resolution still can be used for meaningful
predictions, as shown in Fig. 4b where image resolution has been
degraded by smoothing through convolution with a two-
dimensional Gaussian. If the standard deviation of the Gaussian
is chosen to be three pixels, roughly corresponding to an image
resolution of three lattice constants, the R2 value is above 90%.
For a standard deviation above five pixels or lattice constants,
however, the prediction quality suffers significantly. In both
graphs of Fig. 4a, b, the predictions of ED are less sensitive to
image degradation than the prediction of EB. This may be because

EB predictions depend more strongly on fine detail of dendritic
islands, that get shadowed by noise or blurred more easily with
degraded resolution. We note that the same CNN was used for all
predictions with or without noise and with degraded or perfect
resolution. In principle, a CNN which is trained for specific noise
levels or a specific image resolution can outperform the more
general CNN used here. Indeed, for applying a CNN to experi-
mental data, the KMC training images should be modified such
that it reflects as closely as possible the experimental resolution
and noise types present in the STM or AFM images used as input.

Discussion
Our work demonstrates how artificial intelligence methods can
help to unravel microscopic details of nonequilibrium surface
processes that are crucially important during thin-film growth.
Our machine-learning-based approach of using a single image to
extract the energy barriers involved in its formation is quintes-
sentially different from well-established procedures which require
information from several iteratively repeated laboratory experi-
ment series at different growth conditions, e.g., different tem-
peratures T and adatom deposition rates f . The physical
information that is gained from such measurement series allows
one to calculate mesoscopic parameters, such as the island density
nx , from which the value of ED can be determined under certain
conditions using scaling relations based on atomistic nucleation
theory (see “Introduction” and Fig. 1a). Alternatively, the
experimentally obtained value of nx can be used to start an ela-
borate fitting procedure employing KMC simulations to find
the energy barriers that lead to island densities matching the
experiment30. The present approach significantly facilitates the
problem: it only requires a single image of the surface mor-
phology at fixed growth conditions (defined by T , f , and θ) in
combination with an appropriately trained CNN to determine
both, the values of ED and EB. In this study, we performed
numerical (KMC) “experiments” at T ¼ 273 K, f ¼ 0:0167
monolayer/s and θ ¼ 0:15 to generate, on the one hand, the
training data for the CNN (i.e., images for a range of values of ED
and EB) and, on the other hand, single images of surface
morphologies which the trained CNN then analyses in terms of
ED and EB. We have demonstrated that this analysis works very
well in terms of prediction of energy barriers, even in presence of
strong noise and highly reduced resolution of the images, as
shown in Fig. 4. Therefore, we are confident that a single STM or
AFM image obtained in a real growth experiment (performed at
fixed growth conditions) would be sufficient to estimate the
values of ED and EB, provided that the CNN was trained by
appropriate KMC simulations.

Our method still requires many KMC simulation runs, as
simulations with different energy barriers must be performed
over a range of values typical for the class of materials under
study, but the number of simulations needed may be reduced in
the future. Preliminary investigations with a training dataset
containing a sparser sampling of the ED–EB space indicate that
the CNN is, to some extent, capable of interpolating in between
ED and EB values of KMC simulations. The sparse training data
was using only 5´ 9 ¼ 45 energy combinations with a step size of
37.5 meV instead of the 637 energy combinations with a 12.5
meV step size used above. With this sparsely sampled training
dataset, the validation dataset with the full 637 energy combi-
nations could be predicted with a mean error of 8 meV for ED and
20 meV for EB, that is two to four times lower than the sampling
step. A sparser sampling can substantially reduce KMC simula-
tion time as compared to the present analysis. This potential
reduction of computational effort and the analysis of the neces-
sary sampling density in different regions of the ED–EB space is a
topic of further studies.

Fig. 4 Prediction performance for images with noise and limited
resolution. Dependence of the quality of ED and EB prediction on image
noise and resolution in the CNN input data. a The R2 coefficient of
determination is a measure for prediction quality and exhibits a surprising
tolerance for image noise, as up to 60% pixels can be replaced with random
values before predictions get significantly worse. b Reducing the resolution
of images from single-pixel “atomic” resolution to a resolution of 3–5 pixels
or lattice constants still yields acceptable prediction quality. The image
series above the graphs serve to illustrate how increasing noise and
decreasing resolution impact a single example image with 200 × 200
lattice sites in (a), zoom of 100 × 100 lattice sites in (b).

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00188-1

6 COMMUNICATIONS MATERIALS |            (2021) 2:90 | https://doi.org/10.1038/s43246-021-00188-1 | www.nature.com/commsmat

www.nature.com/commsmat


Once the values of ED and EB of a material are calibrated at the
growth conditions at hand via the KMC-trained CNN, one can
once again employ KMC simulations to predict the surface
morphology at a deposition rate f , temperature T or sub-
monolayer coverage θ different from the training growth condi-
tions. Of course, such an investigation foots on the implicit
assumption that the obtained energy barriers are transferable
between, e.g., different temperatures or deposition rates. Given
that the energy barriers in KMC are essentially effective, i.e.,
coarse-grained, quantities, the assumption of transferability can
indeed be an issue as in any coarse-grained theoretical
approach38,39. Whether the energy barriers can be transferred
should therefore either be tested by comparison of KMC results
and experiments at different growth conditions or, alternatively,
the suitability of a KMC model for the material class under study
must be previously established. Even though the precise ED and
EB values may depend on the type of KMC algorithm21 and the
choice of attempt frequencies, the above procedure of training
and predicting with a certain KMC model will be self-consistent.

Taken together, predicting the deposition rate and temperature
dependency of growth enables data-driven materials research as
costly experimental growth parameter searches can be guided
through faster KMC simulations. This becomes even more
important as the dimensionality of the growth parameter space is
extended beyond substrate temperature and adatom deposition
rate. For example, in the popular technique of pulsed laser
deposition40, the experimenter can use a parameter space with
dimensions of temperature, growth rate, laser pulse duration for
target sublimation, and laser dwell time where surface relaxation
occurs. These two additional dimensions of the pulse duration
and dwell time enable new possibilities e.g., for smoother film
growth but make it much more complicated to sample the growth
conditions for optimum values due to the “curse of
dimensionality”.

We would like to mention that our method can be extended to
different lattice symmetries, e.g., hexagonal, triangular, or rec-
tangular substrates, and, in principle, also to other particle shapes,
e.g., elongated organic molecules41–43. In the latter case, the
underlying KMC algorithm clearly has to include additional
processes (and thus, energy barriers) related to internal and
orientational degrees of freedom. While the intentionally simple
model used in this work may be sufficiently precise for a self-
consistent description and prediction of energy parameters in
many atomic systems, we are aware that even in these seemingly
simple cases, additional microscopic processes such as diffusion
along step-edges, particle exchange or the presence of grain
boundaries can impact the resulting surface morphology. The
presence of these processes may be identified in molecular
dynamics simulations or studies based on density functional
theory32,33. For example, additional surface processes have been
included in KMC simulations of atomic systems such as Pt on Pt
(111)27,44 or C60 on C60

21 to refine the morphology predictions
for these systems. In this study, we have only obtained indirect
information about the relevant processes by monitoring the
occurring changes of the neighborhood at fixed ED and EB: For
future research, it would be very interesting to investigate whether
a CNN can precisely predict the refined energy parameters and
rates of simulation setups that include more surface processes and
energy parameters.

We also want to point out that the approach presented here
can be extended to predict the Ehrlich–Schwoebel barrier. Indeed,
we have performed first tests by training a CNN with images at
higher coverages θ, where second layer nucleation has already set
in. The results show that, after determining ED and EB at a sub-
monolayer coverage of θ ¼ 0:15, the value of the interlayer dif-
fusion barrier EES can be predicted from a second image of the

surface at a coverage of θ ¼ 0:5 with high accuracy that is
comparable to the results for ED and EB. Future work may
investigate whether all three parameters can be predicted at the
same time from a single image in a coverage regime where stable
islands in the second layer are present. Other extensions of
the current work may help to elucidate the black box nature of the
artificial neural network. Interpretable machine learning using
e.g., deep Taylor decomposition of neural networks would be
interesting to find out more about the salient features in
morphologies that are used for predictions by our neural network.
Interpretability of neural networks together with other data
analytics techniques such as a principal component analysis for
images would help to find the most important “hidden variable”,
especially if the KMC model is enlarged to include even more
surface migration barriers.

In conclusion, machine-learning techniques such as CNNs
represent a significant untapped potential for advanced data
analysis in surface science and material engineering. This holds,
in particular, for complex nonequilibrium processes such as
nucleation and crystal growth where various microscopic pro-
cesses with different activation energies strongly influence the
resulting morphologies. Here, a nearly instantaneous method to
extract the underlying kinetics and energetics of a growth process
seems especially valuable. Encapsulating the knowledge about a
wide range of energy parameters and possible surface morphol-
ogies in a CNN enables a novel and direct analysis of microscope
images that circumvents the need for iteratively fitting KMC
simulations to data at different growth conditions. Therefore, in
light of the demonstrated tolerance of the CNN to noise and
lower resolution images, we expect the here presented approach
to be very applicable to experiments and to speed up the opti-
mization of growth conditions for defect-free materials. This is
particularly needed at the moment, as machine-learning algo-
rithms also suggest an ever-increasing number of candidate
materials that have to be grown and tested. Finally, we want to
note that the method of using image recognition to predict
nanoscale processes from microscopic morphology can poten-
tially be extended beyond growth studies to research fields such as
catalysis at surfaces.

Methods
Implementation details of the KMC simulation setup. In line with previous
KMC studies19,30,45, we use the attempt rate ν0 ¼ 2kbT=h, which is of the order of
typical lattice vibrations, �1012 � 1013 1=s. After every step in the KMC simula-
tions, where either a particle hops to a neighboring lattice site or a new particle gets
adsorbed, the simulation time t is stochastically updated, t0 ¼ t þ Δt, with Δt ¼
�ln rð Þ=dall being the time increment that is added after each simulation step. Here,
r 2 0; 1ð Þ is a uniform random number and dall ¼ ∑i∑jðdij þ f Þ represents the
sum over all possible diffusion processes dij of adatoms in the topmost layer of the
crystal plus the effective deposition rate f per lattice site. The surface height at
lattice position i represents the number of stacked particles and takes integer values
hi 2 N0, with hi ¼ 0 representing an empty site.

Generation of the dataset for training and validation of the CNN. We carried
out multiple realizations for each of the 637 ED � EB

� �
pairs at a substrate

temperature of T ¼ 273 K and an adsorption rate of f ¼ 0:0167 monolayer/s on
square lattices of lateral length L ¼ 200 sites. Therefore, the unaltered KMC
surface images consist of 200 ´ 200 ¼ 40000 pixels. All the surface images
used in this work corresponds to a coverage of θ ¼ 0:15. We made sure that
training and validation data are strictly separated from each other, irrespective of
the data augmentation via rotations and shifting. We used five to six individual
realizations of each combination of ED and EB for training and three for
validation.

Machine learning. We employ two-dimensional convolutional neural networks
(CNNs) as commonly used for image recognition to predict energy barriers from
images of sub-monolayer growth in this work (see Fig. 1c). Our CNN archi-
tecture is a smaller version of the standard VGG16 CNN used for image
recognition. It has also 16 layers but fewer filters in the convolutional layers and
fewer neurons in the last, fully connected layers. The reduced width of the
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network has proven to be sufficient because the prediction errors are very similar
to the standard VGG16 and even deeper VGG19 models37, while the narrower
VGG16 model trains faster than those larger networks. A comparison with an
AlexNet inspired CNN, which is not as deep as VGG16 showed larger errors so
that the deeper networks were used.

Our variant of the VGG16 network was implemented in TensorFlow and
trained in two stages using only the training KMC dataset and leaving the test
dataset for later performance checks. In a first step, the CNN was trained for 500
epochs (~55,000 augmented images per epoch) on a GPU (Nvidia GeForce RTX
2080) with noise-free, full-resolution data. Each batch of images was augmented on
the fly by rotating by a random multiple of 90° and shifting the images by a
random number of pixels in x and y directions. Due to the periodic boundary
conditions in the KMC simulations, these random shifts with image wrapping
result in images without any border effects. This training achieved mean absolute
percentage errors of 0.8 % in ED and 4.0 % in EB without any signs of overfitting in
the 30% of the training dataset aside for validation. Using the investigate toolkit46

for interpretable machine learning, we found that the rim of islands is important
for predictions but sometimes also individual pixels representing unbound, freely
diffusing adatoms had a significant role in coming to a prediction. As individual
adatoms are very difficult to observe in experiments at higher temperatures due to
their high mobility, predictions making use of adatom densities are undesirable.
Consequently, we introduced noise terms that stochastically add adatoms and
performed a second training step.

We performed a second training step with noisy and blurred images to reduce
the effect of the free adatom density on predictions and to check the ability to
make predictions from experimental images with noise and limited lateral
resolution. We used on the fly image degradation with salt and pepper noise and
gaussian blurring. Salt and pepper noise randomly flips a certain percentage of
pixels, that is it generates “adatom” noise from empty lattice sites and holes
within islands (see Fig. 4a). Through this generation of a random number of
adatoms in every image, we reduce the correlation of adatom density with
certain energy barrier regimes. Note that for a specific experimental technique,
other noise contributions such as background noise, or e.g., line-scan artifacts as
found in scanning probe techniques may be added during the training for
optimum performance on experimental data. As we do not focus on a specific
experimental technique, we added no such specific noise terms. After generating
noise, a Gaussian smoothing filter was used to simulate a limited, sub-atomic
resolution that some experimental techniques may have. The Gaussian
smoothing was implemented in Python using multidimensional image
processing (scipy.ndimage) with the gaussian_filter function. This function
corresponds to a convolution of the image with a Gaussian kernel whose
standard deviation is varied between 0 and 20 pixels, corresponding to a blurring
of 0–20 lattice constants. Both the percentage of pixels affected by salt and
pepper noise and the width of the Gaussian blur were randomly set for each on-
the-fly augmentation. Large values of noise and blurring were exponentially less
likely so that images with higher information content are still emphasized in
training, but the CNN also learns to handle degraded images. The training was
continued for another 500 epochs resulting in a validation performance of 1%
error in ED predictions and 4.5% error in EB predictions. As expected, the
network which is trained to accept a wide range of clean and noisy images
performs slightly worse on clean images compared to a network only trained for
clean data. While the CNN used here is trained to accept a wide range of noise
levels and resolution settings, for a given experiment even higher CNN
performance may be achieved by training with synthetic data for the specific
noise and resolution of the experiment. In the context of this work, our training
procedure however enables direct comparisons of the performance of one CNN
with different noise and resolution settings.

Data availability
The complete set of KMC images of sub-monolayer growth is available in Supplementary
Data 1 so that the results can be reproduced.

Code availability
The computer codes used for the numerical calculations and CNN predictions are
available from the corresponding author upon request.
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