
COMPUTATION & THEORY

Sequential learning to accelerate discovery of alkali-

activated binders

Christoph Völker1,* , Rafia Firdous2, Dietmar Stephan2, and Sabine Kruschwitz2,3

1Bundesanstalt für Materialforschung und -prüfung: Bundesanstalt fur Materialforschung und –prufung, Berlin, Germany
2Technical University of Berlin, Berlin, Germany
3Federal Institute for Materials Research and Testing, Berlin, Germany

Received: 27 April 2021

Accepted: 5 July 2021

Published online:

19 July 2021

� The Author(s) 2021

ABSTRACT

Alkali-activated binders (AAB) can provide a clean alternative to conventional

cement in terms of CO2 emissions. However, as yet there are no sufficiently

accurate material models to effectively predict the AAB properties, thus making

optimal mix design highly costly and reducing the attractiveness of such bin-

ders. This work adopts sequential learning (SL) in high-dimensional material

spaces (consisting of composition and processing data) to find AABs that exhibit

desired properties. The SL approach combines machine learning models and

feedback from real experiments. For this purpose, 131 data points were collected

from different publications. The data sources are described in detail, and the

differences between the binders are discussed. The sought-after target property

is the compressive strength of the binders after 28 days. The success is bench-

marked in terms of the number of experiments required to find materials with

the desired strength. The influence of some constraints was systematically

analyzed, e.g., the possibility to parallelize the experiments, the influence of the

chosen algorithm and the size of the training data set. The results show the

advantage of SL, i.e., the amount of data required can potentially be reduced by

at least one order of magnitude compared to traditional machine learning

models, while at the same time exploiting highly complex information. This

brings applications in laboratory practice within reach.
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Introduction

Concrete is the most widely used building material

on earth. In 2019 alone, worldwide 30 billion tons of

concrete was produced—that is almost four tons for

every single person [1]. Since the cement is the most

important constituent of concrete and its production

is associated with the emission of CO2, around eight

percent of man-made CO2 emissions come from the

production of cement [2]. The increasing demand for

infrastructure development throughout the globe

related to increasing population and consequently

economic growth leads to continued high consump-

tion of cement-based building materials. If the cli-

mate agreements are adhered to, the question arises

as to what extent ordinary Portland cement (OPC) as

a building material is still viable as a mass product

[3]. In this regard, the cement technology roadmap

defined several ways to reduce the CO2 footprint at

every step of cement production and huge afford has

been made to develop more environmentally friendly

binders [4]. However, exploring more CO2-friendly

alternatives requires an extensive experimental pro-

gram and, consequently, long development cycles

until they can be used in practice [5]. Alkali-activated

binders (AAB) and/or geopolymers (GP) omit the

energy-intensive kiln process that is responsible for a

large part of the CO2 emissions of conventional types

of cement and therefore are considered as environ-

mentally friendly alternatives [6].

AAB/GP are synthesized by the reaction of an

aluminosilicate precursor with an alkaline source [7].

Natural or artificial pozzolans, including granulated

blast furnace slag, fly ash, metakaolin, or natural

pozzolans, can be used as aluminosilicate sources [7].

However, the nature, chemical and mineralogical

composition of the aluminosilicate precursor affect

the properties of the resultant binder, such as fresh

and hardened characteristics [8]. On the one hand,

the wide variety of precursors available for the syn-

thesis of AAB/GP makes them a suitable alternative

binder for many applications. On the other hand,

such large variations in the precursor composition

make it difficult to draw general valid rules to syn-

thesize these binders with the expected properties.

Moreover, the type and concentration of alkaline

solution impact the reactivity of the aluminosilicate

precursors used for AAB/GP [8]. Several publica-

tions have shown the potential of granulated blast

furnace slag and fly ash as a precursor for AAB/GP

[5]. However, the environmental protection laws in

many countries and European environmental goals

aim to reduce and eventually omit the burning of coal

and encourage renewable energies [9]. The German

environmental goals target the closing of coal power

plants by the year 2038 [10], which means the avail-

able amount of fly ash from local sources in Germany

will decrease in some years. Similarly, the iron

industry aims at using alternative renewable fuel

sources for its manufacturing process, which means

that the composition and quality and probably also

the amount of blast furnace slag will be affected [11].

Moreover, for more than a decade, fly ash, bottom

ash and boiler slags are fully utilized in European

countries in either producing blended cements, direct

addition to concrete or other applications [5, 12].

Henceforth, the decreasing amount of common poz-

zolans and their full utilization by industry lead to

the thrive of searching for new alternative precursors,

including natural (such as volcanic ashes) and artifi-

cial resources (such as urban and agro-industrial

wastes) [13]. The increasing demand for the search

for alternative aluminosilicate sources and the com-

plexity of the synthesis of AAB/GP binders makes it

challenging to gain fast progress in this field.

Objective, scope and novelty of the research

In order to achieve the desired breakthrough in the

shortest possible time, optimization of the materials

research process is urgently needed. Sequential

Learning (SL) and the closely related Bayesian opti-

mization have repeatedly been reported to have great

potential in accelerating drug and material discovery

[14, 15]. The basic idea is to reduce the number of

unsuccessful experiments (i.e., that lead to materials

with unwanted properties) so that an ideal sequence

of successive experiments is achieved. This is

accomplished by coupling a prediction model (e.g., a

machine learning model) with a decision-making rule

based on a so-called utility function that guides the

experimental program. Work that argued for the

fundamental predictability of the properties of

cementitious materials in general and AABs in par-

ticular with data models has been published (see

Table 1). However, to the best of the authors’

knowledge, there is no work available that investi-

gates the transferability of SL methods to AAB

research.

15860 J Mater Sci (2021) 56:15859–15881



Figure 1 illustrates the conceptual differences

between classic Machine Learning (ML) (Fig. 1, left)

and the novel SL approach (Fig. 1, right). The fig-

ure shows a mathematical space spanned by two base

materials X1 and by X2 (in the real scenario, addi-

tional features maybe considered). Depending on the

respective mixing ratio, the synthesis of X1 and X2

results in materials whose resulting material prop-

erties are shown in color (turquoise areas for low

performance and pink areas for high performance

materials).

ML and SL model this relationship using sampled

data (black and white dots in Fig. 1, respectively).

These models can be employed to predict ideal

combinations of X1 and X2. Classical ML approaches

accomplish this (mostly) through interpolation,

whereas SL is inherently extrapolative and thus

potentially requires much fewer sample data. How-

ever, serial data collection of SL, even if successful,

may be disadvantageous, because waiting for exper-

imental results could delay experimental progress.

This is especially the case for materials whose syn-

thesis is complex and whose material properties

require time to develop or characterize (e.g., 28-day

compressive strength of binders). Collecting all

samples at once or in batches can be more successful.

SL could therefore fill a gap in material innovation

where data are not available or large-scale data col-

lection would be too expensive.

The scope of this paper is to investigate exactly

under which conditions SL can contribute to accel-

erating research regarding the properties of alkali-

activated binders. For this, we have compiled an

AAB data set with 131 samples from several publi-

cations. Based on these data, we investigate how the

SL approach, the complexity of the task, the quanti-

tative research objective and the desired success rate

influence the performance of SL and deduce some of

the critical circumstances under which SL can

potentially enhance AAB research practice. We

introduce a novel utility function that adapts com-

mon utility functions for applications with minimal

training data, i.e., lower number of experiments to

reach the optimal sample design.

Structure of the research

The presented paper is organized as follows. First, we

survey the literature in ML for concrete property

prediction in terms of its potential and applicability

for alkali-activated binder research. We combine this

with an overview of current AAB research to high-

light the practical potential associated with an opti-

mized search by SL. We then briefly describe the SL

algorithms which were used in this work. We use

Gaussian processing regression (GPR), decision tree

regression (DT) and tree ensemble regression (TE)

and four different utility functions, namely maxi-

mum expected improvement (MEI), maximum like-

lihood of improvement (MLI) and introduce a novel

combination of MEI & MLI with a maximized dis-

tance measure, respectively. We go on to describe

how we benchmark the acceleration in the experi-

mental program. In the experimental section, we

Figure 1 Schematic of sampling for discovering high

performance materials (pink areas) with data-based methods;

Left: (nearly) identically distributed sampling (black dots) as

aspired in classic Machine Learning; right: sampling with

Sequential Learning with initial data set (black dots) and

sequential sampling (red arrows) of new samples (white dots).
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explain how data were acquired from literature and

describe our investigations with SL. The result sec-

tion shows which constellations lead to a successful

acceleration of the experimental progress. We con-

clude by discussing how scientists can integrate SL

into their workflow to fully exploit the potential of

SL.

Theoretical background and methods

Literature review

Because of various properties and many possible

combinations of the constituents of building materi-

als, early on, a computer-aided approach was con-

sidered [16]. Beyond the mere streamlining of the

concrete mix design, capabilities have expanded

significantly by introducing ML approaches. Models

that interpolate the properties of new mixtures are

generated from data of existing compositions where

the properties have been determined in the labora-

tory. Naderpour et al.[17] summarized some of the

earlier models. Chaabene et al. [18] review the

available literature on ML for the prediction of

mechanical properties of concrete. Table 1 focuses on

recent research in this field by summarizing models

from the past five years (2017–2021).

ML-based approaches exist for a wide range of

cementitious materials, from OPC-based binders to

AAB and recycled aggregate concrete, to name a few.

In most cases, the models are used to predict com-

pressive strength—one of the most important prop-

erties of concrete. With an average of 655 samples, the

ML models require large amounts of data collected

by laboratory standards. Remarkably, only 6.67 fea-

tures (factors effecting the properties) are used on

average to represent the composition of the material.

The level of detail of the data considered is thus low

relative to the complexity of alternative binders, as

the properties of AAB are depended on several fac-

tors and the wide characteristics of aluminosilicate

precursors and alkaline activators directly impact the

properties of resultant AAB [8].

Based on the analysis of 111 distributed data

sources, Xie et al. [46] state that much more detailed

data are needed for a general understanding that

goes beyond the limits of a single available AAB. This

is a common challenge in materials science, where

millions of possible compounds span a high-

dimensional discovery or search space, of which only

a tiny fraction has been experimentally explored. The

task of material discovery is to find desired proper-

ties in this space. The challenge is to make the best

use of the limited knowledge from the few data

points available. Currently, applied ML-based

cement models are infeasible for this task because

they cover only a few dimensions of the search space

and require large amounts of data.

Despite success in other experimental sciences such

as drug discovery, relatively few publications of SL

exist in materials science. Lookman et al. [14] give an

overview of the SL landscape in materials science.

Despite the fact that SL regularly starts with a

machine learning model based on only a few very

high-dimensional data points and requires relatively

little additional data from the laboratory, it often

outperforms baseline benchmarks. However, these

benchmarks are mostly statistically reached and do

not necessarily mean that SL will also accelerate

research in practice. Here, experimental designs often

determine the speed and SL would possibly entail an

adjustment of the entire process. Yet even in simple

statistically motivated scenarios, specific perfor-

mance is usually highly dependent on the data and

the problem and the exact relationships are still lar-

gely unknown in [47]. Lookman et al. conclude that

despite many studies that use machine learning to

make predictions, feedback between ML and exper-

iments via SL has only recently been investigated in

materials science.

The following section surveys what information is

required to be able to make predictions of AAB

properties. The available literature about AAB/GP

shows that the properties of these binders, such as

compressive strength, depend on a vast variety of

factors, far beyond those considered in Table 1. These

factors may include the chemical and mineralogical

composition of the precursor, type, concentration,

SiO2/M2O (M = alkali cation) of the alkaline solution

used, curing conditions, specific surface area, water-

to-binder ratio, degree of silicate polymerization, age

of the sample and others [8, 48–50]. The aluminosil-

icate source materials for alkali-activation show a

wide range of oxide composition and mineralogical

phases. The chemistry of the reactive phase mostly

defines the reactivity of the raw material. However,

the composition of the alkaline solution has an

enormous impact on the strength developing phases

[8, 50]. An optimum range of silica modulus is
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Table 1 Summary of recently published Machine Learning models for the prediction of concrete properties

Reference Material ML-Model Target Features Samples

[19] Alkali-

activated

binders

Fly ash-based concrete,

alkali-activated slag

concrete

Stepwise regression Compressive strength 5 5168

(646

unique

batches)

[20] Alkali-activated

cement

(Boroaluminosilicate

binder)

Artificial neural networks Compressive strength 5 114

[21] Alkali-activated

cement

Random forest regression Compressive strength, slump flow 20 180

[22] Fly ash-based concrete Decision trees, Bagged

tree Ensembles, Gene

expression

programming

Compressive strength 8 270

[23] Fly ash-based cement (Hybrid) artificial neural

networks

Compressive strength 4 210

[17] Recycled

aggregates

Recycled aggregate

concrete

Artificial neural networks Compressive strength 7 139

[24] Recycled aggregate

concrete

Artificial neural networks Compressive strength 9 234

[25] Recycled aggregate

concrete

Artificial neural networks Compressive strength 2 74

[26] Recycled aggregate

concrete

Artificial neural networks tensile strength 4 421

[27] Recycled aggregate

concrete

Artificial neural networks elastic modulus 7 400

[28] Concrete containing

waste foundry sand

M5P-tree Compressive strength, elastic modulus,

tensile strength

7/7/7 470/172/

295

[29] Recycled aggregate

concrete

M5-tree, support vector

regression

Compressive strength, elastic modulus,

tensile strength

5/5/5 650/421/

346

[30] High-performance

concrete

Support vector machine Compressive strength 9 1761

[31] Ordinary

Portland

cement

OPC with fly ash

supplements

Artificial neural networks Compressive strength 6 114

[32] OPC Artificial neural networks Compressive strength, slump 7/7 482/295

[33] OPC Artificial neural networks Concrete mix design (cement, water,

fine & coarse aggregates) for a

desired level of compressive strength

4 662

[34] High-performance

concrete, OPC

(Hybrid) artificial neural

networks

Compressive strength 8 2817

[35] High-performance

concrete, OPC

M5P-tree Compressive strength 6 1912

[36] High-performance

concrete, OPC

Random forest Compressive strength 8 1030

[37] OPC Adaptive boosting compressive strength 8 1030

[38] OPC Support vector machines,

high-order response

surface method

Compressive strength 5 Unknown
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necessary to achieve higher compressive strength for

natural pozzolan-based geopolymers while the other

effecting factors were kept the same [8]. This opti-

mum range of silica modulus, in turn, changed for

every type of raw material. For various precursors,

different alkaline solutions in different concentrations

have been recommended to achieve the desired

properties [49].

Similarly, the specific surface area measured either

in terms of Blaine fineness or particle size distribution

(d90, d50, d10) affects the degree of reaction and

eventually the compressive strength [7]. The amount

of water present in these binders has a complex role

and acts as a reaction medium. The extend of silicate

polymerization of silicate solution influences its

reactivity. Consequently, the number of experiments

to be conducted to reach the optimum compressive

strength can be extremely high and the certainty of

reaching the optimum is low. Given this complex

material behavior and the amount of experimentation

conventionally required, advanced tools like SL have

enormous potential to accelerate the material dis-

covery process.

Setting up sequential learning for materials
discovery

The underlying idea of SL is that not all experiments

are equally useful. Some experiments provide more

information than others. In contrast with classical

design of experiments, where (only) the experimental

parameters are optimized, the potential outcomes of

the experiments themselves are the decisive factor.

The most promising experiments are preferred over

dead-end experiments and experiments whose out-

come is already known. Experimental results are

used to iteratively improve the ML model with high-

quality data. Each new experiment is selected to

maximize the amount of useful information, e.g.,

according to [51], using previous experiments as a

guide for the next experiment.

Figure 2 provides a chart that depicts the workflow

of SL. The prediction of material properties in SL is

based on a list of candidate materials given by

experts using their domain knowledge, see (1) in

Fig. 2. Materials may be of interest because they are

available, cheap, known to have further desirable

properties, or simply because they seem generally

promising. Although the exact criteria are not speci-

fied, it is recognized that the performance of the SL

for material discovery is related to the quality of the

candidates [47]. The candidate materials are repre-

sented in the so-called design space (DS)—a vector

space that is comparable to the feature space in

classical ML approaches. In the DS, the coordinates of

each material are parameterized information about

raw material, (micro-) structure and processing. An

initial training data set with known target properties

serves as an input for the prediction model in the first

round (see (2) in Fig. 2).

Table 1 continued

Reference Material ML-Model Target Features Samples

[39] Cementitious multi-

component materials

random forest regression Time-dependent hydration kinetics

(rate and extent of cement

hydration in the first 24 h after

mixing)

7 249

[40] Nano-TiO2-modified

mortar

Artificial neural networks Compressive strength 5 194

[41] Other Lightweight self-

compacting concrete

Random forest regression Compressive strength 8 131

[42] Lightweight concrete M5-tree, support vector regression,

multivariate adaptive regression

spline, decision tree regression

Compressive strength 4 91

[43] Self-compacting

concrete

Artificial neural networks Compressive strength 11 205

[44] Rubberized concrete Artificial neural networks Compressive strength 4 324

[45] Rubberized concrete Artificial neural networks Compressive strength 6 112

Average 6.67 655
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At the core of the iterative SL task is the prediction

of experimental outcomes ((3) in Fig. 2), weighting

the expected utility and deciding which candidate to

investigate next ((4) in Fig. 2). The utility is com-

monly estimated based on the predicted material

property (the closer a predicted experimental result is

to the desired value, the more useful it is) and a

measure of uncertainty. The latter is a key driver for

discovering new relationships and the basis of

experimenting in general. As Reyes et al. [15] aptly

summarize it, ‘‘Actually, the outcome of an experi-

ment is the deviation from what we expected.’’ In

other words, if the outcome of an experiment is

already known, there is no reason to conduct it and

an experiment can be more useful if the uncertainty

of its outcome is large. Lookman et al. [14] even state

that they are not aware of an SL study where a new

material has been discovered without utilizing

uncertainties. In this sense, uncertainty can be con-

sidered an essential factor in the decision-making

process. The SL task is finished as soon as the desired

property is obtained, (5) and (6) in Fig. 2.

The following section lays out the prediction

methods, uncertainty estimates and selection strate-

gies utilized in this work.

Prediction methods and uncertainty estimates

We compared common regression methods against

Gaussian Process Regression (GPR), which has its

origin in adaptive sampling and is still one of the

reference methods in SL or Bayesian optimization

[14]. The regression methods investigated include

shallow neural network regression (NNR), linear

regression (LR), decision tree regression (DT) and

bagged decision tree ensembles (TE). Our

preliminary analysis showed that LR and NNR per-

form worse compared to others and that NNR addi-

tionally required much higher computational

capacity. The drop in performance is probably due to

the higher proneness of these methods to co-linearity

in sparse DS. This effect could be minimized by

regularization but would require additional hyper-

parameter tuning, further increasing the computa-

tional effort. Based on these observations, we

concentrate on the comparison of GPR, DT and TE in

this paper. These methods are briefly described as

follows.

Originally, decision trees and tree ensembles are

classification algorithms that learn the segmentation

of an input data space, e.g., the DS, from pairs of data

and labels [52]. By introducing one class per discrete

label value (and interpolated intermediate values),

pseudo-regression is performed, meaning that inter-

polated predictions are possible, but extrapolations

outside the range of values of the label set are not.

The core of tree-based algorithms is the sequential

decision-making alongside the values of the respec-

tive input variables. In that sense, the data points are

not considered as a ‘‘whole’’, but each coordinate is

independently partitioned into discrete label values.

By nature, this makes it relatively ill-suited to capture

inter-parameter correlations. However, this can be

advantageous for high-dimensional data, where

unwanted correlations (so-called co-linear behavior)

often result from the limited amount of available data

(as expected with AAB data). In addition, the set of

successive decisions is limited. This can result in a

prioritization of relevant DS-parameters, which helps

to further reduce problem complexity.

Ensemble trees resample the training data—e.g., by

a random draw with replacement—and train a new

(1) DS with 
material 

candidates

(2) collect 
ini�al training 

data 

(3) train model 
and predict 

material 
proper�es 

(4) select next 
experiment via 

strategy

(5) experiment 
succesul?

Sequen�al learningPrepara�on  

No
add new data to training data  

Yes 

(6) finish 

Figure 2 Workflow of Sequential Learning for materials discovery.
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decision tree on each of the draws. The resulting

ensemble tree is, depending on the respective algo-

rithm, the average of the tree ensemble (so-called

bagging) but can also have a more complex algo-

rithmic nature that includes, for example, an error-

weighted average of the trees (as in boosting) [53].

Ensemble learners generally reduce the influence of

noisy training data on the prediction and create more

refined decision rules. However, resampling requires

slightly more data which could have a negative effect

for very small data sets (as is to be expected in an

early experimental stage). In this work of the shelf,

MATLAB functions ‘‘fitrtree’’ [54] and ‘‘fitrensemble’’

[55] with ten surrogate splits and 10 ensemble trees

were used with standard settings.

A crucial parameter of many SL methods is the

uncertainty of a prediction (see section SL). More

precisely, the epistemic uncertainty from the poten-

tially erroneous assumptions of a model due to

incomplete information is sought. Most ML methods

do not provide an estimate of this by default because

they are point estimates. However, it can be calcu-

lated as the dispersion of the prediction under

slightly varying boundary conditions. To this end,

varying training datasets can be created by resam-

pling (such as jackknife bootstrapping) from the

original training set as in [56]. The uncertainty then

corresponds to the prediction scattering of the mod-

els trained on different samples of the training data.

Gaussian Process Regression has been introduced

by Krige in the year 1951 [57] and is a probabilistic

model. The core concept of GPR is to assume an

underlying distribution, i.e., to treat the data as ran-

dom variables. Unlike DT and TE, which learn exact

values for each parameter in a function, GPR derives

a probability distribution using Bayes’ rule. It

updates prior knowledge (in the case of GPR, a

specified distribution function) with observations

(the training data) to compute a joint posterior

probability distribution over all possible values. It

contains information from both the prior distribution

and the data set. Predictions are made through the

joint distribution by weighting all possible predic-

tions with their calculated posterior distribution. The

output is the point estimate at the considered point of

interest, which yields an expected value and a vari-

ance. As the latter can be naturally used as a measure

of uncertainty, GPR has been a popular method for

sequential learning or the closely related Bayesian

optimization applications [14]. The probability

functions in GPR are commonly specified by a mul-

tivariate Gaussian distribution (in theory, other dis-

tribution can be used, too)—a so-called Gaussian

process (GP)—which is defined by a mean and

covariance function. The selection of GPs can incor-

porate a priori knowledge about boundary condi-

tions, e.g., when periodicity, dependencies, various

length scales or general trends are known. However,

this is rather relevant for time series and location-

dependent data and has no proximate applicability

for the presented case. Furthermore, GPs control the

smoothness of the (interpolated) predictions. We

compared all GPs that are implemented in MATLABs

statistics toolbox [58] and found that the exponential

GP performed best in the SL task.

Strategies and utility functions

SL executes a strategy to select the next input by

prioritizing the predictions, which are weighted by a

utility function. The prioritization is conducted by—

depending on whether the objective is to minimize or

maximize a criterion—choosing the minimum or

maximum weighted value. For simplicity, only the

maximization case will be considered in the remain-

der of the manuscript, which can be described by

Eq. (1),

xnþ1 ¼ argmaxðuÞ ð1Þ

where xnþ1 is the selected next candidate and

argmaxðuÞ corresponds to finding the maximum

utility u. Three general strategies can be distin-

guished. 1. Explorative strategies attempt to reduce

model uncertainty by using utility functions that

favor candidates with large prediction uncertainties.

2. Exploitative strategies tend to reinforce the current

model perception by considering only the predicted

values by the utility function (without considering

uncertainties). 3. The third group is balancing

between exploring and exploiting. Only 2. and 3. are

greedy strategies and thus suitable for most material

finding problems.

Maximum expected improvement (MEI)

The (MEI) strategy [56] purely exploits by simply

selecting the next candidate according to the maxi-

mum prediction value. The utility ui of the i� th

prediction is simply:
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uMEI;i ¼ li ð2Þ

where li is the mean prediction of the i� th

candidate.

Maximum likelihood of improvement (MLI)

The MLI strategy [56] is an explore and exploit

strategy. It selects the candidate with the highest

likelihood to exhibit the desired target property. In

the case of normally distributed prediction, the can-

didate with the highest 95 percent likelihood can be

determined according to Eq. (3),

uMLI;i ¼ Q yi; 0:95ð Þ ¼ li þ 1:93 � ri ð3Þ

where Q 95%ð Þ is the 95% quantile, li is the mean

prediction of the ith candidate and ri is the standard

deviation of the i-th candidate.

MEI and MLI with maximum Euclidean distance

(MEI ? D and MLI ? D, respectively)

At the beginning of an SL run, the predictive power

of ML algorithms is relatively poor due to the small

amount of training data. The data are further reduced

by sampling for uncertainty estimation by DT and

TE, with only a portion of the data available for each

sample. This causes a situation where many candi-

dates yield the same prediction and uncertainty

value, despite the fact that their composition and

processing’s are very different. Candidates that have

a large average Euclidean distance to the known DS

candidates differ naturally more in their design.

Their choice would increase the data variability and,

in turn, the predictive model’s performance will be

most improved. This a-priori knowledge is naturally

part of GPR, such that it outputs higher uncertainties

for more distant data points. The utility function can

be adjusted in a similar way by choosing the value

that has the largest mean distance to the known DS

candidates from a given range of prediction values.

The MEI ? D or MLI ? D utilities were estimated

according to Eq. (4) and (5), respectively.

uMEIþD;i ¼ mean dist x; uMEI;Q 90ð Þ
� �

¼ 1

n
�
Xn

j¼1

xj � xQðuMEI ;0:9Þ;i
�� �� ð4Þ

uMLIþD;i ¼ mean dist x; uMLI;Q 90ð Þ
� �

¼ 1

n
�
Xn

j¼1

xj � xQðuMLI ;0:9Þ;i
�� �� ð5Þ

where meandist is the mean Euclidian distance, xj are

j-th coordinates of the known training data with n

samples and xQ uMEI ;0:9ð Þ;i and xQðuMLI ;0:9Þ;i are the DS

coordinates of the i� th candidate with a greater than

90% quantile of the MEI or MLI utility. The MEI ? D

and MLI ? D strategies aim at boosting the initial

rounds of a SL run and hence were restricted to the 15

first iterations in the presented work. The utility was

then calculated according to the MEI and MLI.

Benchmarking SL against a Random Process (RP)

Although SL is based on ML methods, classical error-

based ML benchmarks typically do not apply in this

context. This is because the target of SL in materials

discovery is to find a candidate with—depending on

the property—maximum or minimum value of a said

property. In a reasonably set scenario, this goal is

always achieved with zero error and is merely a

matter of iterations. Although this comparison is

somewhat odd from a mathematical point of view, it

underscores the fact that the focus here is on the

effort required to reach this threshold as a measure of

performance. A common metric is the required

number of experiments between (5) and (3) in Fig. 2

until a set target is reached ((6) in Fig. 2).

To determine the performance of SL methods, it is

common to use simulated experiments where the

ground truth labels for all data points are already

known [14]. Initially, only a small fraction is provided

to the SL algorithm (although more training data

would be available). This is extended with one new

data point from the remainder of the available data at

each iteration. It is investigated which approach

requires the least amount of data to achieve the goal

((6) in Fig. 2). Approaches that require less data

simply lead to faster success in laboratory practice.

Thus, the goal is not to actually discover new

materials using all available data, but to validate

material discovery methods for scenarios where

fewer labels are known (e.g., for new materials). In

this approach, the generalizability is statistically

demonstrated by quantifying the performance of SL

methods under randomized initial conditions and

then expressing it, for example, as a mean value and
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standard deviation. This allows meaningful compar-

isons between different SL approaches. To generate

randomized initial conditions in an in-progress

experimental study would require significant addi-

tional effort and is unrealistic in most cases. There-

fore, comparisons of performance and repeatability

between different SL methods in actual material

discovery are usually not possible.

This approach also differs from the classical ML

approach, where generalizability is demonstrated on

retained test data. However, this luxury is often not

afforded in experimental science, where data are

extremely limited due to costly acquisition [14].

SL is commonly compared against a Random

Process (RP) (i.e., acting without a strategy and

model) as a baseline benchmark. RPs consider each

candidate equally likely to succeed (uniform distri-

bution). The average number of draws necessary to

find the maximum target property is 50% of the given

candidates, respectively. This is the benchmark

against which SL competes.

Despite the fact that this benchmark is often sur-

passed by SL, a significant use of SL cannot be found

in practice. One reason for this may be the signifi-

cantly higher effort that is caused by the sequential-

ization of the experimental procedure in SL. This

means that from a purely functional point of view, RP

can produce the desired results faster if the paral-

lelization of experiments is more effective. In view of

this situation, it is worthwhile to include further

parameters for the consideration of the usefulness of

SL in practice.

The specific value of the target threshold T (i.e., the

property value to be exceeded) inherently affects the

iteration required; the smaller the T, the fewer itera-

tions are required for SL to succeed. From a practical

perspective, relatively small deviations of the highest

cement strengths contradict a special significance of a

unique strength value as the target (especially con-

sidering the aleatory uncertainties of this value). To

accelerate experimental progress, one can argue to

reduce T, to a value that lies in the upper quantile of

strengths (e.g., T� f ðc;90%Þ) without losing much sig-

nificance of the results.

Furthermore, the aspired success rate determines

the number of experiments required. The relationship

is simply: the higher a desired success rate, the more

experiments are needed. The performance of SL at a

certain success rate can be empirically determined as

the quantile of the required draws from multiple SL

runs. In the laboratory practice, the required success

rate is expected to be much higher than the 50% rate,

which is, as mentioned above, the typical benchmark

for SL.

The relationship between success rate and target

threshold can be described analytically for RP as the

hypergeometric cumulative distribution according to

the following equation:

p one successjnmaxdrawsð Þ ¼
Xnmax

n¼1

K
1

� �
N�K

n�ðk¼1Þ

� �

N
n

� � ð6Þ

where p corresponds to the success rate, N is the size

of the population, K is the number of items with the

desired characteristic in the population and n is the

number of samples drawn. The threshold of success

T can be defined in terms of the parameters M and x.

According to Eq. (6), the success rate p has a non-

linear relationship with the required draws for the

case of multiple targets (where M[ 1), i.e., the

before-mentioned rule that a 50% success rate

requires 50% of the possible experiments holds not

for those cases. Instead, much less data are required.

The exact amount further depends on the size of the

population x where a greater x leads to fewer

required draws n.

This means firstly that RP becomes a much tougher

benchmark when T can be reduced to include more

successful candidates. Secondly, a fair comparison

against RP must consider the maximum available

size of the population x. For example, if the DS is

fragmented into several smaller DSs to parallelize SL,

the RP performance must still be considered on the

whole DS, as its parallelization is independent of the

segmentation. In other words, benchmarks can only

be compared among same size DS and the perception

of the performance compared is skewed favorably to

SL when smaller DSs are used.

Experiments

In this chapter, the data collection and numeric

experiments are described.

Description of the data

For this study, the data related to the material dis-

covery for acquiring samples with higher
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compressive strength three data sets from five dif-

ferent studies were collected. This included data from

[8, 59–62] about alkali-activated binders prepared

from four different natural pozzolans originating

from Germany and Italy, pumice stone-based natural

pozzolans and granulated blast furnace slags.

First data set

The first data set included the data about four dif-

ferent natural pozzolans originating from Germany

and Italy used to prepare geopolymers/alkali-acti-

vated binders with sodium silicate solution taken

from [8, 59, 62]. These pozzolans included Rhenish

trass (RT) obtained from Eifel region, Germany,

Bavarian trass (BT) obtained from Nördlinger Ries,

Germany, pozzolan Laziale black (PB), Ponte Lucano

quarry, Tivoli, Italy and pozzolan Flegrea (PF),

Campi Flegrei area, Naples, Italy. In a study by Fir-

dous and Stephan [8, 59], these four pozzolans were

subjected to react with sodium silicate solution of

various silica modulus in the range of 0.4 – 1.7 (SiO2/

Na2O molar ratio) at ambient conditions (22 �C, 100%
RH) to see the impact of silica modulus of alkaline

solution on properties of the resultant binder. The

conditions at the time of formation of pozzolan, such

as the composition of magma and conditions after

formation, affect the chemical and mineralogical

composition of the pozzolans. Therefore, all the

pozzolans had different chemical and mineralogical

compositions as determined with XRF and XRD,

respectively. The fineness of the material can be

measured in several ways and as Blaine fineness is

the quickest and most commonly used method

therefore for a better comparison, the authors mea-

sured the Blaine fineness following EN 196–6 [63] and

kept it in a close range (6700 ± 160 cm2/g) for used

pozzolans, whereas the d50 particle size measured

using laser granulometry, Mastersizer 2000 of Mal-

vern Instruments changed. In this study, sodium

silicate solution in various silica moduli was used. To

achieve various silica moduli, various combinations

of sodium silicate solution (SiO2 = 30.2 wt.%, Na2-
O = 14.7 wt.%) and sodium hydroxide solution (3.6,

6.6, 9.2 and 11.5 mol/L) were used. Therefore, the

resultant SiO2 mol.%, Na2O mol.%, H2O mol.% and

SiO2/Na2O (mol/mol) are considered here for the

analysis. As the change of either of them can affect

the compressive strength. The alkaline solution to

pozzolan ratio impacts the compressive strength;

therefore, for each pozzolan, the amount of solution

required to obtained sample of good workability was

determined and kept equal to 0.50, 0.75, 0.43 and 0.52

for RT, BT, PB and PF, respectively. All the paste

samples prepared for compressive strength were

mixed in a similar manner and cured at 22 ± 2 �C,
100% relative humidity (RH). Cubes with an edge

length of 2 cm were used to determine compressive

strength at the same loading rate for all the samples.

A further extension of the data presented above

was taken from [62], where the pozzolan Laziale

black and pozzolan Flegrea were additionally sub-

jected to react with sodium and potassium hydroxide

solution (9.2 and 11.5 mol/L). The prepared AAB

were heat-cured at 40 �C and 100% RH for the first

28 days, followed by ambient temperature (22 �C,
100% RH) curing till 90 d. The heat-cured samples

were further compared with the samples only cured

at ambient conditions. To see the impact of different

mineralogical compositions and fineness, the authors

used a low reactive pozzolan (Bavarian trass) for

further analysis [59]. In this study, the Bavarian trass

was subjected to calcination and mechanical activa-

tion by burning the pozzolan at 700 �C for 3 h and by

milling the pozzolan in a planetary ball mill for 5 and

10 min at a speed of 200 rpm with constant media to

material ratio of 1:0.16. The calcination resulted in a

reduction in the calcium carbonate content of the

pozzolan and the formation of CaO, whereas the

mechanical activation resulted in 23% and 43%

reduction in d50 in comparison with un-milled

Bavarian trass for 5 and 10 mint milled material,

respectively. For the preparation of AAB/GP sam-

ples, sodium silicate solution of silica modulus 0.707,

0.797 and 1.061 was used, whereas mixing method,

rate of loading, sample size and curing conditions

were kept similar as in the above study.

Second data set

The second data set is taken from [60], where the

authors used pumice type natural pozzolan obtained

from Taftan mountains, Iran, for the production of

alkali-activated binders. Mineralogically and chemi-

cally, this pozzolan was different from those given in

the first data set. The chemical composition measured

following ASTM C311 [64] showed high siliceous

content. The Blaine fineness of the used pozzolan was

3090 cm2/g which is lower than the fineness of poz-

zolans used in the first data set. Sodium silicate
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solutions of different silica modulus in the range of

0.3 – 0.9 were used, and Na2O/Al2O3 molar ratio of

the system was also changed in the range of 0.77 –

1.23. To achieve the desired silica modulus, a com-

bination of sodium hydroxide and sodium silicate

solution was used. For determination of compressive

strength, 2 cm3 samples were cured at 25 �C and 95%

RH.

Third data set

The third data set was published by Tänzer [61]. In

this work, artificial glasses were prepared by blend-

ing and remelting mixes of one GGBFS and several

oxides. The single melting experiments were per-

formed between 1550 �C and 1650 �C in a nitrogen

atmosphere, and the material was granulated at 3 bar

in water of 10 �C. The granulate was ground on a

laboratory ball mill. The laser granulometry with a

Horiba LA-300 revealed values for d50 from 8.5 to

16 lm, and the Blaine fineness according to DIN

66,126 [65] and EN 196–6 [66] was found to be 4120—

4800 cm2/g. The chemical constituents of the syn-

thesized slags were determined following EN ISO

11,885 [67] based on ICP-OES in the case of Al2O3,

CaO, Fe, K2O, MgO, MnO, Na2O, S and TiO2. Fur-

thermore, SiO2 was determined gravimetric accord-

ing to EN 196–2 [68]. Due to the non-oxidizing

conditions while glass manufacturing, the oxidation

state of Fe and S is unknown. For the current evalu-

ation, it was assumed that both elements are fully

oxidized.

Sodium hydroxide (2 mol/kg), sodium waterglass

(Ms = 1) and two potassium waterglass (Ms = 1 and

2) solutions were used as activators. The solution–

powder ratio was between 0.374 and 0.432. Pastes

were prepared by a hand mixer in 30 s. The paste-

filled molds for 2-cm cubic samples were treated on a

vibration table and thereafter covered with foil until

the demolding after 23 ± 1 h. The demolded cubes

were stored at 20 �C and 100% RH.

Summary of design space—features and target property

Based on these three data sets with a total of 131

samples, the DS was constructed. The 22 features

used in this study included for the powdered pre-

cursor the 13 parameters of the chemical composition

in wt.% (SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O,

K2O, TiO2, P2O5, SO3, Cl and loss on ignition). For

characterizing the granulometry, three features were

used, namely the Blaine fineness [cm2/g] as well as

d90 and d50 particle size [lm]. The composition of the

alkaline solution is given with four features in terms

of SiO2 mol.%, Na2O or K2O mol.% and H2O mol.%.

Furthermore, the curing temperature and the solu-

tion–powder ratio were used. All features were nor-

malized so that their respective mean was zero and

the standard deviation was scaled to one.

The resultant compressive strength [MPa] for 2�2�2
cm3 samples at the age of 28 days is the sought-after

target property.

Investigated scenarios

One way to visualize the SL task is to represent the

DS in T-SNE coordinates. T-SNE [69] is a dimension

reduction algorithm much like the well-known prin-

cipal component analysis (PCA). These allow to

represent higher dimensional vector spaces (like our

DS) in a lower dimensional form (e.g., in two

dimensions). The dimension reduced space has no

physical meaning anymore, but allows to analyze the

characteristic distribution of the data points, i.e.,

points that are close to each other have similar feature

values. Trends in the distribution of the data, such as

the relationship between feature values and materials

properties can be inferred (with some uncertainty). In

contrast with PCA, T-SNE employs nonlinear

dimensionality reduction. This has the advantage of

preserving the relationships between neighboring

data points, while reducing the large interdimen-

sional distances that occur especially in sparsely

populated high-dimensional spaces.

Figure 3 shows the distribution of our data set in

T-SNE coordinates: on the left, subsets 1–3 from

Sect. 3.1.1 to 3.1.3 are represented by different colors;

on the right, the distribution of compressive strength

is shown as a color scale.

The clear distinction of the data on the left side

indicates that the difference in material composition

is well represented by the features. The global opti-

mum of the strength distribution is found in the third

data set (cf. pink dot in Fig. 3, right). The strength

distribution within the three materials appears uni-

form with relatively clear trends toward the respec-

tive local maxima, suggesting a good relationship

between features and material properties. We com-

pared SLs ability to find the higher-strength materials

in various scenarios (see Table 2).
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First, combinations of the three prediction algo-

rithms with four utility functions were investigated.

Second, the complexity of the SL task was altered,

with SL performed in a common DS containing the

131 data points and a segmented DS. The segmenta-

tion breaks the complex optimization problem into

separate, expectedly simpler problems—potentially

creating better predictability and possibly further

speed-up. The segmentation was achieved with k-

means clustering (with k ¼ 3) of the data in two-di-

mensional T-SNE coordinates using the standard

functions in MATLAB, respectively [70, 71]. This

created clusters that correspond to the three data

resources (comparison Fig. 3, left). In addition, the

segmentation of the problems allows parallelization,

since the SL runs could be executed in batches con-

sisting of the segments.

Third, the initial training set size was varied

between four and twelve. The minimal initial training

set size of four was restricted by two sub-samplings

in the TE with uncertainties algorithm (each leaving

out one candidate) and a minimum of two points in a

sensible regression problem. The upper boundary of

the initial training set was restricted to 12 to allow 30

different samples to be drawn from the lower half (as

per restriction the 50% quantile restriction discussed

below) of the smallest data set segment.

Fourth, the task of the SL has been varied in terms

of the success threshold between finding the absolute

maximum within one DS and finding one of the

above 90% quantile compressive strengths within one

DS.

Fifth, the benchmarking was carried out statisti-

cally in terms of a 50% (Figures 4 and 6) and 97%

(Figures 5 and 7) success rate. The former is the usual

benchmark indicating the average performance and

the latter indicates the robustness, which has special

importance in scientific studies. The success rates

were estimated from 30 SL runs with randomly

sampled initial training sets. These initial samples

were restricted to the lower half (50% quantile) of the

strengths to enforce a significant improvement in the

discovery process. Since extrapolation is much more

difficult than interpolation for many learning algo-

rithms, it is hoped that this will provide a more

realistic understanding of SL performance. It is
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Figure 3 Input data set in

TSNE coordinates; left: Three

clusters from K-Means

clustering (k = 3) with each

cluster corresponding to one

data set (cf.

Section 3.1.1–3.1.3); right:

Colored by compressive

strength in MPa.

Table 2 Influencing factor on the success of SL and its variations that are investigated in this paper

Influencing factor Investigated variation

1 Prediction algorithm and utility function GPR, DT, TE

MEI, MLI, MEI ? D, MLI ? D

2 DS complexity Segmented DS vs. joint DS

3 Initial training set size 4, 8, 12

4 Target threshold T T= maximum strength vs. T� 90% quantile strength

5 Success rate 50% vs. 97%, i.e., performance in 15/30 and 29/30 SL runs, respectively
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acknowledged that this restriction has a considerable

influence on the performance of SL. However, in

practice, whether the increased performance would

be achieved remains largely unknown and depends

on the given candidate group (see further details in

[47]).

Figure 4 Performance of 12

SL algorithms vs. RP in terms

of required experiments for

finding the maximum strength

with a 50% success rate (left

for segmented DS, right for

joint DS).
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Results and discussion

The investigated scenarios include the twelve SL

algorithms, which are used in two different DS, ini-

tialized with three different initial training set sizes to

achieve two different target thresholds, respectively,

which are statistically analyzed in terms of a 50% and

97% success rate. This results in a total of 288 SL

results which are shown in Figs. 4, 5, 6 and 7. The

second to last line in each figure shows the average

performance of the SL algorithms, and the last line

Figure 5 Performance of 12

SL algorithms vs. RP in terms

of required experiments for

finding the maximum strength

with a 97% success rate (left

for segmented DS, right for

joint DS).
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shows the RP performance. The results are shown as

the number of required experiments for the specific

success rate (cf. Section 2.2.3). Higher numbers mean

longer SL runs and hence worse performance. The

results on the left correspond to the cumulative

results from the three segmented DS. The results on

the right correspond to the SL performance in the

joint DS. Both were benchmarked against the RP in

the joint DS (as mentioned at the end of Sect. 2.2.3).

To allow a quick comparison between different sce-

narios, the results were color coded, with pink-col-

ored boxes indicating worse performance and

Figure 6 Performance of 12

SL algorithms vs. RP in terms

of required experiments for

finding one candidate above

the 90 percent compressive

strength quantile with a

success rate of 50% (left for

segmented DS, right for joint

DS).
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turquoise-colored boxes indicating better perfor-

mance than that of the respective RP. Different target

thresholds are compared with Figs. 4 and 5 for find-

ing the maximum strength in the respective DS and

Figs. 6 and 7 for finding strengths above the 90%

quantile.

When considering the average performance of the

SL algorithms in Figs. 4, 5, 6 and 7, it can be found

that SL in segmented DS and joint DS is in a

Figure 7 Performance of 12

SL algorithms vs. RP in terms

of required experiments for

finding one candidate above

the 90 percent compressive

strength quantile with a

success rate of 97% (left for

segmented DS, right for joint

DS).
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comparable range of numbers. This has practical

relevance because—as mentioned in introduction—

the former can be parallelized and thus be quicker in

practice. Generally, it seems to pay to start SL as early

as possible with few initial training data. The higher

cost of collecting a larger data set in the initial phase

is sometimes complemented by even longer run

times in terms of more experiments needed in the SL

run. This demonstrates how important it can be for

the success of SL to explore the DS quickly and that a

larger set of weak initial assumptions can cause a

confirmation bias that negatively affects the course of

SL.

The higher performance of SL over RP is more

likely at higher success rates (see Figs. 5 and 7),

which speaks for the higher robustness of SL. This is

practically relevant because it shows that, depending

on the success rate requirements, approaches with

higher robustness perform better than approaches

with the more commonly compared average perfor-

mance. When comparing RP, it seems that in Figs. 4

and 5, RP is a benign benchmark with relatively weak

performance and low robustness and that the lower

target threshold in Figs. 6 and 7 has a strong favor-

able impact on performance and robustness—making

RP an ever more challenging benchmark.

In contrast, lowering the target threshold improves

the average SL performance only slightly. Since SL

requires training data, it must have a performance

offset (in terms of the minimum required experi-

ments) to its disadvantage at the beginning—the

more initial training data, the greater. RP, however,

can just be lucky with the first draw. SL’s only chance

of compensating for this disadvantage is to succeed

quickly and repeatedly. This in itself is a remarkably

difficult task since the higher-strength candidates are

in different regions of the high-dimensional DS than

the initial training data (cf. Figure 3, right); this

means that SL has to extrapolate considerably. The

MEI ? D and MLI ? D utility functions accelerate

SL’s DS exploration to the extent that makes it pos-

sible to outperform RP even for a lower target

threshold. This is observed in Fig. 7 for the joint DS in

the case of four initial training sets for DT and

MLI ? D as well as TE and MEI ? D and MLI ? D.

Adding the distance to the utility function essentially

extends the exploratory component of the algorithms.

However, this does not seem to work for GPR. This

can be explained by its tendency to revert predictions

to the function mean for more distant points. This

means that candidates that have a greater distance

(which is exploited by MEI ? D and MLI ? D) will

get lower prediction values. However, since only the

10% highest predictions are considered, candidates

with smaller distances are more likely to be chosen

here, resulting in less exploration. The exception is

the segmented DS, where the distances between the

points are smaller. Here, MEI ? D and MLI ? D

improve the robustness of GPR in the low target

threshold scenario (cf. Figure 7). The performance of

GPR is clearly best when combined with the MLI

strategy. DT and TE, on the other hand, benefit from

MLI over MEI, especially in the larger joint DS.

Looking at the results, the uncertainty-based and

exploratory approaches tend to be more successful in

larger DS—as would be expected. Adding more

training data also improves DT and TE performance

in some cases. However, in the lower success

threshold scenario, this is not enough to match RP. In

addition, MEI ? D and MLI ? D perform poorly

when more initial training data are added. The

overall best approach is consistently TE with MEI ?

D or MLI ? D with four as the initial training set size

in the joint DS.

Figure 8 illustrates how the relationship between

model complexity and model efficiency (note the

non-linear scaling of the Y-axis) affects feasibility for

laboratory practice. Here the characterization of
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Figure 8 A comparison between state-of-the-art ML models and

SL for predicting cementitious material properties in terms of

feasibility in laboratory practice as a function of model complexity

and model efficiency.
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AABs, on the one hand, involves considering many

parameters that potentially vary widely between

candidate materials (as discussed in the literature

review Sect. 2.1). On the other hand, collecting data is

time-consuming and usually must be repeated for

each new material. Both aspects limit the applicabil-

ity of current ML models in practice. Although the

specific course of the feasibility boundary depends on

the respective laboratory capacity and the complexity

of the underlying material, it is clear that the pre-

sented SL approach (blue cross) is much more effec-

tive than the state-of-the-art ML models (black dots).

Conclusions

Considering the pressing climate crisis, the large CO2

footprint of OPCs and the complexity of new binders,

new materials discovery methods are urgently nee-

ded. The amount of available data is one of the major

bottlenecks in using ML for this. Existing approaches

require large amounts of data and generalize poten-

tially poorly due to their coarse input parameters. We

argue for including much more detailed information

in ML models and showed how useful material

models can still be generated with very few data sets

(just four to get started). To this end, we apply an SL

approach to an AAB dataset. We analyze some of the

issues that have arisen for use in laboratory practice.

The results show that the discovery of new precur-

sors for construction binders can be accelerated using

SL. Specifically, the acceleration is achieved in terms

of fewer experiments required to predict materials

with the desired properties. Figure 8 shows the

tremendous improvement compared to state-of-the-

art ML models from the literature. To achieve this

result, SL’s purely statistically motivated bench-

marking approaches were adapted to aspects of lab-

oratory practice, e.g., by lowering the target threshold

and comparing results at higher success rates. From

this, the following conclusions can be drawn for SL in

laboratory practice. Despite very complex data, it

seems promising to integrate SL as early as possible

in the experimental program. It has been shown that

ML-based SL has the potential to outperform classical

GPR. The parallelization of SL runs in three batches

had a relatively small average influence on the per-

formance in the example presented. Regarding high-

throughput experiments, such parallelization proce-

dures are vital research topics. Lowering the target

threshold led to a surprisingly small boost of most SL

procedures and a significant acceleration of the RP.

Even if these considerations are of a rather intellec-

tual nature, because in practice, the actual distribu-

tion of the properties is unknown—it still shows the

advantages that RP can have. Incorporating ran-

domized effects—i.e., effects that have nothing to do

with the deterministic understanding of the respec-

tive ML prediction—could be a key to further accel-

eration for SL. This has been approached with some

success in this publication by adding a distance in the

DS to the utility function. TE with MEI ? D and

MLI ? D achieved an outstanding performance with

only eleven required experiments to find higher-

strength cements with a 97% success rate (cf. Fig-

ure 7, right). In fact, this is nearly 60 times less

training data than the models in Table 1 require on

average, while more than three times as many

material composition features were used. This

approach seems to break with the paradigm in data

science that more training data produces better

models. This is quite significant because it lowers the

threshold of adoption for laboratory practice.

The work presented in this paper leads us to the

conclusion that further research in this field is needed

as there are still many open questions—e.g., on the

influence of the DS complexity (in terms of very large

DSs) or the exact interaction between the amount of

initial training data and the success of the approach.

It would also be interesting to undertake a systematic

study of the added hyper-parameters of the utility

functions with distance.

In addition, the relevance of input features for SL is

an important question for future research. On the one

hand, adding more features can help to better char-

acterize the material, which can lead to even better

predictability and faster development cycles. The

same is true for omitting superfluous data. On the

other hand, some information is currently unusable

because it is either not uniformly available or features

are simply not easily extracted (e.g., X-ray diffraction

data). In turn, the use of such information increases

the complexity of data analysis and acquisition,

which can lead to longer development cycles. Fur-

thermore, a deeper understanding of the crucial

parameters would help to check SL for plausibility.

After all, confidence in the method is one of the main

prerequisites for its application in practice. To answer

the question of how SL methods are to be configured

in a wide range of tasks in a variety of scenarios,
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meta-learning (e.g., as proposed in [72]) could be

considered. To make the required highly complex

data available, a powerful (possibly semantic) data

management is needed that goes far beyond the

already extensive data collection by Xie et al. [46].

While the objective of this study is to find alkali-

activated binders with high compressive strength, the

method can potentially be applied to other properties

of the building materials, such as durability or

workability. The potential of the investigated meth-

ods goes beyond material discovery and could soon

enable cost-effective and ecological re-engineering of

existing binders or even ‘‘materials by design’’

applications in construction.
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Hüttensandmehlen (Dissertation). Technische Universität

Berlin, Berlin

[62] Firdous R and Stephan D (2019) ‘‘Factors effecting the

properties of alkali activated natural pozzolan based

geopolymers,’’ Aachen Germany, pp. 100–106.

[63] CEN/TC 51, DIN EN 196–6:2010–05 Methods of testing

cement - Part 6: Determination of fineness; German version

EN 196–6:2010, 2010.

[64] ASTM C311 , Standard Test Methods for Sampling and

Testing Fly Ash or Natural Pozzolans for Use in Portland-

Cement Concrete, Vol 05.05 ed., Annual Book of ASTM

Standards : ASTM International, 2001.

[65] DIN 66126, Determination of specific surface area of dis-

perse solids by the gas permeability technique - Blaine

method, 2015.

[66] EN 196–6, Methods of testing cement – Part 6: Determi-

nation of fineness, 2010.

[67] DIN EN ISO 11885, Water quality - Determination of

selected elements by inductively coupled plasma optical

emission spectrometry (ICP-OES) (ISO 11885:2007); Ger-

man version EN ISO 11885:2009, 2009.

[68] EN 196–2, Methods of testing cement - Part 2: Chemical

analysis of cement, 2005.

[69] van der Maaten L, Hinton G (2008) Visualizing Data Using

t-SNE. J Mach Learn Res 9:2579–2605

[70] Mathworks (2021) ‘‘k-means clustering,’’ [Online]. Avail-

able: https://www.mathworks.com/help/stats/kmeans.html.

[Accessed 4 April 2021].

[71] Mathworks (2021) ‘‘t-Distributed Stochastic Neighbor

Embedding,’’ [Online]. Available: https://www.mathworks.c

om/help/stats/tsne.html. [Accessed 4. April 2021].

[72] Ortega PA, Wang JX, Rowland M, Genewein T, Kurth-

Nelson Z, Pascanu R, Heess N, Veness J, Pritzel A,

Sprechmann P, Jayakumar SM, McGrath T, Miller K, Azar

M, Osband I and Rabinowitz (2019) ‘‘Meta-learning of

Sequential Strategies,’’ CoRR.

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

J Mater Sci (2021) 56:15859–15881 15881

https://doi.org/10.1613/jair.614
https://www.mathworks.com/help/stats/fitrtree.html
https://www.mathworks.com/help/stats/fitrtree.html
https://www.mathworks.com/help/stats/fitrensemble.html?searchHighlight=fitrensemble&s_tid=srchtitle
https://www.mathworks.com/help/stats/fitrensemble.html?searchHighlight=fitrensemble&s_tid=srchtitle
https://www.mathworks.com/help/stats/fitrensemble.html?searchHighlight=fitrensemble&s_tid=srchtitle
https://doi.org/10.1007/s40192-017-0098-z,05July
https://doi.org/10.1007/s40192-017-0098-z,05July
https://www.mathworks.com/help/stats/kernel-covariance-function-options.html
https://www.mathworks.com/help/stats/kernel-covariance-function-options.html
https://www.mathworks.com/help/stats/kmeans.html
https://www.mathworks.com/help/stats/tsne.html
https://www.mathworks.com/help/stats/tsne.html

	Sequential learning to accelerate discovery of alkali-activated binders
	Abstract
	Introduction
	Objective, scope and novelty of the research
	Structure of the research

	Theoretical background and methods
	Literature review
	Setting up sequential learning for materials discovery
	Prediction methods and uncertainty estimates
	Strategies and utility functions
	Maximum expected improvement (MEI)
	Maximum likelihood of improvement (MLI)
	MEI and MLI with maximum Euclidean distance (MEIthinsp+thinspD and MLIthinsp+thinspD, respectively)
	Benchmarking SL against a Random Process (RP)


	Experiments
	Description of the data
	First data set
	Second data set
	Third data set
	Summary of design space---features and target property

	Investigated scenarios

	Results and discussion
	Conclusions
	Data availability
	References




