1	<u>Supplemen</u>	tary Information
2		
3	Species-sp	ecific isotope dilution analysis of monomethylmercury in sediment using
4	GC/ICP-Tol	F-MS and comparison with ICP-Q-MS and ICP-SF-MS
5		
6	Sebastian F	aßbender, Marcus von der Au, Maren Koenig, Jürgen Pelzer, Christian Piechotta,
7	Jochen Vog	I, Björn Meermann
8		
9		
10		
11	Table of co	ntents:
12	S1	Preparation of samples for determination of MMHg in sediment
13	Table S1	Details of the sampling sites
14	Table S2	Details of the ²⁰¹ Hg-enriched spike and reference materials
15	Table S3	Operating conditions of the GC/ICP-MS interface for MMHg analysis
16	Table S4	Operating conditions of the ICP-ToF-MS instrument for MMHg analysis
17	Table S5	Operating conditions of the ICP-Q-MS instrument for MMHg analysis
18	Table S6	Operating conditions of the ICP-SF-MS instrument for MMHg analysis
19	Table S7	Operating conditions of the ICP-SF-MS instrument for total Hg analysis
20	Table S8	MMHg ($w(Hg)_{MMHg}$) and Hg ($w(Hg)_{total}$) mass fractions determined in sediment
21		reference materials and samples with expanded uncertainty $U(k = 2)$ based
22		on dry weight and $n = 3$ replicates (exceptions annotated)
23		
24		

S-1

25 S1 Preparation of samples for determination of MMHg in sediment.

26 A sample mass of 250 mg was weighed into a 15 mL centrifuge tube. Then, 1 mL of aqueous 27 CuSO₄ solution (1 mol/L) and the ²⁰¹Hg-enriched MMHg spike solution were added. The required volume of spike solution was estimated for every sample to target an ²⁰¹Hg/²⁰²Hg ratio 28 29 of approximately 1 and the actual amount of spike solution added was determined gravimetrically. To assess the required volume of spike solution, the MMHg concentration of 30 31 the samples had been screened with an external calibration technique beforehand. The 32 sample-spike mixture was vortexed thoroughly to ensure complete mixing. A volume of 4 mL 33 HNO₃ (3 mol/L) and 5 mL of DCM were added for simultaneous extraction of MMHg from the 34 sediment and liquid-liquid extraction into DCM for separation from inorganic Hg. The tube was 35 vortexed in the dark for 30 min and subsequently centrifuged for 30 min at 3000 min⁻¹. The 36 DCM phase was separated over a phase separation filter and mixed with 4.5 mL of aqueous 37 Na₂S₂O₃ solution (0.1 mmol/L) to back extract MMHg into the aqueous phase for derivatization. 38 The tube was shaken for 30 min at 300 min⁻¹ on a horizontal shaker and subsequently centrifuged for 10 min at 3000 min⁻¹. A volume of 4 mL of the top aqueous phase was 39 40 transferred into a new 50 mL centrifuge tube. For derivatization, 19 mL of a buffer mixture 41 containing glacial acetic acid, methanol, and ultrapure water in a ratio of 1:1:1.5 adjusted to 42 pH 4.5 with NaOH solution (0.32 kg/kg) was added to the MMHg extract. Then, 1 mL of a 43 solution of the derivatization agent NaBPr4 in THF (20 g/L) and 1 mL of n-hexane for extraction 44 of the derivatized MMHg were added. The derivatization took place during 1 h of shaking at 45 240 min⁻¹ on a horizontal shaker. Afterwards, the tube was centrifuged for 10 min at 3500 min⁻¹, 46 and the hexane phase was transferred into a 2 mL microcentrifuge tube. The derivatization 47 procedure was repeated by adding another 1 mL of NaBPr₄ solution in THF (20 g/L) and 1 mL 48 of n-hexane to the 50 mL centrifuge tube. After shaking and centrifuging, the hexane phase 49 was unified with the first one in the microcentrifuge tube. The tube was vortexed, and 50 anhydrous Na₂SO₄ was added to bind traces of residual water. Finally, 1 mL of the sample 51 solution was transferred into a 2 mL amber glass GC vial for analysis. Very low concentrated 52 sediment samples (IAEA-456 and samples 1 and 8) were prepared with a sample amount of 53 1 g and the twofold volume of reagents in the extraction procedure. All other steps were the 54 same as for higher concentrated samples. Procedural blanks were prepared by following the whole sample preparation procedure without sediment and with (for determination of LOQ) and 55 56 without ²⁰¹Hg-enriched MMHg spike.

Sample	Material	Chainage km	Coordinates
1	Sediment	57.4	52°50'45.1"N 13°32'32.1"E
2	Sediment	62	52°50'21.7"N 13°36'10.5"E
3	Sediment	73.86	52°50'35.2"N 13°46'10.0"E
4	Sediment	75.9	52°50'19.3"N 13°47'31.6"E
5	Sediment	77.94	52°50'10.5"N 13°49'15.0"E
W	Soil	79.5	52°50'42.5"N 13°50'23.2"E
6	Sediment	80.99	52°50'57.8"N 13°51'21.0"E
7	Sediment	88.91	52°50'55.1"N 13°57'09.7"E
8	Sediment	96	52°51'51.2"N 14°02'56.8"E
9	Sediment	104	52°52'30.4"N 14°08'55.3"E

58

57

Table S1

59

 Table S2
 Details of the ²⁰¹Hg-enriched spike and reference materials

Details of the sampling site

Material	MMHg mass fraction (mg/kg)	Total Hg mass fraction (mg/kg)	Isotopic composition
MMHg spike for SSID (MMHg in 3:1 acetic acid/methanol)	5.1 ± 0.3 (as MMHg)	/	${}^{196}\text{Hg:} < 0.1 \%$ ${}^{198}\text{Hg:} (0.10 \pm 0.03) \%$ ${}^{199}\text{Hg:} (0.41 \pm 0.06) \%$ ${}^{200}\text{Hg:} (2.29 \pm 0.05) \%$ ${}^{201}\text{Hg:} (94.7 \pm 0.1) \%$ ${}^{202}\text{Hg:} (2.32 \pm 0.06) \%$ ${}^{204}\text{Hg:} (0.11 \pm 0.02) \%$
Hg spike for ID (solid HgO)	/	0.92×10 ⁶	${}^{196}\text{Hg:} < 0.05 \%$ ${}^{198}\text{Hg:} (0.08 \pm 0.010) \%$ ${}^{199}\text{Hg:} (0.10 \pm 0.010) \%$ ${}^{200}\text{Hg:} (0.45 \pm 0.010) \%$ ${}^{201}\text{Hg:} (98.11 \pm 0.030) \%$ ${}^{202}\text{Hg:} (1.18 \pm 0.02) \%$ ${}^{204}\text{Hg:} (0.08 \pm 0.010) \%$
IAEA-456 (marine sediment)	0.0125×10 ⁻³ ± 0.019×10 ⁻³ (as Hg)	0.077 ± 0.005	/
ERM-CC020 (river sediment)	/	27.4 ± 0.6	1
ERM-CC580 (estuarine sediment)	0.0755 ± 0.0037 (as MMHg)	132 ± 3	1

60

Table S3 Operating conditions of the GC/ICP-MS interface for MMHg analysis

Parameter	Value
Column	TG5-SilMS (30 m x 0.25 mm i.d., 0.25 µm)
PTV Injector temperature program	250 °C to 400 °C with 10 °C/s
Injection volume (µL)	2
Carrier gas	Helium
Carrier gas flow rate (mL/min)	1
Oven temperature program	1 min hold 40 °C, 20 °C/min to 150 °C, 70 °C/min to 300 °C, 4.5 min hold 300 °C
Transfer line temperature (°C)	300
Make up gas flow rate (L/min)	0.600

Table S4 Operating conditions of the ICP-ToF-MS instrument for MMHg analysis

Parameter	Value	
Cones	Platinum	
RF power (W)	1200	
Cool gas flow rate (L/min)	14	
Auxiliary gas flow rate (L/min)	0.80	
Nebulizer gas flow rate (L/min)	0.730	
Integration time (s)	0.2	
Isotopes	²⁰¹ Hg, ²⁰² Hg, ²⁰³ Tl, ²⁰⁵ Tl	

Table S5 Operating conditions of the ICP-Q-MS instrument for MMHg analysis

Parameter	Value
Cones	Nickel
RF power (W)	1550
Cool gas flow rate (L/min)	14
Auxiliary gas flow rate (L/min)	0.80
Nebulizer gas flow rate (L/min)	0.730
Dwell time (s)	0.1
Isotopes	²⁰¹ Hg, ²⁰² Hg, ²⁰³ Tl, ²⁰⁵ Tl

Parameter	Value
Cones	Nickel
RF power (W)	1250
Cool gas flow rate (L/min)	16
Auxiliary gas flow rate (L/min)	0.85
Nebulizer gas flow rate (L/min)	0.530
Resolution	Low (300)
Mass window	20
Samples per peak	100
Sample time (s)	0.02
Isotopes	²⁰¹ Hg, ²⁰² Hg, ²⁰³ Tl, ²⁰⁵ Tl

Table S6 Operating conditions of the ICP-SF-MS instrument for MMHg analysis

Table S7 Operating conditions of the ICP-SF-MS instrument for total Hg analysis

Parameter	Value
Cones	Nickel
RF power (W)	1250
Cool gas flow rate (L/min)	16
Auxiliary gas flow rate (L/min)	1.00
Nebulizer gas flow rate (L/min)	1.160
Resolution	Low (300)
Mass window	5
Samples per peak	200
Dwell time (s)	0.002
Runs	10
Passes	500
Isotopes	²⁰⁰ Hg, ²⁰¹ Hg, ²⁰² Hg

71 **Table S8** MMHg ($w(Hg)_{MMHg}$) and Hg ($w(Hg)_{total}$) mass fractions determined in sediment

reference materials and samples with expanded uncertainty U(k = 2) based on dry weight and n = 3 replicates (exceptions annotated)

Sample	MMHg mass fraction (µg/kg)	Total Hg mass fractior (mg/kg)
ERM-CC020		27.5 ± 1.0
ERM-CC020 certified value		27.4 ± 0.6
ERM-CC580	81.8 ± 5.3 ^a 82.3 ± 4.2 ^b 81.8 ± 4.2 ^c	136.5 ± 4.5^{d}
ERM-CC580 certified value	75.5 ± 3.7	132 ± 3
IAEA-456	0.132 ± 0.013 ^e	0.0823 ± 0.0070
IAEA-456 certified value	0.125 ± 0.019	0.077 ± 0.005
Sediment 1 (km 57.4)	0.180 ± 0.017	0.056 ± 0.013
Sediment 2 (km 62)	0.488 ± 0.043	0.259 ± 0.012
Sediment 3 (km 73.86)	26.3 ± 1.7	9.14 ± 0.27
Sediment 4 (km 75.9)	39.3 ± 5.5	41.4 ± 2.6
Sediment 5 (km 77.94)	20.5 ± 1.8	9.18 ± 0.69
Sediment 6 (km 80.99)	36.3 ± 2.7	126.1 ± 7.1
Sediment 7 (km 88.91)	33.0 ± 3.5	30.0 ± 4.2
Sediment 8 (km 96)	0.367 ± 0.033	0.549 ± 0.066
Sediment 9 (km 104)	6.37 ± 0.54	2.58 ± 0.12
Washing bed (W)	40.6 ± 3.7	117.2 ± 3.3

^a as MMHg (w(MMHg)), n = 12, determined with GC/ICP-ToF-MS

^b as MMHg (w(MMHg)), n = 2, determined with GC/ICP-Q-MS

^c as MMHg (w(MMHg)), n = 2, determined with GC/ICP-SF-MS

77 ^d as MMHg (*w*(MMHg))

^e *n* = 6