

E-MRS SPRING MEETING 2021

Jörg Radnik¹, Reinhard Kersting², Birgit Hagenhoff², Francesca Bennet¹, Dmitri Ciornii¹, Vasile-Dan Hodoroaba¹

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 814572

COMPREHENSIVE CHARACTERIZATION OF AL-COATED TITANIA NANOPARTICLES WITH ELECTRON MICROSCOPY AND SURFACE CHEMICAL ANALYTICS

KEY PARAMETERS OF NANOMATERIALS ACCORDING TO REACH

What they are?			Where they go?		What they do?		
Identification			Behaviour		Reactivity		
Physico-Chemical parameters			Solubility		Biological (re)activity		
Composition: XPS,EDS	Size: EM		Hydrophobicity				
Crystallinity	Shape: EM		ζ-Potential		Photoreactivity		
Surface Chemistry: XPS, ToF-SIMS	Surface Area		Dispersibility				
			Dustiness				
Quantitative Structure Activity Relationships Grouping, Read Across							

REACH П registration, evaluation, authorization of chemicals

HIGH QUALITY DATA

QSAR needs high quality data

- Completeness: complete physico-chemical characterization, including raw-, derived, and meta-data, SOPs for sample preparation, measurement and data reduction (FAIR)
- **Relevance:** fit for purpose \rightarrow meet the specific requirements
- **Reliability:** compliant with GLP and/or standardized protocols (ISO, OECD guidelines, ...)
- Accessibility / Availability: interchangeable, standards, FAIR principles
- **Reproducibility:** standards, FAIR
- → FAIR meets completeness, accessibility and reproducibility, but not relevance and reliability

KEY PROPERTIES OF THE METHODS

Complementary methods for comprehensive insights

Method	SEM	EDS	XPS	ToF-SIMS
Properties	Size, shape	Elemental composition	Composition, surface chemistry	Surface chemistry
Lateral resolution	I-2 nm	< Iµm	> I µm	50 nm
Information Depth	A few nm	< I µm	10 nm	I – 3 nm
Quantification	Length of projection dimensions	No quantification for single NPs	With suitable models	challenging
Detection limit	A few nm	0.1 at%	0.01 – 1 at%	ррb

SAMPLES

Samples from JRC repository representative for coated titania NPs

JRC ID	Material	Primary crystallite size /nm	phase	coating	hydrophobicity
JRCNM62001a	TiO ₂	21	rutile	Al ₂ O ₃	hydrophobic
JRCNM62002a	TiO ₂	21	rutile	Al ₂ O ₃	hydrophilic

Crystallite size from XRD

SEM: PARTICLE SIZE AND SHAPE

Elongated nanoparticles: ~ 20 nm * [20-50] nm

PSD (minimum Feret diameter)

SE-InLens detector @ 5 kV Prepared as dry powder on an AI sample holder Full meta data: ISO/FDIS 20171

Standards for the measurement of nanoparticle size and shape TEM: ISO 21363:2020 SEM: ISO/DIS 19749

EDS: CHEMICAL COMPOSITION

EDS: bulk analysis

No quantification algorithms for nanoparticle analysis available

Valuable method for a quick **qualitative elemental** analysis and for a "more or less" comparison under the same measurement conditions

Performance and measurement standardized (ISO 15632:2012; ISO 22309:2011)

Data transfer standardized (ISO22029:2012)

Dry powder on silicon wafer

XPS: CHEMICAL COMPOSITION IN THE NEAR-SURFACE REGION

- All peaks (> 50 eV) must be assigned
- Criteria for clearly detected elements: S/N ratio > 3; more than one peak
- Distinguish between clearly detected elements (here: Ti, O, C, Al, Si) and probable elements (S, Cl, F)
- Charge referencing: ISO 19318
- Data format:VAMAS or ISO 14976:1998

XPS: QUANTIFICATION

62001a	Ols	Ti2p	Si2p	Cls	FIs*	Al2p	Cl2p*	S2p*
Experimental SF /at%	64.2	14.8	2.2	8.9	0.8	9.2	n.d.	n.d.
Theoretical SF /at%	62.9	16.1	2.5	7.2	0.5	10.8		
Rel. deviation / %	2.0	8.4	12.5	21.0	46.2	16.0		

62002a	Ols	Ti2p	Si2p	Cls	FIs*	Al2p	Cl2p*	S2p*
Experimental SF /at%	64.2	16.3	n.d.	7.8	0.6	9.7	0.4	0.6
Theoretical SF /at%	61.8	17.3	n.d.	7.5	0.4	11.8	0.4	0.8
Rel. deviation / %	3.8	6.0		3.9	40.0	19.4	0	40

Deviation similar or smaller to the relative uncertainty of 20 % which is usually estimated

Experimental SF:

- For each setup experimentally determined
- Usually provided by the manufacturer
- More precise

Theoretical SF:

- Theoretically determined (Scofield)
- Transmission function must be experimentally determined
- traceable

QUANTIFICATION OF NANO-OBJECTS

Usual quantitative model

Information Depth

Homogeneous material composition in the whole analysis volume

→ Wrong model for nanoparticles

Quantitative models for nanoparticles

Suitable models are available:

- $T_{NP} = \frac{T_{R \sim 1} + \beta T_0}{1 + \beta}$ (Shard, J.Phys.Chem.C 2012, 116, 16806)
- Numerical simulations: SESSA (NIST:SRD 100, vers. 2.1.1) More information: ISO/TR 23173: Nanoparticle coating analysis by electron spectroscopy (will be published soon)

 \rightarrow Rough estimation with SESSA: Al_2O_3 shell of ~1 nm

XPS: PEAK FITTING OF CIS FOR COATING (SURFACE CHEMISTRY)

Same FWHM and Lorentzian (peak shape) was used for all peaks

TOF-SIMS: SURFACE CHEMISTRY

Secondary lons	Ratio 62001/62002
Ti ⁺	1.09
CxHy, aliphatic	0.70
CxHy, aromatic	1.47
siloxanes	135.00
Phthalate	0.58
C _x H _y O _x	0.7
SiO ₂ -	18.08
SO ₃ -	0.68

Normalized to AI^+ and AIO_2^-

> Ti detectable \rightarrow thin (~ Inm) or inhomogeneous Al₂O₃ layer

> Siloxanes and SiO₂⁻ at 62001a

- > SO_3^- clearly detectable (from production process)
- Differences in hydrocarbons are not so clear (contamination effects ?)

Suitability of ToF-SIMS for nanoparticle analysis is subject of an ongoing VAMAS TWA 2 interlaboratory comparison

International Interlaboratory Comparison

Call for participants

Secondary Ion Mass Spectrometry (SIMS)

Surface Analysis of Oxide Nanoparticles

Undertaken as part of VAMAS TWA 2 - Surface Chemical Analysis

RESULTS

ACKNOWLEDGEMENTS

Grant n° 814572

Grant n° 814530

