
 

 

Wood Treated with Nano Metal Fluorides – Relations between  

Composition, Size, and Durability 

 

Dissertation 
zur Erlangung des akademischen Grades 

doctor rerum naturalium 
(Dr. rer. nat.)  

im Fach Chemie 
 

eingereicht an der 
Mathematisch-Naturwissenschaftlichen Fakultät  

der Humboldt-Universität zu Berlin 
von 

M.Sc. Shirin Mustaquim Usmani  
 

 

Präsidentin der Humboldt-Universität zu Berlin 
Prof. Dr.-Ing. Dr. Sabine Kunst 

 

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät 
Prof. Dr. Elmar Kulke 

 

Gutachter/innen:  

1. Prof. Dr. Erhard Kemnitz 

2. Dr. Ina Stephan 

3. PD Dr. Rüdiger Plarre 

 

Tag der mündlichen Prüfung: 17.02.2021 

https://doi.org/10.18452/22553  

 

https://doi.org/10.18452/22553


 

 

  



 

 

 

 

 

….Die Fragen selbst liebzuhaben…. 
 

….Vielleicht lebst du dann allmählich  
 

eines fernen Tages in die Antwort hinein 
 

-Rainer Maria Rilke-  





 

Abstract 
 

In this study, nanoscopic particles of magnesium fluoride (MgF2) and calcium 
fluoride (CaF2) also known as nano metal fluorides (NMFs), were evaluated for their 
potential to improve wood durability. Even though these fluorides are sparingly soluble, 
their synthesis in the form of nano-sized particles turns them into promising candidates for 
wood preservation. Their distinct property of low-water solubility is proposed to maintain 
long-lasting protection of treated wood by reducing the leaching of fluoride.  

Analytical methods were used to characterize the synthesized NMFs and their 
distribution in treated wood specimens. Transmission electron microscopy images showed 
that these fluoride particles are smaller than 10 nm. In nano metal fluoride (NMF) treated 
specimens, aggregates of these particles are uniformly distributed in the wood matrix as 
confirmed with scanning electron microscopy images and their corresponding energy-
dispersive X-ray spectroscopy maps. The fluoride aggregates form a protective layer around 
the tracheid walls and block the bordered pits, thus reducing the possible flow path for water 
absorption into wood. This is reflected in the reduced swelling and increased 
hydrophobicity of wood treated with NMFs. 

The biocidal efficacy of NMFs was tested against brown-rot fungi 
(Coniophora puteana and Rhodonia placenta), white-rot fungus (Trametes versicolor), and 
termites (Coptotermes formosanus). The fungal and termite tests were performed in 
accordance with the EN 113 (1996) and EN 117 (2012) standards, respectively. Prior to 
fungal tests, the NMF treated wood specimens were leached according to the EN 84 (1997) 
standard. Compared to untreated specimens, the NMF treated wood specimens have a 
higher resistance to decay caused by brown-rot fungi, white-rot fungus, and termites. 
Although all NMF treatments in wood reduce the mass loss caused by fungal decay, only 
the combined treatment of MgF2 and CaF2 has efficacy against both brown-rot fungi and 
white-rot fungus. Similarly, wood treated with the combined NMF formulation is the least 
susceptible to attack by C. formosanus. It is proposed that combining MgF2 and CaF2 
changes their overall solubility to promote the release of fluoride ions at the optimal 
concentration needed for biocidal efficacy against fungi and termites.  

In this thesis, it was proven that even after leaching, sufficient fluoride was present 
to protect NMF treated wood from fungal decay. This shows that NMFs are robust enough 
for above ground contact outdoor applications of wood, where permanent wetness cannot 
be avoided according to Use Class 3.2, as per the EN 335 (2013) standard. Also, they pose 
a low risk to human health and the environment because they are sparingly soluble. Since 
NMFs significantly reduce the decay of wood, the CO2 fixed in it will be retained for longer 
than in unpreserved wood. Overall, the novel results of this study show the potential of 
NMFs to increase the service life of building materials made from non-durable wood. 
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Kursfassung 
 

In dieser Arbeit werden die nanoskaligen Partikel von Magnesiumfluorid (MgF2) 
und Calciumfluorid (CaF2), die als Nano-Metallfluoride (NMFs) bekannt sind, auf ihr 
Potenzial zur Verbesserung der Beständigkeit von Holz-basierten Materialien untersucht. 
Obwohl diese NMFs nur schwer löslich sind, werden sie durch ihre Synthese in Form von 
Nanopartikeln zu vielversprechenden Kandidaten für den Holzschutz. Ihre besondere 
Eigenschaft der geringen Wasserlöslichkeit ist Grundlage dafür, einen langanhaltenden 
Schutz des behandelten Holzes aufrechtzuerhalten, indem die Auslaugung von Fluorid 
reduziert wird. 

 
Die Partikelgröße der synthetisierten NMFs und ihre Verteilung in behandelten 

Holzproben wurde charakterisiert. Transmissionselektronenmikroskopische Aufnahmen 
zeigen, dass die Fluoridpartikel kleiner als 10 nm sind. 
Rasterelektronenemikroskopaufnahmen und der zugehörigen energiedispersiven 
Röntgenspektroskopie zeigen, dass Aggregate dieser Partikel eine homogene verteilung in 
der untersuchten Holzmatrix von behandelten Proben. Die Fluoridaggregate bilden eine 
Schutzschicht um die Zellwände und blockieren deren Hoftüpfel, dadurch ist der mögliche 
Fließweg für die Wasseraufnahme ins Holz eingeschränkt. Dies zeigt sich in einem 
verminderten Quellen und erhöhter Hydrophobie des mit Nano-Metallfluorid (NMF)-
behandelten Holzproben. 

 
Die biozide Wirkung der NMFs wurde entsprechend der Normen EN 113 und 

EN 117 gegen Braunfäulepilzen (Coniophora puteana und Rhodonia placenta), am 
Weißfäulepilz (Trametes versicolor) und den Termiten (Coptotermes formosanus) geprüft. 
Vor den Pilztests wurden die mit dem NMF behandelten Holzproben nach EN 84 
ausgelaugt. Im Vergleich zu unbehandelten Proben weist das mit Fluorid behandelte Holz 
eine höhere Beständigkeit gegen Fäulnis durch Braunfäulepilz und Weißfäulepilz, sowie 
gegen Termitenfraß auf. Obwohl alle NMF-Behandlungen den durch Fäulnis verursachten 
Masseverlust des Holzes reduzieren, zeigt nur eine kombinierte Behandlung mit MgF2 and 
CaF2 eine höhere Wirksamkeit sowohl gegen Weißfäulepilz als auch Braunfäulepilz. 
Außerdem wird Holz, das mit der NMF Kombination behandelt wurde, am wenigsten von 
C. formosanus angegriffen. Offenbar verändert sich die Gesamtlöslichkeit in der 
Kombination von MgF2 und CaF2 so, dass Fluorid in einer für eine biozide Wirkung 
gegenüber Pilzkulturen und Termiten erforderlichen optimalen Konzentration freigesetzt 
wird. 

Die Ergebnisse dieser Arbeit zeigen, dass auch nach einer Auswaschung 
ausreichend Fluorid im Holz verbleibt, um es vor Zersetzung zu schützen. Dies bedeutet, 
dass NMFs robust genug sind für Anwendungen im Freien mit Bodenkontakt der 
Nutzungsklasse 3.2 nach EN 335. Darüber hinaus stellen sie aufgrund ihrer sehr schlechten 
Wasserlöslichkeit ein geringeres Risiko für die menschliche Gesundheit und Umwelt dar. 
Da NMFs die Zersetzung von Holz deutlich unterdrücken, bleibt das darin gebundene CO2 
länger fixiert als in unbehandeltem Holz. Die neuartigen Ergebnisse dieser Arbeit zeigen 
das Potenzial von NMFs, die Lebensdauer von Baumaterialien aus nicht haltbarem Holz zu 
erhöhen. 

 
Stichwörter: Nano-Metallfluoride, Löslichkeit, Holzschutz, Pilze, Termiten 
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1. Introduction 
In this introductory chapter, the importance of wood preservation in construction is 

outlined along with the aims and objectives of the current study. This is followed with an 

overview of the composition and the structure of wood, the organisms, and the insects that 

can decay and damage it. Lastly, common active ingredients used in wood preservatives are 

mentioned along with improvements in their formulations as nanoparticles.  

 

1.1 Importance of wood preservation in construction 
Wood is a renewable raw material harvested from forests to produce timber for the 

building sector. As a construction material, timber has broad appeal due to its wide-ranging 

attributes from its low-cost to its low-energy consumption. The cost of constructing a roof 

made with timber is significantly lower than steel.1 Embodied energy is the amount of non-

renewable energy consumed in the construction of a building, which includes the 

acquisition of raw materials, their processing, and transportation. Timber requires less 

energy for transportation and construction because of its lower weight.2 Consequently, 

timber has lower embodied energy than concrete or steel, which makes it a preferred 

material for construction.3 A wooden house has an embodied energy of 232 billion Joules 

(GJ), much lower than a house made of concrete (396 GJ) or of steel (553 GJ).4 In addition 

to having a higher embodied energy than timber, the production of steel requires the mining 

of raw materials such as iron ore, which damages the landscape for many years.2 Similarly, 

the production of concrete requires the extraction of sand from river beds and sea floors, 

creating an imbalance in the local aquatic ecosystem.2 In contrast, terrestrial damage is 

minimized with a harvested forest that can be regenerated to produce more trees.5 Therefore, 

wood is an economical and sustainable alternative to high-cost and energy-intensive 

construction materials.  

In the context of climate change mitigation, timber has the lowest carbon footprint 

compared to cement and steel.2 A wood-framed building has lower net CO2 emissions 

compared to a concrete-framed building.6 Unlike cement and steel, wood as a construction 

material can function as a carbon sink.2 Specifically for the European Union, increasing the 

use of engineered wood products was estimated to store 46 million tons CO2-eqv per year by 

2030.7 Globally, replacing cement and steel with timber in new building projects for urban 

dwellers is estimated to store up to 20 gigatons of carbon.2 Overall, climate mitigation 

strategies should include the promotion of durable wood products, as they play an important 

function in carbon storage over their long service life.  
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To maintain their long service life, wood products need to be protected from damage 

caused by organisms, insects, weathering, and fire. Warm temperatures and high humidity 

are optimal conditions for the growth of organisms and insects on wood products. Invasive 

insects such as the Formosan subterranean termite, Coptotermes formosanus cause 

extensive economic damage to wooden structures in tropical regions.8 Future models 

predict that climate change will cause the Formosan species to move towards temperate 

climates that will make timber houses in these regions vulnerable to termite damage as 

well.9 In temperate zones, coniferous trees are the primary source of timber, commonly 

damaged by fungi. Moisture accumulation in timber houses is prone to attack from fungi 

belonging to the Basidiomycota phylum. In Europe, Coniophora puteana and Serpula 

lacrymans are the commonly observed fungi in damaged timber buildings.10 Chemical 

treatment and restoration of a house decayed by wood rot is estimated to cost around 

10,000 €.11 An increase in temperature and humidity due to global warming will also create 

more favorable conditions for fungal colonization and termite infestation of timber houses 

with the consequent economic losses.12 

The damage to wooden structures can be prevented by protecting them from decay. 

One method of protection is impregnation with wood preservatives. Treating wood products 

with preservatives has played a significant role in reducing their decay. Since 1909, the use 

of preservatives in timber has saved over 4000 million trees from being felled in the United 

States.5 Another advantage is that naturally non-durable species can be treated with 

preservatives and used to manufacture wood products where previously only durable 

species were applicable.5 Thus, wood preservation is an important method to extend the 

service life of a renewable construction material and consequently for the conservation of 

forests.  

A wood preservative needs to meet the criteria listed below for commercial use.13,14 

1) Biocidal activity: Wood preservative needs to be biocidal to wood-destroying 

organisms such as fungi and insects such as termites.  

2) Permanence: Besides toxicity, the wood preservative needs to be stable within the 

wooden material and should have a low leaching tendency. For example, borates are 

biocidal, albeit highly water soluble. Therefore, fixatives are needed to inhibit their 

leaching from wood.  
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3) Treatability: A preservative needs to be evenly distributed in the wood matrix. Various 

methods can be applied to improve their treatability, such as pressure treatment to force 

the preservative into wood.  

4) Non-corrosive and non-harmful to wood: The preservative should not cause corrosion 

to metal fastenings. Also, the impregnation of wood with the preservative should not 

reduce its mechanical strength and increase its inflammability.  

5) Safety: An ideal preservative will be safe for handling during timber treatment and for 

the consumer of the end product.  

6) Cost: The preservative should be cost-effective and readily available in sufficient 

quantity for application.  

7) Environmental impact: The active ingredient in the preservative should not be 

hazardous to aquatic and mammalian life or other non-target organisms. 

 

1.2 Aims of the study  
In the history of wood protection, the biocidal efficacy of fluoride compounds is 

well documented.15 Current fluoride compounds used in wood preservatives cannot be 

applied alone because they are highly water soluble. Thus, they are combined with a fixative 

such as chromium to minimize their leaching from wood.15 However, the use of chromium 

is restricted in several European countries because of its detrimental impact on the 

environment.16 Consequently, there has been a steady decline in the use of fluoride for wood 

preservation. Therefore, there is a need for finding an alternative method to overcome their 

solubility limitation such that fluoride compounds can be used without the need for 

additional fixatives. One such alternative would be to use sparingly soluble fluoride 

compounds such as magnesium fluoride (MgF2) and calcium fluoride (CaF2). The challenge 

is how to impregnate low-water soluble compounds into wood. This is where the size of 

these compounds can be the key to solving this challenge. 

Formulations of active ingredients as nano-sized particles are widely available as 

commercial wood preservatives.16 For instance,h micronized copper particles are supposed 

to be homogeneously distributed in wood and available for protection from fungi.17 Besides 

copper, nano formulations of boron, another commonly used active ingredient in wood 

protection has also been tested for biological resistance.18,19 Yet, current review of literature 

on nano-based wood treatments does not report on formulations of any fluoride compounds 

that have been evaluated as preservatives.20,21  
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The following dissertation addresses this gap by evaluating nanoscopic form of 

metal fluoride particles known as “nano metal fluorides” to protect wood from fungi and 

termites. In this study, nano-sized particles of magnesium fluoride (MgF2) and calcium 

fluoride (CaF2) are referred to as nano metal fluorides (NMFs). There are three attributes of 

NMFs that could make wood more durable. First, compared to current fluorides used as 

wood preservatives, MgF2 and CaF2 are sparingly soluble in water due to which their 

susceptibility to leaching will be lower, and therefore they will remain in a sufficient 

concentration in wood to prevent decay. Also, due to their low-water solubility, they pose 

less risk to vertebrates. Second, these metal fluorides impregnated in the form of nano-sized 

particles can penetrate deeper into the wood matrix and minimize the likelihood of fungal 

colonization. Third, once impregnated into wood, these sparingly soluble fluorides do not 

liberate hydrogen fluoride (HF), which was observed in fluoride treated wood in the past.12  

These low-water soluble fluorides can remain as a “reservoir” inside treated wood 

from which “free” fluoride ions will be released in small doses when the moisture content 

in wood reaches a level to promote their solubility. For instance, the high humidity in the 

surrounding environment that increases the moisture content of wood will also trigger the 

release of “free” fluoride ions from their low-water soluble form deposited in the matrix. 

The high humidity is also an important physiological requirement for fungal colonization 

of wood. Thus, the release of “free” fluoride ions coincides with the initiation of fungal 

attack of wood, which is an ideal scenario for its protection. Thereby, the moisture content 

of wood plays the role of the sensor, which “signals” the NMFs to release the fluoride ions 

that can counteract the attack from fungi and termites. The hypothesis is that the nanoscopic 

size of metal fluorides will enable their impregnation and even distribution inside wood, 

and their low-water solubility will create a reservoir from which release of “free” fluoride 

ions is regulated to protect the end product during its storage and subsequent service life. 

Thus, the low-water solubility, the nano-size of these metal fluorides, and their reduced 

toxicity to vertebrates are the properties that make them promising candidates for research 

as wood preservatives.  

The aim of this thesis is to determine the durability of wood treated with nano metal 

fluoride (NMF). The following objectives are set. 

1. Characterization of NMFs and their distribution inside wood after treatment. 
2. Material properties of wood treated with NMFs. 
3. Biocidal efficacy of NMF treated wood against fungi and termites. 
4. Possible protection mechanism of NMF treated wood.  
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1.3 Wood: composition and structure 
Wood is an economically important raw material. In the European Union, Germany 

had the highest production value (greater than 47 billion €) from wood-working industries 

in 2017.22 Wood is a material of choice for construction because of its desirable properties 

such as high strength to weight ratio, functionality, good thermal insulation, and 

aesthetics.23 These properties of wood are due to its unique composition as a biopolymer 

consisting of cellulose, hemicelluloses, lignin, and a minor number of extractives. Cellulose 

provides tensile strength, while hemicelluloses and lignin support the cellulose framework 

to give wood its elasticity.5 A brief description of these constituents of wood are provided 

below. 

 

1.3.1 Cellulose, hemicellulose, and lignin  
Cellulose is the most abundant organic polymer on Earth and constitutes the largest 

proportion of wood.24 The building block of cellulose is cellobiose, which is a 

polysaccharide consisting of glucose units linked together by β-glucosidic bonds (Fig.1.1). 

The intramolecular linkages between OH-groups of the glucose units give stiffness to the 

cellulose chain. The degree of polymerization (DP) in a cellulose molecule was calculated 

to be in the range of 9000 to 15,000.24 Wood-derived cellulose has at least 65% crystalline 

regions.24  

 

O

HO
OH

OH

O

HO
OH

OH

O

 
Fig.1.1 Chemical structure of cellobiose.  

 
Similar to cellulose, hemicelluloses are also formed of polysaccharide polymers. 

They differ from cellulose as they have a lower DP (500 - 3000) and are composed of more 

than one kind of sugar.25 Some sugars found in hemicellulose are D-galactopyranose and 

D-xylopyranose (Fig.1.2).24 Hemicelluloses are connected to cellulose and provide 

structural support to the tree.  
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D-galactopyranose D-xylopyranose  
Fig.1.2 Sugar monomer components of wood hemicellulose. 

 
Unlike cellulose and hemicelluloses, lignin is composed of heterogeneous, alkyl-

aromatic polymers.26 They form a complex arrangement of phenolic units around the main 

building blocks; guaiacyl, syringyl, and p-hydroxyphenyl.24 Lignin binds with 

hemicelluloses but not with cellulose. In addition to providing strength and rigidity to the 

tree, lignin acts as a shield to protect the main structural components of cellulose and 

hemicelluloses.27 However, lignin can be degraded by ultraviolet rays, which results in 

discoloration of wood. 28 

The main components in wood are arranged in an interconnected network (Fig.1.3). 

In the wood cell, the cellulose polymers are arranged into fine threads (microfibrils) through 

van der Waals forces and intermolecular hydrogen bonds. The hemicelluloses attach to the 

microfibril surface and enable the microfibrils to slip past each other.29 These microfibrils 

are held together by intermolecular hydrogen bonds to form large threads (macrofibrils).25 

The lignin molecules interpenetrate the fibrils to strengthen the cell walls.27 

 

 
Fig.1.3 Schematic representation of the interaction of wood polymers in the secondary 

cell wall. Image created by S.M. Usmani.  
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A wood cell is made up of a primary wall, a thick secondary wall that is subdivided 

into three layers (S1, S2, and S3), and the lumen (Fig.1.4). The middle lamella is composed 

of a lignin-pectin complex and glues the cells together.29 The wood cell progression begins 

in the primary cell wall formed of loosely packed microfibrils.30 The S1 and S3 layers are 

relatively thinner compared to the S2 layer. The transition of a cell from earlywood to 

latewood is determined by the S2 layer, which consists of closely packed microfibrils 

oriented 10-20° relative to the fiber axis.31 An increase in the microfibril angle is related to 

the reduction in mechanical strength of wood which can be an indicator of wood decay.32  

 

 
Fig.1.4 Schematic representation of wood cell wall components. Image created by 

S. M. Usmani. 

 

1.3.2 Heartwood and sapwood 
In wood, cells are arranged such that the older region is in the center, known as 

heartwood. In a cross-cut section of a tree trunk shown in Fig.1.5, the inner, darker region 

of heartwood is surrounded by the lighter sapwood area that performs the function of 

conduction and storage (Fig.1.5). The sapwood is formed of living cells which are converted 

into heartwood as they die.29 Most extractives such as resins and pine pitch are found in the 

heartwood.24 Depending on the wood species, the percentage of extractives varies and can 

play a role in color, smell, and natural durability of wood.24 For instance, the intense color 

of mahogany is due to the type and quantity of extractives in its heartwood, while water 

resistance in teak heartwood is due to deposits of waxes and oils.33 Even though extractives 

are formed in the sapwood as byproducts of cellular metabolism, no species of wood 
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contains durable sapwood.31,33 Preservative treatment can impart durability to sapwood, 

making it a useful product for building long-lasting wooden structures.  

 

 
Fig.1.5 Cross-cut section through a tree outlining the heartwood and sapwood regions. 

Image taken by S. M. Usmani. 

 

1.3.3 Wood species 
Some species widely used in testing of wood preservatives are Scots pine (Pinus 

sylvestris), which is an evergreen species (softwood) and beech (Fagus sylvatica), a 

deciduous species (hardwood). A brief description of the two types follows.  

Evergreens are found in the temperate regions where distinct seasonal changes result 

in the formation of annual (growth) rings. In evergreens, two cell systems are 

interconnected.31 The longitudinal cells run from root to crown, providing support and 

conduction to the tree. These are known as tracheids. There are two types of tracheids that 

cater to seasonal change as shown in Fig.1.6. During the beginning of the season, 

conduction is the primary function of the tracheids. Therefore, cell diameters are large and 

walls are thin in earlywood tracheids.30 As the season progresses, support takes precedence 

over conduction, causing the cells to become narrow and thick-walled, now known as 

latewood tracheids.30 They also contain bordered pits that allow liquid to flow between 

neighboring cells, as shown in Fig.1.6. The other cell system is aligned radially from bark 

to pith. In this system, conduction takes place through ray tracheids. Nutrition is stored in 

brick-shaped parenchyma cells which are similar to ray tracheids, that also contain pits to 

transport liquid between neighboring cells.30 
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Fig.1.6 Cross-cut section of Scots pine in back-scattered electron image showing tracheids 

(a) latewood tracheids (b) annual ring (c) earlywood tracheids with bordered pits. 
Image created by S. M. Usmani. 

 

In addition to the tracheids and parenchyma cells, there are resin canals found in the 

longitudinal and radial directions. Resin is secreted into these canals by specialized 

parenchyma cells known as epithelial cells.5 Resin acts as a natural barrier against wood-

degrading organisms. To replicate the natural resistance of wood, extractive formulations 

such as tannins continue to be evaluated for use as preservatives, but their efficacy remains 

low compared to current commercial preservatives used in wood products.34 

Unlike evergreens, fibres are the principal cells in deciduous species that provide 

mechanical strength.31 Fibres are similar to tracheids, but shorter.5 Conduction in deciduous 

trees takes place in long pipe like cells known as vessels. They come in varying sizes 

depending on species and may contain a single large opening or several smaller ones.5 

Longitudinal parenchyma cells contain storage tissues. Similar to resin canals in evergreens, 

some deciduous species have gum canals. 

The cellular arrangement of the wood species determines its permeability. Scots 

pine sapwood has a lower permeability than beech.35 This is because fluid transport in 

evergreen trees is regulated by bordered pits that are not found in deciduous trees. Tension 

stress such as drying can result in aspiration of the bordered pits which can block liquid 

flow.30 Therefore, drying of wood before preservative treatment can lead to aspiration of 

bordered pits in earlywood tracheids of Scots pine sapwood. Consequently, less than the 

expected amount of preservative enters the matrix reducing the protection of treated wood 

from decay. Thus, the permeability of wood is an important characteristic that can determine 

the future durability of a treated wood product.  

 



Introduction 

10 
 

1.4 Wood-degrading fungi and termites 
Fungal decay is generally classified into three ecological types depending on 

structural damage to wood; white-rot, brown-rot, and soft-rot. Both white-rot and brown-

rot fungi can break-down cellulose, but only the former can degrade lignin. Soft-rot can 

degrade cellulose, hemicellulose, and lignin to a small extent. A brief description of their 

decay mechanism follows.  

 

1.4.1 White-rot fungi  
White-rot fungi have a complex enzyme set-up that enables them to degrade 

cellulose along with lignin. The cellulase enzyme complex is made up of three main groups; 

endo-1,4-ß-glucanases, two types of exo-1,4-ß-glucanases, and glucohydrolases.36 

Cellulose and hemicellulose are broken down by cellulases. Lignin is degraded by oxidative 

enzymes such as peroxidases and laccases, and the resultant heterogeneous aromatics are 

metabolized by the fungi.35 Instead of sequential degradation of lignin, cellulose, and 

hemicellulose, some white-rot fungi can decay both carbohydrates and lignin at the same 

time, this is known as simultaneous white-rot.37 Simultaneous white-rot is observed in 

Trametes versicolor, a white-rot fungi.37 After a white-rot attack, wood is reduced to a 

fibrous mass and has a bleached appearance (Fig.1.7).38 These fungi predominantly attack 

hardwoods, and as such are not commonly observed in timber buildings in the northern 

hemisphere, which are mostly made using conifers.37 

 

 
Fig.1.7 Beech wood decayed by T. versicolor. Image taken by S. M. Usmani. 

 

1.4.2 Brown-rot fungi 
Some common brown-rot fungi are Coniophora puteana, Gloeophyllum trabeum, 

and Rhodonia placenta.39 They preferentially attack softwoods and are commonly observed 

in wooden structures built with conifers in temperate regions. Brown-rot fungi degrade 
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mostly carbohydrates and cause limited damage to lignin. They induce the production of 

hydroxyl radicals to depolymerize lignin and expose cellulose for degradation.26 During 

wood decay, brown-rot fungi form oxalic acid to lower the pH of their microenvironment 

and initiate non-enzymatic and enzymatic breakdown of cellulose.39 A non-enzymatic 

oxidative mechanism using iron-dependent Fenton chemistry is used by brown-rot fungi to 

depolymerize carbohydrates.26,40 Brown-rot remove hemicellulose sugars such as xylose 

and mannose before cellulose sugars. Strength loss due to brown-rot attack is associated 

with the hydrolysis of hemicellulose. The rapid depolymerization of cellulose causes wood 

to shrink, as shown in Fig.1.8.38 Although both wooden specimens presented in Fig.1.8 have 

shrunk, their appearance is remarkably different, with C. puteana leaving dark stains and 

R. placenta causing deep cracks. 

 

 
Fig.1.8 Wood specimens damaged by (a) C. puteana and (b) R. placenta. Image taken by 

S. M. Usmani. 

 

1.4.3 Soft-rot fungi 
Soft-rot decay is caused by ascomycetes and deuteromycetes.40 It is similar to white-

rot in that all cell wall constituents may be degraded, but they degrade relatively less 

lignin.40 This might be because many ascomycetes have a complete cellulase system like 

white-rot fungi. Additionally, soft-rot decay is characterized by longitudinal cavities in 

wood, as this allows them to attack less lignified portions of the cell wall. However, soft-

rot differ from white-rot and brown-rot as besides wood they can decay plant debris as well. 

Also, they can attack water saturated wood such as submerged wooden poles, which cannot 

be attacked by white-rot and brown-rot fungi.37 Soft-rot fungi may cause stain, 

discoloration, and appearance of cracks in wood.5,37 
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1.4.4 Termites 
Termites are known as Isoptera, which refers to the two pairs of straight wings that 

are characteristic of reproductive adults.41 Traditional ecological classification of termites 

is based on how they digest lignocellulose. Higher termites (Termitidae) have only 

intestinal bacteria. Lower termites called as “subterranean” have both symbiotic protozoa 

and bacteria to digest cellulose.41 They live in colonies comprising of large number of 

termites. The soldiers in the colony are distinguished with their dark brown head and 

protruded mandibles, while workers have a white head and body (Fig.1.9). Subterranean 

termites such as Coptotermes and Reticulitermes can cause damage to goods and services. 

The genus Reticulitermes is found mostly in Europe and the Coptotermes species is found 

in tropical and sub-tropical regions.42,43 Among the genus Coptotermes, the species 

Coptotermes formosanus is native to China and the most economically important invasive 

insect.44 Globally, the estimated cost of damages to goods and services due to attack by 

C. formosanus was reported to be greater than 30.2 billion US $ per year.44 The United 

States of America alone spends over 1 billion US $ yearly on termite control and repair to 

damaged wooden structures and homes.45 Thus, preservatives that can inhibit termite attack 

are crucial for extending the service life of wooden structures and prevent economic losses 

to the built environment.  

 

 
Fig.1.9 C. formosanus, worker (left) and soldier (right). Image taken by S. M. Usmani.  
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Although subterranean termites produce cellulases to metabolize lignocellulose, the 

resultant amount is insufficient to meet their nutritional needs. Therefore, termites have 

evolved a symbiotic relationship with diverse micro-organisms found in the hindgut of 

worker termites such as protist, Pseudotrichonympha grassii, as shown in Fig.1.10.46 These 

micro-organisms facilitate in the digestion of lignocellulose. Initially, the amorphous region 

of the cellulose is partially degraded by the endoglucanase produced in termites, after which 

the product travels to the hindgut, where the gut protists depolymerize the crystalline region 

of cellulose.47 The end product of lignocellulose degradation is mainly acetate, which is 

utilized by the termites as a carbon and energy source.47 An understanding of how the 

protists population react to active ingredients in wood preservatives can be used to increase 

their biocidal efficacy against termites. 

 

 
Fig.1.10 C. formosanus worker with removed gut and the corresponding gut protists, 

P grassii. Image taken by S. M. Usmani.  
 
 
1.5 Wood preservation  

In the wood-working industry, preservatives provide economic and environmental 

benefits by extending the service life of the wood product. In the European Union itself, 

approximately 18 million cubic meters of timber were pressure treated with wood 

preservatives.48 In Germany, the durability of wood and wood-based products is categorized 

based on their potential service conditions into “Use Classes” (EN 335: 2013) as shown in 

Table 1.1.49 
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Table 1.1 Summary of Use Classes applicable for chemically treated wood 49 

Use Class Service condition  

1 Indoor use with ≤ 70% air humidity which requires preservatives for 

prevention of insects. 
2 Indoor use with air humidity > 70% and outdoor use (without weathering) 

that requires preservatives for prevention of insects and fungi. 
3 3.1 Weatherproof wood products that are placed outdoors (above ground with 

limited water contact) need preservatives to prevent decay caused by fungi 

and insects.  

3.2 Weatherproof wood products that are placed indoors (wet rooms) and 

outdoors (above ground with prolonged water contact) need preservatives 

to prevent decay caused by fungi and insects. 

4 Wood which is in permanent contact with ground or fresh water that needs 

the same preservatives as in Use Class 3.  
5 Wood used in the marine environment that need preservatives to protect 

from marine organisms.  
 

In general, wood preservatives can be classified based on their solubility as oil-

borne or water-borne.50 The earliest known preservative is oil-borne creosote, which 

continues to be used in some countries to protect railway sleepers. At present, most oil-

borne wood preservatives such as pentachlorophenol are restricted because of their 

detrimental impact on the environment.51 Simple salts such as zinc chloride (ZnCl2) and 

sodium fluoride (NaF) were some of the earliest water-based preservatives.50 The use of 

these salts declined as they were found to leach out from wood when exposed to water. 

Consequently, they were substituted with wood preservatives containing active ingredients 

such as copper and boron. 

 

1.5.1 Copper and boron 
Copper is a widely used active ingredient for wood preservation. Since the early 

1950s, copper was combined with chromic acid and arsenic pentoxide for wood fixation. In 

the 1990s, when arsenic and hexavalent chromium came to be classified as human 

carcinogens, their use became restricted to industrial applications.52 Consequently, several 

alternatives were developed to replace chromium and arsenic in preservative 
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formulations.51 Some well-known replacements are alkaline copper quaternary ammonium 

salts, copper HDO [bis-(N-cyclohexyldiazeniumdioxy)-copper], and copper azoles. 

Combination of copper with quaternary ammonium compounds has proven efficacy against 

insects and copper tolerant fungi.50 It was observed that ammonia plays a role in expanding 

the cell walls to improve the distribution of copper into wood.50 Copper is also combined 

with azoles, which are used in agricultural applications. Although triazoles have low 

mammalian toxicity, their production costs are high.50 Some triazoles used in combination 

with copper are propiconazole and tebuconazole.  

Copper is closely followed by boron, another well-known active ingredient used in 

wood preservatives. In addition to their high biocidal activity, boron compounds have low 

mammalian toxicity. Also, brown-rot fungi have not developed resistance to boron as they 

have to copper.53 These properties of boron have resulted in its increased use in wood 

products.50 Disodium octaborate tetrahydrate (DOT) is a well-known boron compound used 

in wood preservation.53 Other borate formulations common in wood treatment are sodium 

tetraborate, borax, and boric acid. As borates are non-flammable, the treated wood product 

is flame retardant as well. Despite their advantages, borate compounds are limited by their 

high leachability. Therefore, their use is restricted to above ground contact applications 

where they are not directly exposed to weathering conditions such as rain. To overcome the 

leaching susceptibility of boron in ground contact applications, it is used in combination 

with other biocides. For instance, borate when combined with copper and chromium for 

outdoor ground contact applications is effective against soft-rot.53 Copper is also combined 

with boric acid in an amine-based formulation known as copper HDO.50 However, unlike 

copper, boron loses its efficacy on fixation.53 Research efforts are ongoing to develop 

formulations that will result in partial mobility of boron inside wood after fixation, which 

is necessary for its biocidal action. 

The solvent in wood preservative formulation can improve the distribution of 

preservative in the wood matrix. A study done by Amofa reported on the role of ethylene 

glycol (EG) in wood treatment.54 The study reported that the formulation of boron using 

EG as a solvent facilitated its diffusion in wood by causing it to swell, that in turn opened 

the cell wall matrix.54 The swelling is due to the strong affinity between EG and the 

hydroxyl groups in the wood matrix. Additionally, the relatively low vapor pressure of 

ethylene glycol reduced its evaporation and prolonged the cellular movement of boron 

inside wood.54 In addition to facilitating diffusion, ethylene glycol reduced the potential 
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water absorption capacity of wood. The decrease in the available water sorption sites is a 

consequence of physio-chemical interaction between EG and wood. Therefore, moisture 

content measured in EG treated wood was significantly lower than water treated wood.54 

Another advantage reported by Amofa was that pine wood treated with boric acid in EG 

solution was found to leach less boron.54 Concerning human health and environmental 

safety, EG biodegrades rapidly in soil and surface water (within 28 days), it is non-

carcinogenic, and poses no risk to human health.55,56 Hence, EG is an ideal solvent for wood 

preservative formulations that is safe for handling and improving the distribution of 

preservative inside wood.  

 

1.5.2 Chemical wood modification  
Chemical modification is another method to protect wood. In chemical 

modification, the hydrophilic hydroxyl groups of the cell wall polymers are converted into 

hydrophobic groups to significantly reduce the moisture content of wood. The advantage of 

chemical modification is that the treatment is non-biocidal. Therefore, the environmental 

and health risks of chemically modified wood are negligible. Chemical modification 

methods such as acetylation and furfurlyation are already commercialized for wood 

protection.57 In furfurylation, wood is polymerized with furfuryl alcohol (produced in 

agricultural wastes) using catalysts and heat.20 A furfurylated wood product is resistant to 

marine borers.20 In acetylation, acetic anhydride reacts with the wood hydroxyl groups that 

results in the formation of wood acetate and acetic acid.20 However, the acetylation process 

has been applied to only two types of wood; radiata pine and alder.57 More research is 

ongoing to apply chemical modification in other wood species as well. 

For instance, lactic acid, a non-toxic chemical has been studied to chemically 

modify beech wood. Lactic acid-based treatments on beech improved its dimensional 

stability and biological resistance to C. puteana and T. versicolor. The treatment involves a 

curing step at 160°C for 48 h for in-situ polymerization of lactic acid oligomers inside 

wood.58 A simpler strategy could be to use lactic acid itself as a solvent for suspension of 

an inorganic active ingredient such as boron or fluoride. Thereby, a synergistic effect on 

biocidal efficacy can be investigated similar to that reported for ethylene glycol and boron 

and discussed in the previous section (1.5.1).54 
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1.5.3 Fluoride preservatives 
Fluoride used to be an important active ingredient in wood preservative 

formulations before the prevalence of copper and boron. Fluoride formulations became 

prevalent during the World War I when the German State Railway had to find a replacement 

for creosote, which was used to protect railway sleepers but was in scarce supply.59 In 1887, 

the first patent for impregnation of wood with fluoride compounds was made by Thompson, 

followed by several patents from Malenkovic and Wolman.31,60 In these earlier treatments, 

a mixed solution of sodium fluoride and zinc chloride followed with heating led to a 

precipitate of zinc fluoride in the wood matrix.31 In 1907, Wolman patented an improved 

treatment using potassium fluoride for protection of mine timbers.31 This treatment was 

subsequently replaced with sodium fluorosilicate, a cheaper and widely available 

compound.31 In 1909, Malenkovic developed an improved formulation known as “Basilit”, 

a mixture of 88% NaF and 12% dinitrophenolanilin, which was later modified to 

dinitrophenol by Wolman.31 However, dinitrophenol was found to be corrosive and was 

eventually replaced with dichromates. In addition to reducing corrosion, dichromates were 

found to improve the fixation of fluorides in wood. The resultant fluoride and dichromate 

formulation was known as “Wolmanit U” or “Basilit U”, where U stands for unleachable.15  

In 1909, Netzsch did a comprehensive study on the biocidal efficacy of fluorides for 

wood preservation. He found that the toxicity of fluoride to fungi was proportional to the 

amount of fluorine in the compound.61 In addition, HF itself was more toxic than simple 

metallic salts because of the activity of the free hydrogen.61 Moisture content of wood plays 

an important role in the diffusion of fluoride ions in the wood. Becker confirmed that the 

fluorides diffuse with moisture to the decayed area within wood.15 Diffusion of fluoride was 

initiated when the wood moisture level reached 17% to 19% and increased linearly with the 

rising water content.15 He also reported that fluoride in the wood matrix continuously 

establishes new equilibria based on the fluctuations in the moisture content.62 Therefore, 

the biocidal action of fluoride is regulated by the moisture content of wood. 

During wood treatment, fluoride penetrates mostly in the axial direction, followed 

with the radial, and the least in the tangential direction in the ratio of 6:4:3.15 Bifluorides 

were found to penetrate deeper than silicofluorides.15 Becker reported that 1 kg/m3 of 

fluoride in wood could be sufficient to protect against fungal degradation.15 For eradication 

of wood-destroying beetle larvae, surface treatment with 100 g bifluorides salt per m2 was 

required.15 With NaF, the fluoride content of 0.45 kg/m3 was needed for biocidal efficacy.15 
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In another study, NaF at even lower retention of 0.33 kg/m3 had efficacy against wood-

degrading fungi, albeit without leaching.63 

A composition of chromium, fluoride, and copper (CFK) was developed by 

Desowag-Bayer, which has efficacy against soft-rot fungi.15 Besides this formulation, a 

mixture of copper naphthenate and NaF was reported to have efficacy against brown-rot 

(R. placenta) and white-rot (T. versicolor) fungi.64 In this treatment, the dissociated fluoride 

from NaF aided in the diffusion of copper for better protection of wood.64 Even stand-alone 

treatment of particleboard with NaF at low retention is resistant to decay caused by fungi 

and termite (C. formosanus).65 NaF is also toxic to mold fungi (Aspergillus niger), House 

Longhorn beetle (Hylotrupes bajulus), and termites (Reticulitermes flaviceps).31,66,67 

Besides this, fluorides are also used in remedial treatment of wood.63 Overall, fluorides at 

low concentrations have demonstrated efficacy against a wide-range of wood-degrading 

fungi and insects. 

Moreover, treatment with fluoride does not alter the physical properties of wood. 

Fluoride salts are acidic or neutral, and therefore they do not reduce the mechanical strength 

of wood as observed with the use of alkaline liquids.15 X-ray emission of timber showed 

that fluoride salt prevented the shrinkage of wood by blocking the cell wall cavities.15 In 

contrast to copper, fluorides do not stain wood or have an odor, unlike creosote. Regarding 

anti-corrosion, partial hydrolysis of silicofluorides results in HF formation, which is 

corrosive to iron screws used for fastening in wooden structures.15 However, NaF has no 

effect on any type of metal fastening.15 Also, a study showed that the optimized combustion 

of fluoride treated wood did not result in a higher concentration of stacked pollutants 

compared to those released from the combustion of untreated wood.68 Another study found 

that fluoride concentration in treated wood ash was not significantly higher than pure wood 

ash.69 These studies show that fluoride treated wood poses a low risk to the environment at 

the end of its service life. 

Despite their multiple advantages as highlighted above, the main limitation of 

fluoride compounds remains their high susceptibility to leaching. Becker (1973) reported 

that a short rainfall can remove more than 50% injected fluoride salts if used without 

fixatives.15 Studies on NaF treated wood specimens found that fluoride was lost during 

leaching, which resulted in their high mass losses due to fungal and termite attack.65–67,70 

Their high susceptibility to leaching has contributed to the decline of fluoride compounds 

in wood preservative formulations. Table 1.2 summarizes the number of fluoride-based 
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wood preservatives used in Germany from the list published by Deutsches Institut für 

Bautechnik (DIBt).71–73 The empty column in Table 1.2 is because the German Building 

Institute did not include any fluoride compounds (water-based) in the DIBt list of wood 

preservatives for 2016.73 

 

Table 1.2 Summary of approved fluoride-based wood preservatives in Germany 

Mixtures Listed products 

198171 199772 201673 

Chromium/fluorine  9 - - 
Fluorosilicates 12 2 - 

Bifluorides 11 1 - 
Chromium/fluorine/boron 6 9 - 

Chromium/fluorosilicates/zinc/copper - 2 - 
Total 38 14 0 

 

From Table 1.2, it is seen that in 1981 there were 38 fluoride mixtures available in 

the market, which declined to 14 in 1997, and zero were listed in 2016 because no applicant 

(company) applied for commercial approval of fluoride-based wood preservatives. This is 

because boron has gradually replaced fluorine in many wood preservative formulations.53 

Even though boron compounds are highly water soluble, they are preferred due to their low 

mammalian toxicity. To bring back fluorides into production as commercial wood 

preservatives, the problem of their high susceptibility to leaching must be solved. One 

method to overcome the leaching limitation would be to evaluate sparingly soluble fluorides 

synthesized as nanoparticles for protection of wood from fungi and termites.  

 

1.5.4 Nanoparticles as wood preservatives 
Nanoparticles with their distinct physical properties of small size and increase in 

specific surface area have opened an exciting technological route to improve the distribution 

of active ingredients into wood. The distribution of nanoparticles in the wood structure is 

dependent on their diameter and the type of wood species used in the treatment. As 

discussed in the earlier section (1.3.3), beech wood is relatively more permeable than Scots 

pine. Differences in permeability can determine if nanoparticles of a specific diameter can 

be introduced in a particular wood species. For instance, beech wood could be treated with 
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silica (SiO2) particles which were 350 nm in size, whereas in treatment of Scots pine wood, 

their particle size was limited to 70 nm.74 Therefore, the particle size and type of wood 

species are important variables to consider during treatment of wood.  

Micronized copper (Cu) preservatives with particle sizes ranging from 1 nm to 

250 µm are now estimated to comprise 50% of the commercial Cu containing wood 

preservative market in North America.75 Besides Cu, studies have evaluated efficacy of 

other nano formulations for wood protection. Unleached wood treated with nano zinc borate 

is resistant against brown-rot fungi; C. puteana and R. placenta.18,19 Similar resistance to 

brown-rot fungi was reported for unleached wood specimens treated with titanium dioxide 

(TiO2) that was prepared using sol-gel synthesis.76 Another study reported that unleached 

wood treated with nano zinc borate has efficacy against white-rot fungus, T. versicolor. 

However, the same treatment in wood resulted in high mass loss caused by brown-rot 

fungus, Tyromyces palustris.77 With respect to leaching, it is reported that nano 

formulations of Cu and zinc (Zn) are more leach resistant compared to their soluble metal 

oxide counterparts.78 Mantanis et al. (2014) found that coating with acrylic emulsion also 

reduces the leaching of nano zinc borate from wood.77  

Leach and biological resistance of several nanoparticles namely zinc oxide (ZnO), 

boric acid (B2O3), cupric oxide (CuO), TiO2, cerium oxide (CeO2), and tin oxide (SnO2) 

were evaluated against fungal decay by Terzi et al. (2016).79 They found that only wood 

specimens treated with nanoparticles of ZnO are resistant to leaching and against brown-

rot fungus, Gloeophyllum trabeum.79 Still, the same nano-based treatments in wood are not 

resistant to decay caused by T. versicolor.79 Subsequent work by Bak, et al. (2018) found 

that increasing the concentration of nano ZnO formulation to 5% for wood treatment made 

even the leached specimens resistant to T. versicolor.80 Yet, this higher concentration of 

ZnO nanoparticles in wood after leaching was not sufficient to protect from C. puteana, a 

widely observed fungi in decayed wooden houses in Europe.80 One nano-based treatment 

that is reported to have efficacy against C. puteana after leaching was TiO2/Cerium (Ce) in 

Spruce wood.81 However, the efficacy of TiO2/Ce treatment in wood specimens has not 

been evaluated for either white-rot fungi or termites.  

Several research studies have assessed wood treated with nano formulations for 

protection from termites. In a termite test with C. formosanus, the specimens treated with 

nano-B2O3 and then leached caused 100% termite mortality, although the lowest mass loss 

(4.2%) was observed for specimens treated with nano-CuO.79 In another test, nano ZnO 
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treated wood specimens that were leached led to mass losses below 2% caused by 

Reticulitermes grassei.82 Wood treated with nano ZnO was also found to protect from 

termites, R. flavipes.83 Among all the nano-based treatments that have been evaluated so 

far, nanoparticles of ZnO and TiO2 in various formulations have shown the most promising 

results. The former protected wood from white-rot fungus and termites, while the latter from 

brown-rot fungus. However, there is no one nano-based treatment that is reported to protect 

wood against both types of fungi and termites. Therefore, further improvements are needed 

such that one nano-based treatment of wood provides broad protection from different types 

of decay instead of developing tailor-based preservative formulations. 

 

1.6 Nano metal fluorides 
Sol-gel synthesis is a widely used, low-cost, and easy to scale-up method for 

synthesis of oxidic nanoparticles. It also offers more control over synthesis parameters to 

modify the shape, size, and structure of the nanoparticles.84 These characteristics have led 

sol-gel synthesis to become an established process in various industrial applications such 

as thin-films and catalysts.84 Some metal oxide nanoparticles synthesized and tested using 

this procedure for wood protection are SiO2 and TiO2, which were described in the previous 

section (1.5.4).85 

Sol-gel synthesis involves hydrolysis of a metal alkoxide precursor followed with a 

condensation reaction between terminal hydroxyl groups.86 In the solution state known as 

“sol”, the metal oxide particles are in a colloidal suspension which has a lower viscosity 

than the final network structure called “gel”. The sol-formation can be controlled by various 

factors such as pH, temperature, and reactant concentration. These parameters can influence 

the sol state or the gel state of the resultant metal oxide. 

The flexibility of sol-gel synthesis allows the use of different metal alkoxide 

precursors which undergo acid-catalyzed hydrolysis through nucleophilic substitution. In 

sol-gel synthesis, M-OH is formed via the co-ordination of a metal cation, Mn+ with a water 

molecule. Following hydrolysis, the hydroxyl groups can undergo condensation with –OR 

groups to form -M-O-M- cross-linked gel network accompanied with the release of water 

or alcohol. The formation of a highly viscous gel poses a challenge for wood treatment. To 

overcome this limitation, wood is either dip-coated with the precursor solution or it is 

immersed in the precursor solution for in-situ polymerization of the resultant metal oxide.85  
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An immersion treatment does not result in uniform distribution of nanoparticles over 

a greater area in the wood matrix.81 A treatment where the wood is directly treated with the 

sol would be a more effective strategy in pushing the nanoparticles deeper into wood. To 

implement such a strategy, the sol-gel synthesis procedure would need to be optimized such 

that wood can be treated with the sol and delay or minimize the formation of the gel. In this 

way, a colloidal suspension of nanoparticles with small diameters can be impregnated in 

the wood matrix. Once inside, the eventual aggregation of nanoparticles will function to 

block the micro/nano-pores in wood cells and minimize the entry of fungal hyphae. The 

formation of a stable sol requires control over the sol-gel process, which can be achieved 

via the fluorolytic sol-gel route used to synthesize nano metal fluorides (NMFs).  

In 2003, the typical hydrolysis reaction of sol-gel was modified to fluorolysis for 

the synthesis of novel nanoscopic metal fluoride particles by Kemnitz, et al.87 In fluorolytic 

sol-gel synthesis route, hydrogen fluoride is used to fluorinate the metal alkoxide precursor. 

It is a well-known method for synthesis of sparingly soluble fluorides such as magnesium 

fluoride (MgF2) and calcium fluoride (CaF2). MgF2 is found as a rare mineral known as 

“Sellaite” and CaF2 is a naturally occurring mineral (also called “Fluorspar”).88 MgF2 is 

used in the production of aluminium and CaF2 is used in the production of HF, an important 

chemical needed for synthesis of various fluoride materials.89 MgF2 has a rutile structure 

and CaF2 has a cubic structure.90,91 Both are sparingly soluble, with CaF2 (16 mg/L) having 

a lower solubility than MgF2 (130 mg/L).92 

In fluorolytic sol-gel synthesis, the reaction is between Mn+ cation from the metal 

alkoxide and stoichiometric amounts of HF resulting in the formation of M-F bonds 

(Fig.1.11). It involves the direct attack of fluoride at the uncoordinated M center that results 

in the formation of M-F-M bridges instead of the M-O-M network seen during hydrolysis.93 

The donating solvent molecules stabilize the highly distorted metal fluoride particles in the 

sol state while preventing the formation of regular MF6-octahedra.94 The colloidal 

properties of the system (sol and gel formation) are controlled by optimizing the reaction 

conditions such as the type of solvent and precursor. Specifically, for wood treatment, the 

synthesis conditions are optimized to form a clear sol as shown in Fig.1.11. A stable sol-

state with low viscosity will improve the distribution of metal fluoride nanoparticles into 

the matrix for better protection of wood from decay.  
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Fig.1.11 Schematic of fluorolytic sol-gel synthesis and an example of a clear CaF2 sol 

(right), where M(OR) = metal alkoxide and n = metal valence. Image created by 
S. M Usmani. 

 

NMFs have been evaluated for a broad range of applications such as catalysis,90,95 

optical thin films,96 antireflective coatings,97,98 biodegradable plastics,99 and dental.100 The 

more electronegative fluoride results in a stronger Lewis acidic character of metal fluorides, 

which is not observed in metal oxides.88 MgF2 nanoparticles prepared with fluorolytic sol-

gel synthesis have a large surface area of 300 m2/g for Lewis acid sites that can be optimized 

to produce catalysts tailored according to specific reactions.90 Silicon plates spin-coated 

with MgF2 sol result in a transparent layer with thickness as low as 19 nm that can be used 

in optical coatings.96 Glass substrates coated with MgF2 nanoparticles show high 

mechanical stability and antireflective properties with a minimum reflectance of 0.2% at 

600 nm.97 Furthermore, it was reported that the addition of CaF2 to MgF2 coating improved 

its mechanical stability such that it is even scratch resistant to coarse steel wool.98 

Mechanical properties of low molecular polylactic acid used to make biodegradable plastics 

are improved with the synthesis of CaF2 nanoparticles in lactic acid.99 Thus, properties of 

several materials are improved with the inclusion of NMFs. 

Also, metal fluorides in the form of nanoparticles have been studied for various 

biological applications. Low concentrations of CaF2 nanoparticles were reported to be 

antibacterial and non-toxic to mammalian cells.101 Notably, the nano-size and the less 

ordered lattice structure of CaF2 nanoparticles make them more soluble than the macro-

sized CaF2.100 The higher solubility means that an oral rinse containing nano-sized CaF2 

will result in a larger fluoride deposition to provide better protection from dental caries than 

macro-sized CaF2.100 This result was in agreement with another study, that reported 

nanocomposites containing CaF2 had high fluoride release which were also mechanically 

durable.102 Nanoparticles of CaF2 and MgF2 also showed higher remineralization of early 
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dental caries lesions than NaF.103 In one study, the combination of ZnO and MgF2 

nanoparticles reduced the growth of gram-positive bacteria which are responsible for 

respiratory tract infections.104 They also found that the combination of both nanoparticles 

resulted in lower leaching compared to their respective individual coating on Cochlear 

implant, which is used as a hearing aid.104 More importantly, the combination of ZnO and 

MgF2 at a low concentration (0.08 wt%) did not have an adverse effect on human dermal 

fibroblast cells that were isolated from the auditory canal.104 Also, catheters coated with 

MgF2 nanoparticles were shown to be antibacterial and had no adverse effect on human cell 

lines.105 The toxicity of fluoride compounds in vertebrates is dependent on their solubility. 

Studies done on rats found that CaF2 and MgF2 posed a lower risk to renal and hepatic 

organs compared to NaF that has a higher solubility (40 g/L).106 Overall, NMFs have 

demonstrated their antibacterial activity and biocompatibility for use in medical 

applications.  

Yet, no studies have reported on the biological resistance of wood treated with 

nanoparticles of either CaF2 or MgF2. As far back in 1926, the use of sparingly soluble 

fluorides such as CaF2 and MgF2 was proposed as an alternative to highly soluble fluorides 

as they would be more environmentally safe.107 So far, extensive literature search did not 

turn up results that tested the viability of these sparingly soluble fluorides to protect wood 

from decay. One of the reasons results from these tests have not been reported is because 

wood treatment with sparingly soluble compounds can be challenging. To overcome this 

limitation, metal fluorides can be synthesized as nanoparticles to improve their treatment 

and subsequent distribution into the wood matrix. The following study presents the first 

results on the durability of wood treated with sparingly soluble metal fluorides. 
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2. Characterization  
This chapter presents results from the characterization of nano metal fluorides 

(NMFs) and the resultant treated wood. 

 
2.1 Composition and particle sizes of nano metal fluorides 

Fluorolytic sol-gel synthesis is a well-established method and past studies have 

already characterized MgF2 and CaF2 nanoparticles.88,108 Specifically for the current study, 

a novel equimolar combination of MgF2 and CaF2 was synthesized in a single sol using 

fluorolytic sol-gel synthesis. The following is the characterization of the NMF combination 

sol and its comparison with stand-alone NMF sols.  

 
2.1.1 X-ray diffraction (XRD)  

The Fig.2.1 shows the XRD patterns of xerogels from NMF sols. The xerogels of 

MgF2 and CaF2 matched the respective reference patterns of MgF2 and CaF2.  

 

 
Fig.2.1 XRD patterns of xerogels in different solvent formulations, ethylene glycol (EG) 

and lactic acid (lac). The vertical lines are the reference peaks from MgF2 (PDF 41-
1443) and CaF2 (PDF 35-0816).109 
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In Fig.2.1, the reflection peaks in the xerogel of the combination of MgF2 and CaF2 

in a single sol in ethylene glycol (EG) matched with the respective reference patterns of 

MgF2 and CaF2. Similarly, the reflection peaks from the xerogel of the combination of MgF2 

sol in ethylene glycol (EG) and CaF2 sol in lactic acid (lac) could be attributed to reference 

reflections of MgF2 and CaF2. Thus, the XRD diffraction patterns confirmed that the NMF 

combination formulations were composed of MgF2 and CaF2. 

 

2.1.2  Dynamic light scattering (DLS) 
After confirmation of composition, the hydrodynamic diameter of the nanoparticles 

was determined with DLS. The hydrodynamic diameter of a nanoparticle includes not only 

the particles but everything bound to the particle surface. The distribution of the 

hydrodynamic diameter of the nanoparticles in the NMF sols is presented in Fig.2.2. 

 

 
Fig.2.2 Hydrodynamic diameter of nanoparticles in NMF sols in different solvent 

formulations, ethylene glycol (EG) and lactic acid. 



Characterization 

27 
 

The nanoparticles in a single sol of MgF2 (EG) sol have a hydrodynamic diameter 

of 14 nm (Fig.2.2). The CaF2 nanoparticles synthesized in EG have a hydrodynamic 

diameter of 21 nm, whereas CaF2 nanoparticles synthesized in lactic acid had a larger 

hydrodynamic diameter. Strong binding of several layers of lactic acid (linked by hydrogen 

bonding) could have led to a hydrodynamic diameter much larger than the diameter of the 

“pure” CaF2 particle. 

For the single sol combination of MgF2 and CaF2 in EG there is only one peak at 

4 nm. However, for the combination of MgF2 (EG) and CaF2 (lac) there are two peaks, at 

5 nm and 10 nm. The two peaks were caused by two types of particles with different sizes. 

This is the expected behavior when mixing two separately synthesized sols. However, in 

the one-step sol synthesis, the two particles influence or direct each other leading to a more 

uniform particle size. To get a clearer picture of the mean particle size distribution of “pure” 

nanoparticles of metal fluorides in different formulations without the influence of solvent, 

they were characterized by TEM. 

 

2.1.3 Transmission electron microscopy (TEM)  
High resolution-transmission electron microscopy (HR-TEM) images in Fig.2.3 

reveal that the mean particle size distribution of NMFs is smaller than 10 nm. The sizes of 

the MgF2 and CaF2 nanoparticles in the one-step sol are similar to separately synthesized 

sols. 

 

 
Fig.2.3 HR-TEM image of MgF2 and CaF2 nanoparticles (a) synthesized together in one sol 

with ethylene glycol as solvent (b) combined from two sols, one in ethylene glycol 
and the other in lactic acid. 
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In contrast to HR-TEM images, the high-angle annular dark field scanning 

transmission electron microscopy (HAADF-STEM) images show that a larger proportion 

of particles with sizes smaller than 5 nm are present in the one-step sol (Fig.2.4a) than the 

combination of two separate sols (Fig.2.4b). Thus, combining sols causes more 

nanoparticles to aggregate resulting in their larger size. It is also observed that there is a 

large difference in size of the nanoparticles from the one-step synthesis (Fig.2.4a) than the 

separately synthesized sols (Fig.2.4b). This variation in particle size could influence their 

eventual distribution, with the smaller particles able to penetrate rapidly and deeper into 

wood during treatment. 

 

 
Fig.2.4 High-angle annular dark field-STEM image of MgF2 and CaF2 nanoparticles from 

(a) one-step sol in ethylene glycol as solvent (b) combined from two sols, one in 
ethylene glycol and the other in lactic acid. 

  

Elemental mapping was done on the associated HAADF-STEM images in Fig.2.4, 

to determine the composition of MgF2 and CaF2 nanoparticles in the combined 

formulations. From Fig.2.5, it is confirmed that nanoparticles in the single sol are composed 

of fluorine (F), calcium (Ca), and magnesium (Mg). It is also observed that there are larger 

aggregates of CaF2 (Fig.2.5a,b) than MgF2 (Fig.2.5a,c). 
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Fig.2.5 Elemental map of (a) Fluorine (b) Calcium (c) Magnesium in MgF2 and CaF2 

nanoparticles synthesized together in one sol with ethylene glycol as solvent. 

 
Similarly, elemental maps in Fig.2.6 show that the nanoparticles are composed of 

F, Ca, and Mg in the combination formulation from separately synthesized sols. Here, the 

difference between the size of the MgF2 and CaF2 nanoparticles (Fig.2.6) is smaller than 

those observed in the previous elemental maps (Fig.2.5). The chemical composition 

information from EDX is complementary to the results from the XRD diffraction patterns 

in Fig.2.1. The results from this section demonstrate that particles of metal fluorides are 

small enough to distribute over a greater area inside the wood matrix during treatment.  

 

 
Fig.2.6 Elemental map of (a) Fluorine (b) Calcium (c) Magnesium in MgF2 and CaF2 

nanoparticles combined from separately synthesized sols of MgF2 in ethylene 
glycol and CaF2 in lactic acid. 
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2.2 Wood treated with nano metal fluorides 
In this section, wood treated with NMFs is characterized by various analytical 

techniques to determine their inclusion and distribution inside wood.  

 
2.2.1 Powder XRD 

The Fig. 2.7 compares the powder XRD diffraction patterns of Scots pine 

specimens; untreated and treated with the combination of MgF2 and CaF2 (unleached and 

leached). 

 

 
Fig.2.7 Comparison of powder XRD patterns of untreated Scots pine, NMF treated wood, 

and NMF xerogel. The orange vertical (dash-dot) lines are reference reflections 
from untreated Scots pine.110 The green vertical (solid) lines are the reference peaks 
from MgF2 (PDF 41-1443) and the blue vertical (dash) lines are the reference peaks 
from CaF2 (PDF 35-816).109 The asterisk highlights the reflection seen only in NMF 
treated wood (unleached and leached).  

 

From literature, it is known that untreated Scots pine has reflections at 17°, 22°, 34°, 

45°, and 53° (orange vertical dash-dot lines).110 Although the powder XRD diffraction 

patterns of untreated and NMF treated wood (unleached and leached) are similar, they do 
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not show reflections that can be attributed to reference reflections from Scots pine. The 

similar XRD diffraction patterns of unleached and leached NMF treated specimen means 

that structurally there is no change after treatment and the subsequent leaching of wood.  

The peak at 38° (asterisk in Fig.2.7) is seen only in unleached and leached NMF 

treated specimens. The reflection at 38° is not found in reference reflections of untreated 

Scots pine or MgF2 or CaF2. More importantly, no reflections in the diffraction patterns of 

NMF treated wood (unleached and leached) can be attributed to either MgF2 or CaF2. A 

reflection at 60° in NMF treated wood (unleached and leached) cannot be assigned to MgF2 

because the same reflection is also observed in the powder XRD diffraction pattern of 

untreated Scots pine. However, the reflection cannot be assigned to Scots pine either as it 

has not been reported in literature for untreated Scots pine.110 Also, the reflection at 72° 

found in the diffraction patterns of both untreated and NMF treated specimens cannot be 

attributed to either cellulose, MgF2, or CaF2. As this is not the focus of the current study, 

research needs to be done in the future to assign the reflections at 38°, 60°, and 72° observed 

in NMF treated wood. 

 

2.2.2 Nuclear magnetic resonance (NMR) spectroscopy  
The 19F MAS NMR spectra of Scots pine; untreated and treated with the 

combination of MgF2 and CaF2 (unleached and leached) are compared in Fig.2.8. In the 
19F MAS NMR spectrum of untreated Scots pine, a small signal for CaF2 at -108 ppm was 

observed. The likely source of this signal is the impurities found in the rotor used in the 

measurement. More importantly, evidence of MgF2 with a chemical shift of -198 ppm and 

CaF2 with a chemical shift of -108 ppm were observed in the spectra of unleached and 

leached NMF treated wood specimens. The remaining signals in the 19F MAS NMR spectra 

with a chemical shift of -2, -54, -162, and -206 ppm are attributed to spinning sidebands. 

Overall, the NMR spectra provide evidence of metal fluorides in unleached and leached 

treated wood.  
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Fig.2.8 19F MAS NMR spectra (Larmor frequency - 376.4 MHz) of unleached treated wood 

(red), leached treated wood (blue), and untreated wood (black). 

 
An earlier study by Krahl, et al. (2016) reported 19F NMR spectra from the 

combination of MgF2 and CaF2 sols containing 15 and 30 mol% calcium, respectively.98 In 

that study, the signal intensity of CaF2 was lower than MgF2, which was attributed to the 

formation of the metastable phase, CaMgF4.98 In the current study, the NMF combination 

formulation is different as it contains an equimolar concentration of MgF2 and CaF2. From 

Fig.2.8, it is seen that in wood treated with the NMF combination formulation, the signal of 

CaF2 is much higher than MgF2. The higher intensity of the CaF2 signal could have an 

influence on the eventual biocidal efficacy of the NMF combination formulation.  

It should also be emphasized that the signal intensity of the chemical shift at 

- 198 ppm (MgF2) is lower in the leached treated specimen than the unleached treated 

specimen (Fig.2.8). This finding is consistent with the difference in solubility between 

MgF2 and CaF2. As MgF2 has a higher water solubility than CaF2, more amount of former 

leaches out of the treated specimens than the latter. Therefore, the MgF2 signal is smaller 

in the leached than the unleached treated wood. Moreover, there is relatively no change in 
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the intensity of the CaF2 signal between unleached and leached treated wood. Perhaps, the 

lower soluble CaF2 could function as a reservoir that releases “free” fluoride ions from NMF 

treated wood during biocidal action against fungi and termites.  

The 1H-13C CP MAS NMR spectra in Fig.2.9 shows the signals from the cell wall 

components in Scots pine; untreated and treated with the combination of MgF2 and CaF2 

(unleached and leached). The signals detected between 62 ppm to 105 ppm correspond to 

polysaccharides with the signal at 56 ppm attributed to lignin methoxy groups, signals 

between 112 ppm to 152 ppm are from the aromatic rings, and the lone signal at 21 ppm is 

from the acetate groups of hemicelluloses.111 There are no differences in the 1H-13C CP 

MAS spectra of untreated and NMF treated wood, except for the slight increase in the signal 

with a chemical shift of 130 ppm in the unleached NMF treated wood. The chemical shift 

of 130 ppm is from the aromatic groups in lignin.111 This signal in unleached treated wood 

is likely from the interaction of NMFs with the aromatic groups in lignin, although it seems 

to be reversible. This is because in the leached NMF treated wood, the intensity of this 

signal was similar to untreated Scots pine.  

 

 
Fig.2.9 1H-13C CP MAS NMR spectra (ν = 20 kHz) of unleached treated wood (red), 

leached treated wood (blue), and untreated wood (black). 
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2.3 Micro-distribution of nano metal fluorides in treated wood 
The distribution of a preservative inside wood is a crucial determinant of its efficacy 

against wood-degrading fungi and insects. There are three cut sections in wood as shown 

in Fig.2.10. The following analytical techniques present information on the spatial 

localization of nano metal fluorides (NMFs) inside wood.  

 
Fig.2.10 Cut sections in Scots pine wood. Image taken by S.M. Usmani. 

 

2.3.1 Tangential section of treated wood 
In Fig.2.11a, the back-scattered electron (BSE) image of the tangential longitudinal 

section of Scots pine wood treated with NMFs is shown. It is observed from the BSE image 

that the nanoparticles have aggregated over the surface of the tracheid channels. In 

Fig.2.11b-c, the fluoride composition of these aggregates was confirmed with EDX 

mapping at a higher magnification, which shows that the NMFs were present in the tracheid 

channels and the bordered pits. In a tree, the tracheid channels are responsible for 

transporting water and minerals, while bordered pits allow communication between 

adjacent cells in the horizontal direction.27 In the present study, these pathways enabled the 

distribution of NMFs into the wood matrix. Thus, the presence of NMFs in both tracheid 

channels and bordered pits demonstrates that they are well distributed in the treated wood 

specimens.  
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Fig.2.11 Tangential longitudinal surface of Scots pine wood treated with NMFs. BSE image 

showing bordered pits and longitudinal tracheids at (a) low and (b) high 
resolution. (c) EDX map of fluorine (red) in the longitudinal tracheids and 
bordered pits. 

 

2.3.2 Radial section of treated wood 
In Fig.2.12, an overview of the radial longitudinal section of treated Scots pine wood 

shows a high percentage of bordered pits and ray tracheids filled with aggregates. As in the 

tangential section from the previous section, NMF deposits were also present in the 

bordered pits in the radial section of treated wood. These aggregates are composed of 

fluoride, which was confirmed at a higher magnification with the corresponding EDX map 

(Fig.2.12b-c). Ray tracheids are also pathways for transporting water and minerals in wood 

cells, which is another route for the NMFs to penetrate and distribute within wood.  
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Fig.2.12 Radial longitudinal surface of Scots pine wood treated with NMF. BSE image 

showing bordered pits and ray tracheids (a) low and (b) high resolution. (c) EDX 
map of fluorine (red) in the ray tracheids and bordered pits. 

 

In Fig.2.13, more evidence of NMFs in the ray tracheids is presented from the BSE 

image at an even higher magnification with its corresponding EDX map that confirms the 

fluoride composition of the accumulated aggregates. The NMF aggregates were mostly in 

the micrometer size (~10 μm). 
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Fig.2.13 Ray tracheids of Scots pine wood treated with NMFs. (a) BSE image showing 

aggregates of NMF in ray tracheids (b) EDX map of fluorine (red) in the ray 
tracheids. 
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2.3.3 Transverse section of treated wood  
BSE image of the transverse section of Scots pine wood treated with NMFs is 

presented in Fig.2.14. 

 

 

 
Fig.2.14 Transverse section of Scots pine wood treated with NMFs. BSE image showing 

aggregates of NMF in rays and latewood cell lumina (a) low and (b) high 
resolution. (c) EDX map of fluorine (red) in the latewood cell lumina. 
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In the transverse section shown in Fig.2.14b, the high-resolution BSE image of the 

latewood cells clearly contains deposits of NMFs in their lumina. The corresponding EDX 

map in Fig.2.14c confirms the fluoride composition of the deposited NMFs.  

In Fig.2.15, earlywood cells are shown in the BSE image with its corresponding 

EDX map. In the earlywood cells, the NMFs are not present in large deposits. The larger 

width of earlywood cells allows greater movement of the nanoparticles which prevents the 

formation of larger aggregates as those observed in the latewood cells.  

 

 
Fig.2.15 Transverse section of Scots pine wood treated with NMF. (a) BSE image showing 

aggregates of NMF scattered in earlywood cell lumina (b) EDX color map of 
fluorine (red) in earlywood cell lumina. 

 

2.3.4 X-ray micro-computed tomography (X-ray micro-CT) 
X-ray micro-CT is a non-destructive technique complementary to scanning electron 

microscopy and EDX. In X-ray micro-CT, series of radiographs are collected to generate a 

tomogram of the specimen. Thereby, it provides information on the spatial distribution of 

NMF in wood. Here, an X-ray micro-CT image of the transverse section from unleached 

NMF treated wood (Fig.2.16a) shows white spots which are evenly distributed in the lumina 

of the earlywood cells. These white spots are aggregates of NMFs that have deposited in 

the earlywood cells. However, it is difficult to confirm NMFs in the latewood cells. This is 

because fewer X-rays can pass through the dense latewood cells, which can also appear 

white as the NMF aggregates. In Fig.2.16b, it is observed that in the NMF treated wood that 

was leached, white deposits are present in the resin canals. This suggests that during the 

treatment of wood, the NMF aggregates are localized in the cell lumina. However, after 
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leaching they are redistributed into the resin canals, which is expected as the larger channels 

allow more freedom for NMFs to move within the wood matrix. 

 

 

 
Fig.2.16 X-ray micro-CT images of the transverse section of Scots pine wood 

(20 mm x 15 mm) treated with NMF (a) before leaching (b) after leaching. 
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2.4  Summary 
In this chapter, the composition and size of metal fluorides in the combination 

formulations was determined by XRD, DLS, TEM, and the corresponding elemental maps. 

Since the particle size of metal fluorides was smaller than 10 nm, they could distribute over 

a greater area inside wood during treatment. Moreover, solid-state 19F MAS NMR spectrum 

showed that metal fluorides were present in treated wood even after it was leached. Taken 

together, images from electron microscopy and X-ray micro-CT provide a three-

dimensional picture of the micro-distribution of NMFs in treated wood specimens. The 

images showed that deposits of NMFs are present in bordered pits, tracheids, latewood cells, 

and earlywood cells. This means that during the treatment process and later during 

conditioning of treated wood, agglomeration of metal fluoride particles occurred in the 

wood matrix. These results demonstrate that NMFs are well distributed within treated wood, 

a clear indicator that wood can be treated with sparingly soluble metal fluorides provided 

they are in nanoscopic form. This is promising for their eventual biocidal efficacy against 

wood-degrading fungi and insects. The next chapter presents results on the properties of 

NMF treated wood. 
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3. Properties of treated wood 
To evaluate the future stability of the treated product, it is essential to consider how 

properties of wood change after the addition of a preservative. Ideally, the treatment of 

wood with a preservative should improve its dimensional stability and increase its 

hydrophobicity to protect it from decay. These properties of treated wood can be evaluated 

by measuring the equilibrium moisture content, anti-swelling efficiency, and contact angle. 

The following chapter presents the properties of nano metal fluoride (NMF) treated wood.  

 

3.1 Retention 
Retention is used to measure the amount of preservative remaining in wood after 

treatment and to estimate the weight of the treated product. From an economic perspective, 

preservatives that have proven biocidal efficacy with low retentions are preferred as it 

reduces the costs associated with treatment, processing, and shipping of a treated wood 

product. The Fig.3.1 shows the retention in Scots pine treated specimens. 

 

 
Fig.3.1 Retention in Scots pine treated specimens. 



Properties of treated wood  

43 
 

The NaF treated wood had the lowest retention of 7.5 kg/m3 and MgF2 (EG, 0.8 M) 

treated wood had the highest retention of 16 kg/m3 (Fig.3.1). The rest of the treated 

specimens had similar retention values in the range of 12 to 13 kg/m3.  

Commercial wood preservatives such as micronized copper16 with azole co-biocides 

have retention in the range of 3 to 4 kg/m3 approved for Use Class 4, much lower than the 

values presented in Fig.3.1. However, the retention values for NMF treated wood are 

comparable to retention values for wood treated with nanoparticles reported in literature.18 

Wood treated with zinc oxide nanoparticles had higher retention (45.7 kg/m3) than those 

treated with nano zinc borate formulation (17.9 kg/m3).18 These values demonstrate the 

wide range of retention for nano-based treatment of wood. It is likely that the surface charge 

of some nanoparticles can promote their diffusion into micropores, causing a large amount 

to be incorporated into wood.74 However, this needs to be confirmed for NMF treated wood 

in future experiments.  

 

3.2 Weight percent gain 

Weight percent gain (WPG) is the increase in the mass of wood after treatment. It 

is usually measured in wood that is chemically modified as an indicator of cell wall bulking. 

High WPG of treated wood is related to an increase in its mechanical strength.112  

The WPG values of Scots pine treated specimens are presented in Fig.3.2. The 

highest WPG of over 90% was for lactic acid treated specimens, probably due to the 

polymerization of lactic acid monomers in wood. In comparison, the WPG of CaF2 (lac) 

treated specimens was significantly lower as the aggregates of CaF2 nanoparticles could 

have hindered the uptake of lactic acid molecules inside wood. From Fig.3.2, it is observed 

that NaF treated specimens had lower WPG as cell wall bulking was reduced with the use 

of water as solvent relative to lactic acid or ethylene glycol. The specimens treated with 

MgF2 had significantly higher WPG than NaF treated specimens but significantly lower 

WPG than CaF2 treated specimens. 

Among the combination of MgF2 and CaF2, the single sol (EG) treated specimens 

had significantly lower WPG than the specimens treated in two steps with different solvents. 

Additionally, there was no significant difference in the WPG between MgF2 and 

MgF2+CaF2 treated specimens as both treatments were done with only ethylene glycol as 

solvent. Therefore, the choice of solvent used in the NMF treatment of wood can determine 

its WPG and thereby its eventual mechanical strength.  
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Fig.3.2 Weight percent gain in Scots pine treated wood. 

 

These WPG values for MgF2 treated specimens are significantly lower than that 

reported for acetylated pine, which has a WPG of 22.5%.113 However, the WPG values of 

MgF2 treated wood presented in this study are similar to that reported for TiO2 sol-gel 

treated wood which has a WPG of 9%.76 Thus, the WPG values reported here are similar to 

sol-gel treated wood and could be improved further by optimizing the solvent formulation 

used for NMF treatment of wood.  

 

3.3 Anti-swelling efficiency  
Anti-swelling efficiency (ASE) measures the swelling of treated wood in 

comparison to untreated wood. Ideally, a high ASE value of treated wood is related to an 

increase in its dimensional stability. In Fig.3.3, the ASE of Scots pine treated specimens are 
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presented. The shared letters over each treatment indicate that there is no significant 

difference among the treatments. 

 

 
Fig.3.3 Anti-swelling efficiency in Scots pine treated wood. Shared letters indicate no 

significant difference and different letters denote a significant difference in ASE 
after paired t-test. 

 

The lowest ASE (negative) was observed for lactic acid treated specimens (Fig.3.3). 

It could be that the addition of lactic acid led to the removal of extractives in wood leading 

to the rearrangement of lignin and hemicelluloses. The rearrangement caused more water 

molecules to penetrate the treated wood, which increased its swelling. Therefore, lactic acid 

increased the swelling of wood that resulted in a decrease in its dimensional stability. 

Ideally, an increase in WPG is related to an increase in ASE of treated wood.112 Here, lactic 

acid treated wood had high WPG, followed with low ASE. This could be because the lactic 

acid treated specimens were not thermally cured after treatment for in-situ polymerization, 

the influence of which on dimensional stability could be assessed in future experiments. 
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Compared to lactic acid treated specimens, the CaF2 (lac) treated wood specimens 

had a significantly higher average ASE value. The CaF2 (lac) treatment reduced the swelling 

of wood because the presence of CaF2 nanoparticles inside wood could have reduced the 

uptake of water. 

The average ASE values of CaF2 (lac) and NaF treated specimens were similar. In 

contrast, MgF2 (0.5 M and 0.8 M) treated specimens had higher and significantly different 

ASE values compared to CaF2 (lac) and NaF treated specimens. Among the NMF 

combination formulation, specimens treated with the single sol in EG had a significantly 

higher ASE value than those treated with MgF2 (EG) and CaF2 (lac). Therefore, the 

dimensional stability of NMF treated wood is higher with ethylene glycol as a solvent rather 

than lactic acid. 

The ASE values of NMF treated wood presented here are lower than those reported 

for TiO2 sol-gel treated wood, which had an ASE of 34%.76 The dimensional stability of 

acetylated wood is even higher with an ASE of 70%.113 Also, a recent study found that 

wood treated with lactic acid oligomers and subsequently cured at 160°C had an ASE of 

68%.114 In the future, the dimensional stability of NMF treated wood could be further 

improved by methods such as combining it with thermal treatment. 

 
3.4 Equilibrium moisture content 

The moisture content of wood determines its susceptibility to wood decay. As 

described in the introduction, a high equilibrium moisture content (EMC) of wood is one of 

the conditions needed to initiate decay by fungi. Moisture content of 20% above wood fiber 

saturation (20% - 30%) is the minimum required by fungi to start colonization of wood. 

Thus, an ideal preservative would reduce the EMC of wood to inhibit decay. The following 

graph in Fig.3.4 shows the EMC in Scots pine and beech treated specimens at a temperature 

of 20°C and relative humidity (RH) of 65%. It is observed that treated specimens have a 

broad range of EMC values (Fig.3.4). Scots pine specimens treated with lactic acid had the 

highest EMC of over 100%. However, beech specimens treated with lactic acid had 

significantly lower EMC than Scots pine wood treated with lactic acid (p-value – 0.0013). 

This difference in the EMC of lactic acid treated specimens was due to differences in the 

leachability of Scots pine and beech. A higher amount of lactic acid molecules could have 

leached out from beech wood, which has vessels with larger diameters than from Scots pine, 

which has tracheids with smaller diameters. 
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Fig.3.4 Equilibrium moisture content (EMC) in treated wood specimens. 

 
In contrast to lactic acid treated specimens, the rest of the treated specimens had no 

significant differences between the EMC values for Scots pine and beech, as shown in 

Fig.3.4. The NaF (0.1 M and 1 M) treated specimens that were unleached had EMC higher 

than 50%. This is due to the known hygroscopic properties of NaF.65 However, NaF treated 

specimens that were leached had EMC values similar to NMF treated specimens. It is 

evident that most NaF was lost in leaching, thus the leached NaF treated specimens were 

no longer hygroscopic which led to a decrease in their EMC. 

The increase in the concentration of MgF2 from 0.5 M to 0.8 M for wood treatment 

did not result in a proportional increase in the EMC of the specimens. Also, for the 

combination of MgF2 and CaF2 formulations, single and two-step, there was no significant 

difference between their EMC. Specifically, for the NMF treatment concentration of 0.8 M, 

the CaF2 (lac) treated specimens had significantly higher EMC than the MgF2 (EG) treated 
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specimens. Therefore, to lower the EMC of treated wood with a single NMF treatment, the 

use of ethylene glycol as a solvent would be preferable to lactic acid. 

 
3.5 Contact angle  

The inclusion of hydrophobic molecules in wood during its treatment can reduce its 

wettability. Wetting of wood is a key attribute to evaluate its adhesion, coating, 

waterproofing, weathering, and penetrability. The water contact angle (CA) is an essential 

property to determine the penetration of an adhesive in wood.115 A surface is characterized 

as hydrophobic if the CA is greater than 90° and superhydrophobic when CA is greater than 

150°.116 A study reported that a larger CA of wood after its treatment resulted in a shallower 

penetration of the adhesive.115 Also, as moisture is an important determining factor for 

decay, low wettability of wood is favorable for its preservation. Thus, wood wetting 

property of treated wood can be fundamental to predicting its application and the length of 

its service life.  

Low wettability is characterized by a hydrophobic surface. Fluorine has been known 

to impart hydrophobicity to the wood surface. For instance, wood treated with SiO2 

nanoparticles containing fluorine had an initial CA of 168°.117 In another study, wood 

coated with TiO2 nanoparticles and capped with perfluorohexane using plasma also resulted 

in a CA greater than 150°.118 In the current study, measured CA values of NMF treated 

wood are presented. In addition to the measurement of CA, the time taken for the water 

droplet to be absorbed in wood was measured. The CA of water was measured every 30 

seconds until it was absorbed into the wood specimen known as complete wetting. The 

water droplet will take a longer time to be absorbed on a hydrophobic surface than a 

hydrophilic surface and is used to characterize the surface wettability of treated wood. In 

this section, results of unleached treated specimens are presented, followed by results of 

treated specimens that were leached. Lastly, the measured CA of specimens treated with 

the NMF combination formulations, both unleached and leached, are provided.  

 

3.5.1 Treated wood – unleached 
In the following Fig.3.5, the wettability of treated wood was compared to untreated 

wood by recording the change in CA over time.  
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Fig.3.5 Contact angle comparison of untreated wood with unleached treated Scots pine 
wood. Ethylene glycol – EG, lactic acid – lac.  

 
From Fig.3.5, it is observed that the untreated wood specimen had the highest initial 

CA of 114°, followed by lactic acid with a CA of 101°. The higher CA of lactic acid is due 

to their hydrophobic behavior, which is already known for polylactic specimens from 

literature.119 The initial CA of the rest of the treated specimens was smaller than 90°, 

therefore their surfaces could be characterized as hydrophilic. Among these, CaF2 (lac) 

treated specimens had the smallest initial CA of 72°. Thus, wood treated with CaF2 (lac) 

and unleached would be more favorable to fungal colonization under humid conditions than 

wood treated with MgF2 (EG) and unleached.  

Of the specimens measured, the water droplet on untreated wood took the longest 

time for complete wetting. In comparison, complete wetting of water droplet was faster in 

specimens treated with NaF (1 M), lactic acid, and CaF2 (0.8 M). Even though lactic acid 

treated wood had a higher initial CA than CaF2 (lac) treated wood, the time taken for the 

water droplet to be absorbed was the same on both specimens. Thus, lactic acid treated 

wood has similar wetting behavior to CaF2 (lac) treated wood. In summary, untreated wood 

has a more hydrophobic surface than unleached MgF2, CaF2, NaF, and lactic acid treated 

specimens. This could be because the solvent is still present in the unleached treated 
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specimens. To evaluate this assumption, CA of treated specimens that were leached were 

measured, and their results are presented in the next section.  

 
3.5.2  Treated wood – leached 

In Fig.3.6, the CA over time is presented for treated Scots pine specimens that were 

leached. For treated specimens (Fig.3.5), there was a difference in the overall wetting 

behavior between unleached and leached specimens. From Fig.3.6, it is observed that there 

was an increase in the initial CA (greater than 90°) for both MgF2 and CaF2 treated 

specimens. In contrast, the initial CA of NaF treated wood reduced from 87° in the 

unleached specimen to 80° in the leached specimen. Therefore, after leaching, the surface 

hydrophobicity decreased for NaF treated specimens but increased for NMF treated 

specimens.  

 
Fig.3.6 Contact angle of treated Scots pine wood specimens that were leached. Ethylene 

glycol – EG, lactic acid – lac. 

In addition to the increase in the initial CA of the NMF treated specimens that were 

leached, there was also an increase in the time taken for their complete wettability. 

Compared to the untreated and unleached NMF treated specimens (Fig.3.5), the NMF 

treated specimens that were leached took a longer time for complete wettability. The longest 
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time was recorded for the specimen treated with MgF2. The lactic acid treated specimen 

that were leached took twice as long for complete wettability compared to lactic acid treated 

specimen that were unleached. This could be due to the polymerization of the residual lactic 

acid in wood during or after leaching that eventually slowed down the absorption of the 

water droplet in wood. Overall, the time taken for complete wettability increased for all 

treated specimens that were leached. Therefore, the increase in the initial CA and the time 

taken for complete wettability of treated specimens that were leached relative to unleached 

treated specimens confirms the assumption that leaching of most of the solvent during the 

leaching process increases the hydrophobicity of the NMF treated wood surface.  

  



Properties of treated wood  

52 
 

3.5.3 Treated wood – combination of nano metal fluoride 
In the following Fig.3.7, the CA over time for specimens treated with stand-alone 

MgF2 (0.5 M) and the combination of MgF2 and CaF2 but in different formulations are 

presented. 

 

 

Fig.3.7 Comparison of change in contact angle for NMF treated Scots pine wood. 
Unleached specimens are empty symbols and leached specimens are filled 
symbols. Ethylene glycol – EG, lactic acid – lac.  

 
All the treated wood compared in Fig.3.7 had the same NMF concentration of 0.5 M, 

but their formulations were different. The first was with only MgF2, the second was with 

the combination of MgF2 and CaF2 in one sol in ethylene glycol (EG), and the third was 

with the combination of two sols; MgF2 in ethylene glycol and CaF2 in lactic acid. 

Considering only the unleached NMF treated specimens, two observations are made 

from Fig.3.7. First, unleached wood treated with the single sol (MgF2+CaF2) in EG has a 

higher initial CA than unleached wood treated with the two-step combination. Second, the 

water droplet on the surface of unleached wood treated with the two-step combination took 
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longer for complete wettability than unleached wood treated with the single sol 

(MgF2+CaF2) in EG. In the unleached treated specimens, the surface of wood was more 

hydrophobic when it was treated with the combination of MgF2 and CaF2 relative to the 

stand-alone MgF2. 

Next, the treated specimens that were leached were evaluated to differentiate which 

of the two tested NMF combination formulations is better in terms of reducing the 

wettability of the wood surface. 

Among the leached specimens, the single sol combination treatment had the larger 

initial CA of 120° than the two-step treatment with an initial CA of 106°. The time taken 

for complete wettability of wood treated with the single sol combination treatment was 

much longer (> 1200 seconds) than with the two-step treatment (< 500 seconds). From 

Fig.3.7, it is observed that on the surface of wood treated with the single sol (MgF2+CaF2), 

the water droplet had a gradual decrease in CA relative to the two-step combination 

treatment in which the water droplet had a steep decline in CA. 

These NMF treated wood surfaces are not superhydrophobic. However, the 

treatment with the combination of MgF2 and CaF2 did improve its hydrophobicity in 

comparison to the untreated specimen. Overall, wood treated with the single sol of MgF2 

and CaF2 and then leached had the most hydrophobic surface. Thus, among the NMF treated 

specimens it would provide the least favorable conditions for wood decay. The initial CA 

(120°) of the NMF treated specimen is the same as the CA reported for specimens that were 

thermally modified and then treated with TiO2 nanoparticles.120 In contrast, the CA of 

acetylated radiata pine is reported to be less than 80°.121 Therefore, the hydrophobicity of 

NMF treated wood is better than acetylated wood and on the same level as TiO2/thermally 

modified specimens. This suggests that moisture uptake in NMF treated wood would be 

lower and possibly slower than acetylated wood. Thus, the NMF treated specimens would 

reduce the likelihood of a fungal attack by reducing the moisture uptake in wood. 

 

3.6 Accelerated ageing - leaching 
An ideal preservative would have a low susceptibility to leaching such that it can 

extend the service life of the treated wood product. The EN 84 (1997)122 is a leaching test 

modeled on creating an accelerated ageing environment for treated wood to evaluate its 

susceptibility to outdoor exposure conditions. Specimens treated with NMF using lactic 
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acid as a solvent are not reported here as the lactic acid interferes in the measurement of 

fluoride concentration. 

 

3.6.1 Scots pine 
The concentration of fluoride released over 15 days in leachates from Scots pine 

treated wood specimens in accordance with the EN 84 (1997)122 standard is shown in 

Fig.3.8. 

 

Fig.3.8 Fluoride released from NMF treated Scots pine specimens in EN 84 test. The 
concentration of the MgF2 + CaF2 system was 0.5 M. 

 
Wood treated with MgF2 (0.5 M) had the highest concentration of fluoride leached 

at the start of the experiment (Fig.3.8). In wood treated with MgF2 (0.8 M), the highest 

concentration of fluoride leached was delayed until Day 4. From Day 7 onwards, the release 

of fluoride from specimens treated with only MgF2 (0.5 M and 0.8 M) stabilized to very 

low amounts until the end of the experiment.  

In contrast, specimens treated with the combination of MgF2 and CaF2 had two 

spikes in fluoride release during the duration of the experiment. The first spike was at the 
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beginning, followed by another spike towards the end. Unlike the stand-alone MgF2 

treatments in wood, the concentration of fluoride released from wood treated with the NMF 

combination formulation remained relatively higher till the end of the experiment.  

Two conclusions can be made from these results. First, wood treated with the 

combination of MgF2 and CaF2 releases higher fluoride in leachates than wood treated with 

stand-alone MgF2. Second, although relatively more fluoride was lost through leaching 

from wood treated with the combination of MgF2 and CaF2, the concentration did not 

stabilize to low levels as it did for wood treated with the stand-alone MgF2 treatments. Thus, 

it is expected that the specimens treated with the NMF combination formulation and leached 

would have more fluoride present in them after leaching than specimens treated with only 

MgF2, which could have implications for their eventual biocidal efficacy. More fluoride 

present after leaching would imply longer-term protection for specimens treated with the 

NMF combination formulation.  

 

3.6.2 Beech 
The leaching of fluoride over 15 days in leachates from NMF treated beech wood 

specimens following the EN 84122 test is presented in Fig.3.9. The leaching behavior of the 

NMF treated beech was expected to be different from NMF treated Scots pine because of 

the higher permeability of the former wood species, as described in the introductory chapter 

(1.3.3).35 In Fig.3.9, it is seen that the leaching trend was similar for beech wood treated 

with stand-alone treatment of MgF2 (0.5 M and 0.8 M). The stand-alone MgF2 treatments 

of beech wood specimens leached the highest concentration of fluoride on Day 2, after 

which the concentration reduced steeply over the following day. At Day 2, the concentration 

of fluoride leached out from specimens treated with MgF2 (0.5 M) was lower than MgF2 

(0.8 M). Thus, more fluoride is released from wood treated with higher fluoride 

concentration, which is expected as more preservative is leached from wood treated with a 

higher concentration of preservative according to previous studies.123 Beech wood treated 

with the NMF combination formulation leached a relatively higher amount of fluoride 

compared to beech wood treated with stand-alone MgF2. This is similar to leaching results 

from Scots pine treated with the combination of MgF2 and CaF2 (Fig.3.8).  

The combination of MgF2 and CaF2 treated specimens leached the highest 

concentration of fluoride on Day 13 of the leaching experiment. Therefore, the combination 

of MgF2 and CaF2 delayed the leaching of fluoride from beech wood. This finding is 
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different from what is observed in conventional wood preservatives, where most leaching 

occurs in the first month of the service life of wood.123 The delay in the peak release of 

fluoride from NMF treated beech wood is promising as it suggests that leaching of fluoride 

can be slowed down. So, even in wet conditions, sufficient fluoride would be present in 

wood for longer-term protection from wood-degrading fungi and insects. 

 

 
Fig.3.9 Fluoride released from NMF treated beech wood specimens in EN 84. The 

concentration of the MgF2 + CaF2 system was 0.5 M. 
 

3.7 Summary 
This chapter presented properties of NMF treated wood, which can influence its 

biocidal efficacy. In metal fluoride formulations, EG as a solvent is more favorable to 

reduce its wood moisture content and increase its dimensional stability. Moreover, treating 

wood with the combination of MgF2 and CaF2 in EG reduces the wettability of its surface. 

Additionally, treatment of beech wood with the NMF combination formulation delayed the 

leaching of fluoride. In conclusion, NMF treated wood with improved material properties 

can protect it from decay and damage caused by fungi and insects. The next chapter presents 

results on the efficacy of NMF treated wood against fungi.
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4. Efficacy: Fungi 

In the fungal test EN 113 (1996),124 treated specimens are placed under severe 

exposure to a fungus for 16 weeks and then evaluated based on mass losses. In this test, a 

preservative treatment is considered to meet the biocidal efficacy requirement when the 

wood mass loss is equal to or less than 3% and then the resultant treated wood can be 

classified as durable. Unless specified otherwise, all the treated specimens were leached 

before the test in accordance with the EN 84 (1997) standard.122  

This chapter begins with the results of NaF treated wood specimens against fungi. 

This is followed by the evaluation of solvent treated wood and then results on nano metal 

fluoride (NMF) treated wood. Following which, results on mass losses in wood treated with 

NMF in combination with copper are provided. Then results from an in-vitro agar test are 

presented. Lastly, results from the above tests were used to optimize the NMF composition 

and formulation for the second set of EN 113 tests.  

 

4.1 Efficacy and limitation of NaF as a wood preservative 
NaF, which has a solubility limit of 1 M, was dissolved in water for treatment with 

wood. The Fig.4.1 shows the mass losses in NaF treated wood caused by brown-rot fungi 

and white-rot fungus. Four observations can be made from the mass loss results in Fig.4.1. 

Firstly, wood specimens treated with NaF that were unleached had an average mass loss 

lower than 3% after the EN 113 test. Even specimens treated with a low concentration of 

0.1 M NaF were protected against decay with no significant differences in the mass losses 

caused by the three fungi; C. puteana, R. placenta, and T. versicolor. Secondly, mass losses 

caused by fungi were similar between 0.1 M NaF and 1 M NaF unleached treated wood. 

Thus, a high concentration of NaF is not needed for protection from wood-degrading fungi, 

as even 0.1 M NaF was sufficient for biocidal efficacy against the three fungi.  

The third observation from Fig.4.1 is that specimens treated with NaF, leached, and 

then tested were severely degraded by the three fungi. All NaF treated specimens that were 

leached had mass losses higher than 3%. Moreover, there was no statistical difference in 

the mass losses caused by the fungi to 0.1 M and 1 M NaF treated specimens that were 

leached. Even 1 M NaF treated and subsequently leached specimens did not provide 

adequate protection against any of the three fungi. Therefore, the concentration of fluoride 

left behind in 1 M NaF treated specimens after leaching is expectedly not enough to protect 

it from fungal attack.  
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Fig.4.1 Mass loss (%) caused by fungi in unleached and leached wood treated with NaF. 

The red line is the mass loss cut-off at 3% for durability classification. 

 

The fourth observation is that there were differences in the decay of NaF treated 

wood specimens that were leached depending on the fungi. The highest increase in mass 

loss after leaching was measured for NaF treated specimens against R. placenta and the 

lowest against C. puteana. Among the three fungi that were tested, R. placenta had the 

highest tolerance to fluoride. Therefore, a higher concentration of fluoride would be needed 

to protect wood from it. 

The protection of NaF treated wood specimens against fungi is reduced because 

most of the fluoride is lost during leaching, which is expected due to its high-water 

solubility (40 g/L).92 Therefore, commercial preservative formulations containing NaF also 

include fixatives such as chromium to prevent loss of fluoride through leaching, although 

its use is restricted due to environmental and health concerns. An ideal wood preservative 

formulation of fluoride would not need additional fixatives to minimize their leaching. This 

leads to the idea of using sparingly soluble fluorides such as MgF2 and CaF2. To impregnate 

these low-water soluble fluorides into wood they are synthesized as nanoparticles using 
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fluorolytic sol-gel synthesis. In this study, MgF2 and CaF2 were evaluated for their biocidal 

efficacy to replace traditional fluoride compounds such as NaF used in wood preservation. 

 

4.2  First set of fungal tests 
In the EN 113 test, virulence (no treatment) specimens are tested to determine that 

the fungal strain used for testing is performing at the optimal level. For the fungi to be 

considered an active strain, virulence wood specimens at the end of the EN 113 test should 

have a minimum mass loss of 20%.124 The average mass loss of virulence specimens from 

the first set of tests are shown in Table 4.1. 

 

Table 4.1 First set of virulence samples 

Fungi Mass loss (%) Standard deviation 

C. puteana 27.6 4.7 

R. placenta 16.3 4.9 

T. versicolor 21.1 2.4 

 

The mass loss for virulence wood specimens exposed to C. puteana and 

T. versicolor was above 20% (Table 4.1). The mass loss for virulence specimens against 

R. placenta was 16 ± 4.9%, which suggests that the fungal strain was not active at the level 

required by the EN 113 standard. Although if the standard deviation value of virulence 

samples exposed to R. placenta is noted, then it could be considered as an active strain. 

Nonetheless, the following mass loss results for treated specimens against R. placenta give 

valuable information on the application of NMF to protect wood from fungal decay. 

 

4.2.1 Solvent effect on wood-degrading fungi 
NMFs are synthesized via sol-gel synthesis using solvents such as ethylene glycol 

and lactic acid. Therefore, only solvent treated wood specimens were tested to determine if 

they had any biocidal efficacy against fungi. The mass losses caused by the three fungi on 

solvent treated wood are shown in Fig.4.2. It is seen that the three solvent treatments in 

wood resulted in mass losses greater than 3% caused by the fungi. Notably, mass losses of 

ethanol treated specimens were greater than 20%, similar to mass losses of virulence 
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specimens (Table 4.1). Among the fungi, C. puteana is the most aggressive against ethanol 

treated specimens, causing an average mass loss above 40%. Notably, R. placenta caused 

an average mass loss higher than 20% in ethanol treated specimens, which was not observed 

in virulence specimens. Thus, the strain was more active on ethanol treated specimens than 

on virulence specimens. Treatment with ethanol could have promoted swelling of wood, 

which after its evaporation caused cracks that opened sites for fungal colonization resulting 

in high mass losses. Ethylene glycol treated specimens also had mass losses higher than 

20%. The average mass loss caused by T. versicolor to ethylene glycol treated specimens 

was similar to average mass loss of ethanol treated specimens. Therefore, it can be 

concluded that treating wood with either ethylene glycol or ethanol does not protect it from 

decay caused by fungi. 

 

 
Fig.4.2 Mass loss (%) of solvent treated wood caused by fungi. The red line is the mass 

loss cut-off at 3% for durability classification. 

 

Compared to ethylene glycol and ethanol treated specimens, the lactic acid treated 

specimens had lower mass losses (Fig.4.2). This is explained by the equilibrium moisture 

content (EMC) of over 70% in lactic acid treated specimens, as presented in the previous 
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chapter on the properties of treated wood (3.4). Their high EMC could have contributed to 

a slower growth of fungi on treated wood resulting in lower mass losses than those observed 

for ethanol and ethylene glycol treated specimens. Also, the acidity of lactic acid could have 

played a role in minimizing decay caused by fungi.125 Nonetheless, lactic acid treated 

specimens did not have mass losses below 3%, the cut-off accepted for biocidal efficacy of 

a wood preservative. 

As described in the introduction, lactic acid oligomers were evaluated for biological 

resistance of wood by Grosse, et al. (2019).58 In that study, wood was thermally cured at 

160°C to initiate in-situ polymerization of lactic acid oligomers, which resulted in a mass 

loss of 2% caused by T. versicolor (formerly known as Coriolus versicolor).58 The current 

study is different from that reported by Grosse et al. (2019), as here, lactic acid was 

combined with CaF2 (without thermal treatment) to evaluate their synergistic efficacy 

against fungal activity in wood. The results of which are presented later in this chapter (4.4). 

 

4.2.2 Efficacy of NMF treated wood 
In the first set of fungal tests, MgF2 and CaF2 were tested in accordance with the 

EN 113 test for biocidal efficacy against two brown-rot fungi (C. puteana, R. placenta) and 

one white-rot fungus (T. versicolor), the results of which are shown in Fig.4.3. Mass losses 

caused by all three fungi were lower in MgF2 treated wood than CaF2 treated wood. This is 

expected as MgF2 (130 mg/L)91 is more soluble than CaF2 (16 mg/L),92 it releases more 

fluoride ions to counteract the fungal attack.  

Treatment of wood with 0.1 M MgF2 was not sufficient to protect it from decay by 

C. puteana as it resulted in an average mass loss above 5%. A higher concentration of NMF 

(0.4 M) was required in treated wood to reduce the mass losses to below 3% that were 

caused by C. puteana. In contrast, R. placenta had a higher tolerance to NMF as it resulted 

in wood mass losses greater than 10%. Likewise, T. versicolor had higher tolerance to NMF 

resulting in wood mass losses greater than 5% (Fig.4.3). Thus, treating wood with 0.4 M of 

either MgF2 or CaF2 was not sufficient to protect it from R. placenta and T. versicolor.  

The first set of results demonstrate the efficacy of NMF treatment in wood against 

C. puteana. The next step was to improve the NMF formulation such that treated wood is 

protected from decay caused by R. placenta and T. versicolor, as well.  
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Fig.4.3 Mass loss of NMF treated wood caused by fungi. The red line is the mass loss cut-

off at 3% for durability classification. 

 

4.2.3 Addition of NMF to copper treated wood 
In this section, MgF2 was combined with copper (a commonly used active ingredient 

in wood preservative formulations) to evaluate if the resultant treatment in wood would 

protect it from decay caused by R. placenta and T. versicolor. In Fig.4.4, it is observed that 

the 3% formulation of copper chromate (CC) alone is not effective against the three fungi. 

However, with the addition of MgF2 (0.5 M) to a 0.3% CC formulation for wood treatment, 

the mass loss caused by T. versicolor was reduced to below 3%. To protect against 

T. versicolor, increasing the concentration of CC from 0.3% to 3% was not needed as the 

mass loss was similar for both treatments.  

Similarly, the addition of MgF2 to CC formulation in treated wood reduced the mass 

loss caused by C. puteana. Here, there was a difference between the CC concentration for 

the combination treatment. Although the difference between the combination treatments 

was not significant, an increase in CC concentration from 0.3% to 3% in addition to MgF2 

(0.5 M) was needed to meet the mass loss cut-off of 3% for biocidal efficacy and durability.  
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Even though mass loss caused by R. placenta was reduced from 21% in only CC 

treated specimens to 11% in the specimens treated with the combination of CC (0.3%) and 

MgF2 (0.5 M), it was still above the cut-off of 3%. This leads to the conclusion that the 

combination of CC and MgF2 does not meet the durability requirement needed to protect 

wood from R. placenta. Therefore, the NMF formulation needs to be further optimized such 

that the treated wood has biological resistance against decay caused by R. placenta.  

 

 
Fig.4.4 Mass loss of treated wood with addition of copper chromate (CC) caused by fungi. 

The red line is the mass loss cut-off at 3% for durability classification. 

 

4.3 Optimization of NMF formulation: In-vitro agar test 
An in-vitro agar test was done to determine the range of fluoride concentration that 

will be toxic to fungi. The time and resources required for an in-vitro test are significantly 

less than those required for an EN 113 test. Thus, an in-vitro test is a faster and cheaper way 

to estimate the optimal fluoride concentration and formulation needed for biocidal efficacy 
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against fungal activity. The fungal growth rate was calculated by measuring the radial 

growth of the fungi in centimeters on the petri dish over fourteen days, as shown in Fig.4.5. 

Besides the toxicity of stand-alone NMF, the synergistic biocidal efficacy of combining 

MgF2 and CaF2 against fungi was also evaluated with this test. 

 

 
Fig.4.5 Growth rate of fungi in NMF treated medium. The measurements were done in 

triplicate. The standard deviations were in the range of 0.005 to 0.04. No growth 
was recorded for 0.4 M concentration for any NMF treatment. 

 
In Fig.4.5, it is observed that the control showed the fastest growth for all three 

fungi. Comparing MgF2 and CaF2, the growth rate was slower for C. puteana and 

R. placenta in MgF2-added medium than CaF2-added medium (Fig.4.5). This result agrees 

with the first set of fungal tests where MgF2 treated specimens had a lower average mass 

loss compared to CaF2 treated wood (Fig.4.3). However, the medium with the combination 

of MgF2 and CaF2 performed better against C. puteana and R. placenta compared to the 

medium with formulation of either MgF2 or CaF2 alone. The growth rate of C. puteana in 

MgF2-added medium (0.21 cm/day) was almost twice than the combination of MgF2 and 

CaF2 (0.12 cm/day). Likewise, against R. placenta, medium with the combination of MgF2 



Efficacy: Fungi  

65 
 

and CaF2 (0.1 cm/day) performed better than only MgF2-added medium (0.27 cm/day). 

Based on these results, the efficacy of the NMF formulation at 0.05 M concentration against 

brown-rot fungi is ranked as follows. 

𝑀𝑀𝑀𝑀𝐹𝐹2 +  𝐶𝐶𝐶𝐶𝐹𝐹2  >   𝑀𝑀𝑀𝑀𝐹𝐹2   >  𝐶𝐶𝐶𝐶𝐹𝐹2 

 
For white-rot fungus, T. versicolor, both the control and the NMF formulations at a 

concentration of 0.05 M had a similar growth rate. However, the growth rate of 

T. versicolor was slightly slower in the medium containing the NMF combination 

formulation than the stand-alone NMF, which proves the former has some resistance to 

T. versicolor. 

In all NMF-mediums with a concentration of 0.4 M, no fungal growth was observed 

for any of the three fungi. This suggests that the concentration of NMF formulation needs 

to be increased for biocidal efficacy against the three fungi. Additionally, against brown-

rot fungi, a formulation with a combination of MgF2 and CaF2 could have more efficacy 

than either MgF2 or CaF2 alone. 

 
4.4 Second set of fungal tests 

In the second set of tests, the average mass losses in the virulence specimens were 

lower than 20 % for all three fungi, as shown in Table 4.2. Thus, the activity levels of fungi 

were lower than optimal. If the standard deviation of virulence samples in Table 4.2 are 

considered, then they would be within optimal activity levels. Still, the following results are 

informative for fundamental research on the viability of NMF to protect wood from fungal 

decay.  

Table 4.2 Second set virulence 

Fungi Mass loss (%) Standard deviation 

C. puteana 15.7 5.1 
R. placenta 18.4 2.3 
T. versicolor 19.4 3.4 

 

4.4.1 Coniophora puteana: NMF treated wood  
The mass losses caused by C. puteana in the EN 113 test are compared in Fig.4.6. 

It is observed that mass losses in all untreated specimens were higher than 10%, while it 

was below 3% in all NMF treated specimens that were leached. The lowest average mass 
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loss of 0.17 ± 0.33% was measured in the specimens treated with the combination of MgF2 

and CaF2 in ethylene glycol (EG). However, there was no significant difference in the mass 

losses among all treated specimens. Thus, all NMF treatments in wood reduced the mass 

loss caused by C. puteana relative to untreated specimens. This result agrees with the first 

set of fungal tests on C. puteana in section 4.2.2 of this chapter, where treatment of wood 

with NMF at 0.4 M also resulted in average mass losses below 3%. 

 

 
Fig.4.6 Mass loss of NMF treated wood caused by Coniophora puteana. The red line is 

the mass loss cut-off at 3% for durability classification. 

 

Several studies have reported on the efficacy of nanoparticles to protect wood from 

decay caused by C. puteana. Unleached nano zinc oxide treated wood had a mass loss of 

0.3% caused by C. puteana.18 Similarly, unleached titanium alkoxide treated specimens had 

a mass loss of 0.8% caused by C. puteana.76 One research group reported that C. puteana 

caused an average mass loss of 15% in Ag treated specimens that were leached.126 Hence, 

Ag nanoparticles did not have efficacy against C. puteana. Another group reported that 

nano TiO2/Ce treated spruce wood that was leached had efficacy against C. puteana.81 

However, they did not report the efficacy of the nano TiO2/Ce treatment in wood against 
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white-rot fungi or termites. The next section presents results on the efficacy of NMF treated 

wood against R. placenta. 

 

4.4.2 Rhodonia placenta: NMF treated wood  
The mass losses in NMF treated specimens after exposure to R. placenta in the 

EN 113 test are compared in Fig.4.7. It is seen that the untreated specimens had high 

average mass losses (greater than 20%) compared to NMF treated specimens. Overall, the 

NMF treated wood specimens which had mass losses below 15% performed better than the 

untreated specimens.  

 

 
Fig.4.7 Mass loss of NMF treated wood caused by Rhodonia placenta. The red line is the 

mass loss cut-off at 3% for durability classification. 

 

Among the treatments, MgF2 (0.5 M) specimens had an average mass loss higher 

than 10%, which is similar to the results of MgF2 (0.4 M) treated wood from the first set of 

fungal tests (Fig.4.3). When wood was treated with a higher concentration of MgF2 (0.8 M), 

the average mass loss was reduced to 7.8 ± 1.2%, although this was still above the 3% cut-

off accepted for the efficacy of a preservative formulation. Wood treated with the 
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combination of MgF2 (EG) and CaF2 (lactic) had an average mass loss (8.9 ± 1.5%) similar 

to MgF2 (0.8 M) treated wood. This suggests that the combination of MgF2 (EG) and CaF2 

(lactic) was no better in biocidal efficacy against R. placenta than the stand-alone MgF2 

treatment.  

In the second set of tests, only two treatments showed promise in protecting wood 

from R. placenta because they were the only NMF formulations that resulted in mass losses 

below 3%. The first one was wood treated with the combination of MgF2 and CaF2 

synthesized in a single sol in EG, which resulted in the lowest average mass loss 

(0.71 ± 1.1%). The second formulation was CaF2 (0.8 M) in lactic acid that led to an average 

mass loss of 0.81 ± 2.1%. Although wood treated with the combination of MgF2 and CaF2 

in EG had the lowest mass loss, it was not significantly different to CaF2 (0.8 M) treated 

wood (p-value – 0.37). Thus, both treatments imparted durability to wood against 

R. placenta. However, their mechanism for biological resistance against R. placenta may 

be different. 

Unexpectedly, the two-step treatment of wood with CaF2 (lactic) followed with 

MgF2 (EG) did not result in similar mass losses relative to the treatment of wood with a 

single sol of MgF2 and CaF2 in EG. A comparison of their NMF formulation suggests that 

the solvent could have contributed to the difference observed in their mass losses.  

Another unexpected observation from Fig.4.7 is that the wood specimens treated 

with CaF2 (0.8 M) had lower mass loss than those treated with MgF2 (0.8 M), as in the first 

set of tests, the latter treatment performed better. This is because in the first set, the CaF2 

formulation was in EG (Fig.4.3), while in the second, it was in lactic acid (Fig.4.7). Also, 

from Fig.4.7, it is observed that the untreated specimens associated with CaF2 (0.8 M) 

treated specimens had average mass loss lower than 30%, which is in contrast to the higher 

average mass losses observed for the rest of the untreated specimens. In the EN 113 test, an 

untreated specimen is placed in the same Kolle flask along with the specific treated 

specimen for the duration of the experiment. This suggests that the fungal growth on the 

untreated specimen placed along with the CaF2 (lac) specimen in the Kolle flask could have 

been affected by the lactic acid. The contribution of lactic acid to reduce wood decay caused 

by R. placenta is based on the results from sections 3.4 and 4.2.1. First, in section 3.4, it 

was shown that the equilibrium moisture content of CaF2 (0.8 M) treated Scots pine wood 

was higher than 70% (Fig.3.4), which could have slowed down the fungal attack. Second, 

in section 4.2.1, it was shown that the lactic acid treated specimens had significantly higher 



Efficacy: Fungi  

69 
 

resistance to fungal attack compared to the ethylene glycol specimens (Fig.4.2). Thus, the 

inclusion of lactic acid in CaF2 formulation for wood treatment improved its efficacy such 

that it was even better than the MgF2 formulation in EG.  

However, this is not the complete picture as in treated wood, the combination of 

MgF2 and CaF2 in EG at the lower concentration of 0.5 M was also found to have higher 

efficacy against R. placenta than the two-step combination of CaF2 (lac, 0.25 M) and MgF2 

(EG, 0.25 M). It is likely that the concentration of lactic acid and fluoride in CaF2 (lac, 

0.25 M) was not sufficient to reduce fungal growth in wood treated with the two-step 

combination formulation. Nevertheless, more experiments need to be done to determine the 

role of lactic acid in combination with NMF on biocidal efficacy against R. placenta.  

The present study demonstrates the biocidal efficacy against R. placenta for wood 

treated with a nano formulation of a well-known active ingredient, fluoride. Nanoparticles 

such as copper, silver, and zinc have also been tested for biocidal efficacy against 

R. placenta by several research groups. Lykidis, et al. (2016) showed that nano zinc oxide 

alone did not protect wood specimens from R. placenta.19 However, wood specimens 

treated with a combination of nano zinc and borate that were unleached had 0.3% mass loss 

against R. placenta.19 Unleached specimens treated with titanium alkoxide are also reported 

to be durable against R. placenta, although no results were included on treated specimens 

that were leached.76 Another study reported results for unleached and leached specimens 

treated with copper (Cu) and silver (Ag) nanoparticles that were tested against 

R. placenta.127 They found that durability was lost in both Cu and Ag treated specimens that 

were leached.127 In comparison, the results on NMF treated specimens presented here have 

proven their durability against R. placenta even after leaching. Although weathered 

TiO2/Ce specimens had anti-fungal resistance to R. placenta, their efficacy against white-

rot fungi or termites has not been reported.80 The next section presents results on the 

efficacy of NMF treated wood against T. versicolor. 

 

4.4.3 Trametes versicolor: NMF treated wood  
The mass losses in NMF treated wood specimens caused by the white-rot fungus, 

T. versicolor in the EN 113 test are compared in Fig.4.8. All the treatments resulted in mass 

losses lower than the untreated specimens. Among the treatments, the average mass loss 

was lowest for the combination of MgF2 and CaF2 (0.5 M). Similar to the results from 

R. placenta, wood treated with MgF2 (0.5 M) had the highest average mass loss of 
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9.7 ± 3.5% among the NMF treated specimens. Wood treated with MgF2 (0.8 M) performed 

better with an average mass loss below 3%. Although specimens treated with CaF2 (0.8 M) 

had an average mass loss slightly higher than 3%, it was not significantly different to 

specimens treated with MgF2 (0.8 M) (p-value – 0.19). 

 

 
Fig.4.8 Mass loss of NMF treated wood caused by Trametes versicolor. The red line is the 

mass loss cut-off at 3% for durability classification. 

 

The mass losses in the NMF treated specimens caused by T. versicolor in the second 

set of fungal tests are much lower than the first set of fungal tests (4.2.2). Thus, by 

increasing the NMF concentration to 0.8 M, it was shown that the MgF2 treatment is 

sufficient alone and does not need to be combined with copper to improve its efficacy. This 

is an important result because it demonstrates that NMF treatment can be applied without 

additional fixatives, unlike the treatment of wood with copper. Therefore, NMFs have a 

smaller environmental footprint compared to conventional preservatives as less amount of 

chemicals will be needed to make durable wood products. 

In contrast to efficacy results from R. placenta in the previous section, in this case, 

there was no difference in mass losses between the two NMF combination formulation 
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treatments in wood. Both, the treatments resulted in mass losses below 3%. Among all the 

NMF treatments, specimens treated with the combination formulation had the lowest mass 

losses caused by T. versicolor. Thus, the NMF combination formulation would be 

considered to have the most efficacy against T. versicolor. 

Many studies have reported on nano-based wood treatments that have efficacy 

against T. versicolor. Most of these wood treatments were reported to lose their efficacy 

once they are leached. Unleached micronized zinc borate treated specimens had a mass loss 

of 2.1% caused by T. versicolor.128 However, another study reported that nano zinc borate 

specimens that were leached had mass losses higher than 5% when tested against 

T. versicolor.80 Likewise, specimens treated with Cu nanoparticles that were leached did 

not have high efficacy against T. versicolor.127 In contrast to Cu and nano zinc borate 

treatments, both unleached and leached specimens treated with Ag were found to be 

sufficiently protected from decay caused by T. versicolor.127 This was in agreement with 

findings from another group that reported leached specimens treated with Ag nanoparticles 

showed efficacy against T. versicolor.80 However, Ag was shown to lose its efficacy against 

C. puteana and R. placenta after leaching.80,127 In contrast to nanoparticle treatments of 

wood such as Ag and TiO2/Ce mentioned earlier that have efficacy against only one type of 

fungi, the results of this study demonstrate that NMF treatment protects wood from brown-

rot and white-rot fungi.  

 

4.5 Summary 
In this chapter, the biocidal efficacy of NMF treated wood was tested against brown-

rot fungi (Coniophora puteana and Rhodonia placenta) and white-rot fungus (Trametes 

versicolor). Overall, this chapter demonstrates the steps from initial findings to optimization 

that finally led to NMF formulations, which protected treated wood from decay caused by 

all three fungi. The NMF treated specimens performed better than untreated specimens. All 

NMF formulations with a concentration of 0.4 M and higher reduced growth of C. puteana 

on wood. In contrast, R. placenta showed higher tolerance to nanoscopic metal fluoride 

particles. In this case, only two formulations in wood showed high efficacy, the sol of CaF2 

prepared in lactic acid and the sol of MgF2 and CaF2 prepared in ethylene glycol. Notably, 

biocidal efficacy against T. versicolor was highest in wood treated with the combination of 

MgF2 and CaF2. Also, NMFs are a better alternative for use as a preservative than NaF, 

which was found to lose its efficacy in wood after leaching. NMFs, on the other hand, were 
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present in treated wood even after leaching to protect it from fungal decay. Thus, to protect 

from both brown-rot and white-rot fungi, NMFs are a viable nano-based treatment for 

application in wood preservation. 



Efficacy: Termites  

73 
 

5. Efficacy: Termites 
Wood specimens treated with nano metal fluoride (NMF) that were unleached were 

tested against Coptotermes formosanus in accordance with the EN 117 (2012)129 standard 

for termite test.  

 

5.1 First set of termite tests 
In the first round of the EN 117 test, wood treated with NMF formulations in the 

range of 0.1 M to 0.4 M were tested against C. formosanus. The following are results on 

termite mortality, mass loss, and visual rating of the treated specimens. 

 

5.1.1 Termite mortality 
Termite mortality shows how toxic the preservative treatment of wood is to termites. 

It can also indicate a possible mechanism for the efficacy of the preservative. In the EN 117 

test, termites exposed to untreated controls should have a mortality of 50% or less to show 

that they are virulent and for the experiment to be considered valid.129 

The Fig.5.1 shows the average termite mortality after the EN 117 test. The termite 

mortality was below 50% for control and ethanol treated specimens. Thus, the following 

results meet the validity requirement for the EN 117 test. The NMF treated specimens 

caused termite mortality higher than control and ethanol treated wood specimens. Among 

the treated specimens, the termite mortality was in the range of 60 to 80%. There was no 

significant difference in termite mortality among the treatments, although the lowest termite 

mortality was observed for CaF2 (0.1 M) treated specimens. Notably, none of the NMF 

treatments in wood resulted in 100% termite mortality. 
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Fig.5.1 Termite mortality exposed to wood specimens. 

 

5.1.2 Mass loss  
The average mass loss in wood specimens due to termite attack is shown in Fig.5.2. 

The control and ethanol treated specimens had average mass losses above 10%. The high 

mass loss in ethanol treated specimens confirms that ethanol was not toxic to the termites. 

The mass loss in the NMF treated specimens was significantly lower than the control 

specimens. Increasing the NMF concentration from 0.1 M to 0.4 M did not result in a 

proportional decrease in mass loss, irrespective of either MgF2 or CaF2 treatment of wood. 

However, the average mass loss of MgF2 treated specimens was lower than CaF2 treated 

specimens. It is expected that MgF2 treated specimens performed better than CaF2 treated 

specimens as the former has higher solubility. This would result in more fluoride ions being 

released from MgF2, which are biocidal to termites, and therefore fewer termites are 

available to attack the treated wood specimens leading to lower mass losses. Also, the 

higher efficacy of MgF2 over CaF2 is in agreement with the results from the first set of 

fungal tests (4.2.2).  
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Fig.5.2 Mass loss of wood specimens against Coptotermes formosanus. 

 

5.1.3 Visual assessment of specimens after EN 117 test 
In the EN 117 test, C. formosanus caused severe damage to control and ethanol 

treated specimens which are presented in Fig.5.3. It is seen that the termites were able to 

create long and wide tunnels through these wood specimens. 

 

 
Fig.5.3 Control and ethanol treated specimens after the EN 117 test. 
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In contrast to control and ethanol treated specimens, the NMF treated specimens 

were relatively less damaged, as shown in Fig.5.4. Most of the NMF treated specimens had 

surface erosion and tunnels that were created by termites. Even specimens treated with a 

higher NMF concentration of 0.4 M were as damaged as those treated with 0.1 M. This 

observation agrees with the mass loss trend discussed in the previous section (5.1.2), where 

there was no proportional decrease in mass loss with the increase in NMF concentration of 

treated wood. Thus, the higher NMF concentration of 0.4 M was insufficient to prevent 

damage to treated wood caused by C. formosanus. 

 

 
Fig.5.4 NMF treated wood specimens after the EN 117 test. 

 

The damage to wood specimens was also assessed by rating them visually from 1 to 

4, in accordance with the standard in EN 117 (2012).129 The standard classifies treated wood 

specimens with an average visual rating of 1 as the cut-off for the efficacy of the 

preservative, while severely damaged wood specimens are given an average visual rating 

of 4. 
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Fig.5.5 Visual rating of NMF treated wood after C. formosanus attack.  

 

The control specimens were severely damaged with an average visual rating of 4, 

as shown in Fig.5.5. The average visual ratings of the NMF treated specimens were slightly 

lower than the control specimens. Results of the visual assessment of the treated specimens 

present a different picture when compared to their mass losses due to C. formosanus attack 

(Fig.5.2). Unlike the differences observed in their mass losses, there was no difference 

between the visual ratings of MgF2 and CaF2 treated specimens. Even though the treated 

specimens had lower mass losses than control, their average visual rating was higher than 

2. Therefore, the lower mass losses in NMF treated specimens did not reflect the moderate 

damage caused by the termites. Like the fungal tests, in the second set of termite tests, 

higher NMF concentrations were evaluated to investigate if that would reduce the damage 

to wood specimens caused by C. formosanus. 

 

5.2 Second set of termite tests 
In the second set of termite tests, NMF formulations with a concentration of 0.5 M 

and higher were evaluated for protection of wood from C. formosanus. 
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5.2.1 Termite mortality and mass loss 
The Fig.5.6 shows the average mass loss and termite mortality from the second 

EN 117 test. The results from this test are valid because the control specimens had a termite 

mortality of 45%. All treated specimens including the lactic acid treated specimens had 

100% termite mortality. Even though lactic acid treated specimens had 100% termite 

mortality, their average mass loss was similar to control specimens. This could be due to a 

delayed response from the micro-organisms present in the termite gut to the acidic lactic 

acid.125 Due to a delayed toxic response, the termites were probably eating wood resulting 

in their 100% mortality during the last week of the test. This explanation needs to be 

investigated in the future by periodically recording the number of live termites in the test 

jar during the duration of the experiment. 

 

 
Fig.5.6 Mass loss and termite mortality of NMF treated wood. 

 

Notably, in the second set, the higher concentration of the NMF formulations caused 

100% termite mortality, which was not observed in the first set of termite tests (5.1.1). Also, 

the average mass losses for treated specimens were below 3%. The NMF treated specimens 
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had lower average mass loss than the NaF treated specimens, although the difference was 

not statistically significant. Therefore, the durability of NMF treated wood is on the level 

with NaF treated wood against C. formosanus. Furthermore, NMFs could be considered as 

a viable low-water soluble alternative to highly soluble NaF in reducing damage caused by 

termites to wood products. In the present study, the treated specimens were not leached 

prior to the EN 117 test. In future research, NMF and NaF treated specimens that have been 

leached can be evaluated for their durability against termite attack. 

 

5.2.2 Visual assessment of wood specimens  
In the second set, the control specimens were severely damaged as shown in Fig.5.7. 

The severity of their damage was similar to control specimens from the first set of EN 117 

test (Fig.5.3). 

 

 
Fig.5.7 Control specimens after second round of EN 117 test. 

 

Unlike the control specimens, the treated specimens shown in Fig.5.8 are relatively 

less damaged. The most damage was seen in lactic acid treated specimens where termites 

caused surface erosion of more than 1 mm in depth (Fig.5.8). The NMF treated specimens 

have relatively minimal signs of termite attack. It is shown in Fig.5.8 that termites chipped 

the CaF2 treated wood specimen (1 mm in depth) at its right edge corner. Both NaF and 

MgF2 treated specimens show marks of attempted attack by termites, albeit with no deep 

erosion. In contrast to stand-alone NaF and MgF2 treated wood, the signs of attack by 

C. formosanus on wood specimens treated with the NMF combination formulations are 

hardly visible.  
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Fig.5.8 Lactic acid, NaF, and NMF (different formulations) treated specimens after second 

round of EN 117 test. 

 

The visual ratings of the specimens are shown in Fig.5.9. The control specimens 

were the most damaged, with the highest average visual rating of 4. Lactic acid treated 

specimens had a visual rating higher than 2, which fits with their higher average mass loss 

(Fig.5.6). In the second set, optimized NMF formulations for treated specimens resulted in 

relatively less damage caused by termites. This is evident in their average visual ratings, 

which were all below 2 (Fig.5.9). There was no significant difference in the visual ratings 

of the treated specimens, although the highest visual rating was for wood treated with 

CaF2 (lac) and the lowest was for wood treated with the combination of MgF2 (EG) and 

CaF2 (lac). Among the wood treatments, the NMF combination formulation can be 

considered to be the most durable against C. formosanus.  

In literature, nano-based wood treatments have shown promising results in termite 

resistance tests. Mass losses of less than 3% were reported for nano-borate and nano tin 

oxide treated wood against C. formosanus in a test done over three weeks.79 Similarly, 

Mantanis et al. (2014) showed that nano zinc borate was resistant to termite attack in a four-

week test. In comparison, the termite resistance results for NMF treated wood were done 

over a longer duration of eight weeks. Therefore, in the current study NMFs have proven 

their efficacy against C.  formosanus under more aggressive testing conditions and 

consequently demonstrate their potential to provide long-term durability to wood products.  
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Fig.5.9 Visual rating of NMF treated wood exposed to Coptotermes formosanus. 

 

5.3 Toxicity of NMFs to protists in termite gut 
In the introduction, it was described how the protists present in the gut assist termites 

in the digestion of cellulose (1.4.4). To understand the efficacy mechanism of NMFs on 

termites, a short experiment was done to evaluate their impact on the protist population. 

During the exposure of termites to treated wood specimens, the number of protists present 

in their termite gut was counted over 16 days. The estimated number of protists present in 

the termite gut was then calculated and is shown in Fig.5.10. 

From Fig.5.10, it is observed that there was a steep decline in the number of protists 

for all specimens including the control. This is expected as the termites’ surroundings 

underwent a sudden change from the developed colony that they were raised in, to the 

vermiculite in a glass jar. On Day 4, it is observed that the number of protists in the termites 

exposed to lactic acid and CaF2 treated specimens were similar to the control. In contrast, 

lower numbers of protists were found in termites exposed to specimens treated with stand-

alone MgF2 and the NMF combination formulation. This trend remained the same over the 

duration of the experiment.  
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Fig.5.10 Protists found in the gut of the termites exposed to treated specimens. The asterisk 
is to note that there were no alive termites in the jars with the MgF2+CaF2 treated 
specimens after Day 13. 

 

The number of protists in the lactic acid treated specimens decreased gradually, 

which might explain its delayed toxicity effect on the termites resulting in their 100% 

mortality (Fig.5.6) in the EN 117 test. Although a similar trend in the decrease of protists 

population is observed for termites exposed to CaF2 and lactic acid treated specimens, the 

number of protists in the former was lower compared to the latter. It is likely that the 

CaF2 (lac) treated specimens accelerated termite mortality by exacerbating the deleterious 

effect of the lactic acid on the gut protists. This potential synergistic role between CaF2 and 

lactic acid could be explored in future experiments.  

In contrast to the CaF2 treated specimens, the number of protists present in termites 

exposed to the MgF2 treated specimens was lower which is due to the differences in their 

solubility. MgF2 has a higher solubility and therefore releases a higher concentration of 

fluoride compared to CaF2, which can be biocidal to the protists as well. More importantly, 

the NMF combination formulation of MgF2 and CaF2 is even more toxic to the gut protists, 

as after Day 13, no termites were alive in the glass jars containing these NMF treated 
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specimens. Therefore, the NMF combination formulation seems to be the most promising 

as it releases an optimal concentration of “free” fluoride ions in wood that are toxic to 

protists present in the termite gut.  

 

5.4 Summary 
In this chapter, all NMF formulations with a concentration of 0.5 M and higher 

resulted in 100% termite mortality of C. formosanus. Even though all NMF treatments had 

some efficacy, the NMF combination formulation showed the highest efficacy in terms of 

mass loss and visual damage. Moreover, the NMF combination formulation was also the 

most toxic to the protists found in the termite gut. Similar to the results from the fungal 

tests, wood treated with the combination of MgF2 and CaF2 had the highest durability 

against termites. The reason for this would be that the NMF combination treatment in wood 

regulates the release of fluoride for optimal biocidal efficacy, which is discussed in the next 

chapter.  
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6. Fluoride concentration in sols  
A short experiment was conducted after the biological tests to investigate how 

biocidal efficacy depends on the composition of NMF formulation. NMF sols of 5 mM were 

prepared in distilled water and the amount of fluoride was measured using ion 

chromatography. The nominal concentration of fluoride measured in the NMF sols is shown 

in Fig.6.1.  

In the 5 mM NMF sols, the nominal fluoride concentration is lowest in the CaF2 sol 

(Fig.6.1). The fluoride concentration of stand-alone NMF sols measured in this study are 

similar to the literature values for their solubility data, which are 130 mg/L for MgF2 and 

16 mg/L for CaF2.92 In the combined sol of MgF2 and CaF2, the measured fluoride 

concentration is a bit higher than the stand-alone MgF2, although the difference is not 

statistically significant. Since the concentration of fluoride in the combination sol is similar 

to the stand-alone MgF2 sol, the role of CaF2 in the combination formulation on biocidal 

efficacy is not clear. In an earlier chapter (2.2.2), solid-state 19F MAS NMR spectra of wood 

treated with the NMF combination showed that the signal intensity of CaF2 was much 

higher than MgF2. This higher signal intensity of CaF2 suggests that it could have an indirect 

influence on biocidal efficacy.  

During biocidal action, as the “free” fluoride ions keep being disbursed, more of 

them would be needed to resist a severe fungal attack on wood. It could be speculated that 

the role of CaF2 is to keep releasing a constant low flow of “free” fluoride ions such that 

the fungi are not given any respite. A metastable phase of MgCaF4, the formation of which 

is reported in literature,98 could provide the necessary bridge between MgF2 and CaF2 for 

such an arrangement. The role of CaF2 in the combination formulation to replenish and 

regulate the “free” fluoride supply through the MgCaF4 complex would need to be 

confirmed in a future experiment. This would need to reflect the dynamics in fluoride 

concentration inside the wood matrix during leaching and the subsequent fungal attack. One 

option could be to monitor the changes in nominal concentration of fluoride over a set time. 

In such an experiment, specific aliquots of the NMF solution can be removed and replaced 

with distilled water to determine if and when the fluoride concentration returns to the level 

before removal. Another aspect is to understand the interaction of NMF aggregates 

distributed in the wood matrix with the fluctuating moisture content. One possibility could 

be to determine if there are any changes in the mass of NMF treated wood specimens due 

to different humidity conditions.  
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Fig.6.1 Nominal concentration of fluoride measured in NMF sols. 

 

A schematic is presented in Fig.6.2, to illustrate how the NMF treated wood 

specimens would resist fungal attack. When wood is treated with NMF sols, the initial 

nominal fluoride concentration is high. After leaching some fluoride is lost, although most 

of it remains in wood in the form of aggregates due to the low solubility of NMFs. These 

remaining NMF aggregates in the wood matrix act as a reservoir from which “free” fluoride 

ions are released for biocidal action. 

The amount of fluoride released from NMF is important for biocidal efficacy, albeit 

dependent on the tolerance level of the specific fungi to fluoride. The results from the fungal 

tests in this study show that against C. puteana, most NMF treated wood released sufficient 

“free” fluoride ions to keep mass losses below 3%. Thus, C. puteana has a low tolerance 

level to fluoride. Compared to C. puteana, the tolerance level of R. placenta to fluoride is 

higher as only two treatments in wood resulted in mass losses below 3%. One of those 

treatments was the combination of MgF2 and CaF2. The tolerance level of T. versicolor to 

fluoride is also high. In this case, the NMF combination formulation treatment of wood 

resulted in the lowest mass loss. It can be speculated that the solubility of the NMF 

combination formulation in treated wood was optimized, such that the amount of “free” 

fluoride ions released was at the level needed to protect it from all three fungi.  
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Fig.6.2 Schematic showing the cross-cut section of treated wood with changes in NMF 

concentration leading up to fungal testing. Three NMF wood treatments are shown, 
A – CaF2, B - MgF2, and C – MgF2 and CaF2. Image created by S. M. Usmani.  

 

To summarize, fluoride needs to be released from NMFs for it to be biocidal to the 

attacking fungi and termites, although their release needs to be optimized for high efficacy. 

More “free” fluoride ions are needed to resist decay caused by R. placenta and T. versicolor, 

as they have a higher tolerance level to fluoride. In the present study, this was achieved by 

treating wood with MgF2 and CaF2. The NMF combination formulation demonstrated 

biocidal efficacy against brown-rot fungi, white-rot fungus, and termites.  
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑀𝑀𝑀𝑀𝐹𝐹2 + 𝐶𝐶𝐶𝐶𝐹𝐹2  >  𝑀𝑀𝑀𝑀𝐹𝐹2  >  𝐶𝐶𝐶𝐶𝐹𝐹2  

  
 

 

This study can explain to some extent the variations in efficacy of different NMF 

treatments in wood. However, still more research is needed to explain the role of lactic acid 

in combination with NMF on biocidal efficacy. ENV 807 (2001)130 is a longer duration test 

(32 weeks), which could be done in the future to substantiate the durability results of NMF 

treated wood observed in the current study.
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7. Conclusion 
This project assessed the durability of wood treated with sparingly soluble fluoride 

compounds in their nanoscopic form. 

Historically, fluoride compounds were widely used as wood preservatives. Over 

time, the use of these conventional fluoride compounds in treated wood products declined 

because of their high susceptibility to leaching. One approach to overcome this limitation 

is to use sparingly soluble fluorides. Then, the challenge is to impregnate these low-water 

soluble fluorides into wood. Advances in materials science have been used to improve the 

distribution of active ingredients into wood for preservation. Recently, nanoparticles of 

copper, zinc, silver, and titanium dioxide were studied for their efficacy against wood-

degrading fungi and termites. Yet, no studies have reported on the durability of wood treated 

with metal fluoride nanoparticles.  

In the present study, formulations of sparingly soluble fluoride compounds in the 

form of nanoparticles were investigated for their potential to improve the durability of 

wood. The following objectives were set. 

• Characterization of nano metal fluorides (NMFs) and the resultant treated wood.  

• Material properties of wood treated with NMFs. 

• The durability of NMF treated wood against wood-degrading fungi and termites. 

• The possible mechanism of biocidal efficacy of NMFs.  

 

The nanoscopic synthesis of sparingly soluble fluorides such MgF2 and CaF2 using 

the fluorolytic sol-gel synthesis is already established. In this research, this synthesis route 

was used to prepare a novel and stable combination of MgF2 and CaF2 particles in one 

colloidal sol.  

There were several steps involved in the evaluation of NMFs as wood preservatives. 

Firstly, the composition and the size of the nanoparticles were characterized by X-ray 

diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy 

(TEM), and energy-dispersive X-ray spectroscopy (EDX). From the characterization 

methods, it was shown that the sizes of metal fluoride nanoparticles in different combination 

formulations were smaller than 10 nm. The nanoscopic size of sparingly soluble fluorides 

enabled their impregnation into the wood matrix. In addition, solid-state 19F MAS nuclear 

magnetic resonance (NMR) spectra showed that the fluorides were present inside the treated 
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wood specimens even after leaching. Thus, the novel results of this study provide evidence 

of successful treatment of wood with sparingly soluble fluorides. 

Secondly, high-resolution electron imaging was used to determine the distribution 

of NMFs inside wood. Back-scattered electron images combined with energy-dispersive X-

ray spectroscopy maps revealed that the NMFs had aggregated in the bordered pits and cell 

lumina. In addition, the images proved that NMFs were uniformly distributed throughout 

the wood matrix all along the flow path from longitudinal tracheids to ray tracheids. 

Moreover, X-ray micro-CT images showed that the NMF aggregates were present in the 

resin canals even in NMF treated wood that was leached. Therefore, it was shown that the 

nanoscopic form of sparingly soluble fluorides facilitated their distribution throughout the 

wood matrix. 

Thirdly, the properties of NMF treated wood were evaluated such as retention, 

equilibrium moisture content (EMC), dimensional stability, and hydrophobicity. Compared 

to untreated specimens, NMF treatment of wood specimens lowered their EMC and 

increased their dimensional stability. Among the NMF formulations, it was found that wood 

treated with the combination of MgF2 and CaF2 in ethylene glycol had the most hydrophobic 

surface. Therefore, the NMF composition and the type of solvent are important 

determinants of the properties of the resultant treated wood. 

After characterization and evaluation of the physical properties of NMF treated 

wood, their efficacy against fungi and termites was tested. The tests were done in 

accordance with EN 113 (1996) and EN 117 (2012), respectively. Prior to testing against 

fungi, the treated specimens were leached according to EN 84 (1997). Although NMFs 

significantly lowered mass losses of treated specimens compared to untreated specimens in 

the biological tests, their efficacy varied depending on their composition and formulation. 

The first set of tests determined the viability of sparingly soluble fluorides to protect 

wood from fungal attack. Although both MgF2 and CaF2 treated wood minimized decay 

caused by C. puteana, the average mass loss was lower in the former than the latter. This is 

because MgF2 has a higher solubility than CaF2. Following the first set of tests, an in-vitro 

agar test was done to determine the NMF concentration and formulation that will also resist 

the growth of R. placenta and T. versicolor. The results indicated that combining MgF2 and 

CaF2 would have more efficacy against R. placenta than the use of either MgF2 or CaF2 as 

a stand-alone treatment in wood. In addition, it was observed that a higher NMF 

concentration in treated wood would also resist growth of T. versicolor. Based on the results 
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from the in-vitro agar test, NMF formulations for the second set of fungal tests were 

prepared.  

In the second set of tests, all NMF treated wood specimens were protected from 

decay caused by C. puteana compared to severely decayed untreated specimens. However, 

only two NMF formulation treatments in wood had biocidal efficacy against R. placenta, a 

CaF2 sol with lactic acid as solvent and a sol of MgF2 and CaF2 with ethylene glycol as 

solvent. Against T. versicolor, the lowest mass loss (below 2%) was observed for wood 

treated with the combined formulation of MgF2 and CaF2.  

For the tests against termites, Coptotermes formosanus, the treated specimens were 

evaluated based on termite mortality, mass loss, and visual assessment of the damage. NMF 

formulations of 0.5 M and higher were highly toxic to termites resulting in their 100% 

mortality. In addition, these NMF treatments in wood specimens reduced mass losses to 

less than 3%. Also, these NMF treated specimens had minimal damage due to termite attack, 

with visual ratings of 2 and lower. Among NMF treated specimens, the specimens treated 

with the combined formulation of MgF2 and CaF2 had the least damage, reflected in their 

average visual rating of 1.  

The results of this study show that the solubility of fluoride can be tuned to increase 

its biocidal efficacy against fungi and termites. Overall, the combined formulation of MgF2 

and CaF2 was found to have biocidal efficacy against all three fungi and termites, which is 

a promising result for improving the durability of wood. The higher efficacy of the 

combination treatment compared to the stand-alone treatment is not entirely clear. It could 

be a result of the formation of MgCaF4 complex, which regulates an optimal release of 

fluoride ions against attack from fungi and termites. Alternatively, it could be that the 

combination of higher soluble, MgF2 and lower soluble, CaF2 results in a long-term 

availability of fluoride for biocidal efficacy. Still, the solubility of MgF2 (130 mg/L) and 

CaF2 (16 mg/L) remains much lower compared to conventional fluoride compounds used 

in wood preservative formulations such as NaF (40 g/L), which is an advantage. Due to 

their low-water solubility, NMFs in treated wood will remain as a reservoir in the porous 

wood matrix even after leaching. From this reservoir, “free” fluoride ions will be released 

in a controlled manner to provide long-term protection to NMF treated wood from fungi 

and termites.  

The physical barrier posed by the nanoparticle aggregates, which were shown to be 

well distributed inside the wood matrix, also play an important role in improving the 
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durability of NMF treated wood. The NMF aggregates in the matrix decreased the flow path 

for water absorption into wood and blocked the entry points for fungal hyphae. Therefore, 

in addition to their biocidal efficacy, the NMF aggregates reduced the moisture content and 

voids in wood to minimize the likelihood of a fungal attack. 

Unlike conventional fluorides, such as NaF, it is shown here that NMFs provide 

protection to wood from fungal decay even after it has been leached. Also, unlike widely 

used active ingredients in wood preservative formulations such as copper, a significant 

finding of this work is that NMF treated wood is durable without additional fixatives. This 

is important for several reasons, the primary being that fewer chemicals are needed to 

protect wood, and therefore NMF treated wood products have a smaller environmental 

footprint. In particular, NMFs do not provide evidence for higher health and environmental 

risks than the ones posed by conventional wood preservatives. Even more, when compared 

to other wood preservatives, NMFs constitute a safer alternative due to their low-water 

solubility. The resultant NMF treated wood can have multipurpose use, both in Use Class 

3.1 (limited wetting conditions) and Use Class 3.2 (prolonged wetting conditions), 

according to EN 335 (2013). In summary, the findings demonstrate that NMFs are a viable 

alternative to conventional preservatives used in wood products. The high biocidal efficacy 

and low leachability of nano-sized metal fluoride particles shown in the present study 

provide strong arguments for the revival of fluoride compounds in wood preservation.  
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8. Outlook 
Based on the research presented in this work, several avenues are now opened to 

further monitor the use of nano metal fluorides (NMFs) in wood protection in terms of 

formulation, type of treatment, distribution in wood matrix, and organisms.  

In subsequent tests, it can be examined if anti-swelling efficiency of specimens 

treated with CaF2 sol prepared in lactic acid can be improved. Even though the NMF treated 

specimens that were leached had biocidal efficacy against fungi, some fluoride was lost 

during leaching. In future experiments, the proportion of solvent in the formulation can be 

optimized, and an additional thermal curing step can be added to NMF treated wood to 

evaluate the possibility of further reducing fluoride leaching and increasing its dimensional 

stability. Also, efficacy of NMF treated specimens that are leached can be evaluated against 

C. formosanus.  

Two types of wood were used in the biological tests; Scots pine (Pinus sylvestris) 

and beech (Fagus sylvatica). Due to their nanoscopic size, attempts can be made to treat 

species with lower permeability such as Norway spruce and white Fir with NMFs. Wood 

specimens in this study were dried under low pressure before treatment with NMF. The 

efficacy of NMF formulation applied via brushing or dipping wood in it can be evaluated 

in future research. If this treatment is proven to result in similar efficacy compared to 

treatment used in the present study, it can simplify the processing of resultant wood 

products.  

The analytical methods used in the current study to characterize NMF treated wood 

proved to be comprehensive tools. However, X-ray micro-CT can be done at an even higher 

resolution to get more information on the localization of NMFs in treated wood. In addition 

to X-ray micro-CT, a new technique known as electron ptychography can be applied to 

resolve the interaction between nanoparticles and a single wood cell in NMF treated wood.  

In this study, material properties of NMF treated wood such as hydrophobicity were 

evaluated. More information on NMF treated wood can be determined by characterizing 

their mechanical properties such as modulus of elasticity (MOE) and Brinell hardness. In 

addition, natural weathering tests can assess the change in the physical appearance of NMF 

treated wood. If NMF treated wood is proven to be weather resistant, it may increase their 

commercial value as well.  

Nano-sized particles of MgF2 and CaF2 were proven to have efficacy against brown-

rot fungi, white-rot fungus, and termites. It will be informative to determine their efficacy 
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against blue-stain fungi in accordance with EN 152 (2012).131 In the current study, the 

efficacy of NMF treated wood was proven over 16 weeks, making them promising 

candidates for evaluation in ENV 807 (2001),130 a longer duration field stake test of 32 

weeks to determine efficacy against soft-rot fungi and other soil organisms. These tests can 

provide more information on the mechanism behind their efficacy. Instead of searching for 

tailor-made wood preservatives, NMFs can be shown to be treatable in many wood species 

with improved mechanical properties, and which has resistance against soft-rot and blue-

stain fungi as well. Thereby, NMFs as a wood preservative can have broad applications in 

various built products made from non-durable wood to provide them with long-lasting 

protection from decay. In this way, NMFs can play a role in increasing the service-life of a 

sustainable material and reduce the rate at which trees are cut-down specifically to replace 

decayed and damaged wood products. 
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9. Experimental  
The following chapter provides details for the chemicals used in synthesis and 

biological tests, followed with the steps in fluorolytic sol-gel synthesis of nano metal 

fluorides (NMFs), and then the procedure for the biological tests. Lastly, a brief overview 

is given of the analytical methods used in the present study to characterize NMFs and the 

resultant treated wood.  

9.1 Chemicals, purities, and suppliers 
The chemicals used for synthesis of NMFs are listed in Table 9.1. 

Table 9.1 Chemicals used in synthesis and wood treatment 

Compound Purity Supplier 

Magnesium ethoxide, Mg(OEt)2 99.8%  Evonik Industries 

Calcium chloride, CaCl2 anhydrous, ≥ 98% Sigma Aldrich 

Calcium oxide, CaO 96-100.5%, FCC Sigma Aldrich 

Calcium lactate pentahydrate, 
Ca(OLac)·5H2O 

98% AppliChem 

Hydrogen fluoride, HF (aqueous) 39.24 M, puriss p.a., 
ACS reagent, ≥72% 

Steinebach Chemie 

L-lactic acid (lac) 85%, FCC Sigma Aldrich 

Ethylene glycol (EG) ≥ 99% for synthesis Roth 

Ethanol ≥ 99.8% for synthesis Roth 

Copper sulfate pentahydrate, 
CuSO4∙5H2O 

≥ 98% Sigma Aldrich 

Potassium dichromate, K2Cr2O7 ≥ 99% Sigma Aldrich 

Chromium trioxide, CrO3 ≥ 98% Sigma Aldrich 

 

Table 9.2 lists the materials used for the preparation of media for EN 113 (1996)124 

and vermiculite for EN 117 (2012).129 

Table 9.2 Materials used in biological tests 

Standard Purity Supplier 

EN 113 – Per kolle flask 5% 
malt 3% agar 

Malt extract for microbiology  Merck 

Agar-Agar Roth 
EN 117 – Per container had 30 g 
vermiculite, 70 ml distilled H2O 

Vermiculite K0-K4, 
Granulation 2 (3 mm) 

Klein Marken-
Dämmstoffe 
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9.2 Fluorolytic sol-gel synthesis  
The NMFs were prepared from the corresponding alkoxides or oxides dissolved in 

an aqueous solvent, to which stoichiometric amount of aqueous HF was added slowly. This 

suspension was stirred overnight for formation of a clear colloidal solution (sol). The 

synthesis was optimized to prevent the sol from turning into a wet gel. Following are the 

specific details for each NMF sol.  

(1) CaF2 sol (1.25 M, ethylene glycol)  

1188 mmol of CaO and 62 mmol of CaCl2 were suspended in 850 ml of ethylene glycol 

(EG) followed by fluorination with 2500 mmol of aqueous HF. A clear colloidal sol was 

obtained after one day of stirring.  

 

(2) MgF2 sol (1.25 M, ethylene glycol) 

1250 mmol of Mg(OEt)2 was suspended in 850 ml of ethylene glycol followed by 

fluorination with 2500 mmol of aqueous HF. A clear colloidal sol was obtained after one 

day of stirring. 

 

(3) MgF2 and CaF2 sol (1.25 M, ethylene glycol) 

In the first step, 337.5 mmol of CaO and 37.5 mmol CaCl2 was dissolved in 530 ml ethylene 

glycol, followed by fluorination with 750 mmol of aqueous HF. To this suspension 

375 mmol of Mg(OEt)2 was added, followed by fluorination of Mg(OEt)2 with 750 mmol 

of aqueous HF. A clear colloidal sol of MgF2 and CaF2 was obtained after two days of 

stirring. 

 

(4) CaF2 sol (0.8 M, lactic acid)  

In 350 ml of L-lactic acid, 800 mmol of Ca(OLac)·5H2O was suspended. To this suspension 

350 ml of ethanol was added, followed by fluorination with 1600 mmol of aqueous HF. A 

clear sol was obtained the following day after stirring. 

 

(5) MgF2 (0.25 M, ethylene glycol) and CaF2 (0.25 M, lactic acid) 

Another MgF2 and CaF2 combination formulation was prepared by combining sols of MgF2 

in ethylene glycol from synthesis (1) and CaF2 in lactic acid from synthesis (4). This was 

different from the MgF2 and CaF2 formulation in (3), which was a single sol prepared in 

ethylene glycol. 
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9.3 Wood treatment 
Wood was treated with nano metal fluoride (NMF) sols and conditioned for the 

subsequent biological tests as follows. 

 

9.3.1 Impregnation of nano metal fluorides into wood 
Scots pine (Pinus sylvestris) sapwood specimens were used to test for efficacy 

against brown-rot fungi (C. puteana and R. placenta) and termites (C. formosanus). Beech 

(Fagus sylvatica) specimens were used for efficacy tests against white-rot fungus 

(T. versicolor). The specimen dimensions for both types of wood species were; 15 mm x 

25 mm x 50 mm (radial x tangential x longitudinal). Wood quality was according to the 

standards EN 113 (1996)124 and EN 117 (2012).129  

The sols were diluted in ethanol to prepare the final concentration for impregnating 

into the wood specimens. Also, a chromated copper (CC) formulation composed of 

50% w/w copper sulfate pentahydrate (CuSO4∙5H2O), 48% w/w potassium dichromate 

(K2Cr2O7), and 2% w/w chromium trioxide (CrO3) was prepared for wood treatment.  

The specimens were oven-dried at 103 ± 2°C for 18 h to remove any remaining 

water inside wood for better penetration of the treatment solutions. Then, the specimens 

were cooled down to room temperature in a desiccator after which their dry mass (M1) was 

recorded and they were put back in the desiccator. Before impregnation with the treatment 

solution, the specimens were removed from the desiccator and placed in a glass vessel under 

low pressure at 0.4 ± 0.2 kPa for 1 h to remove the air from the wood cells. This step is to 

improve the uptake of the treatment solution into the wood specimens. After 1 h of 

evacuation, the treatment solution was introduced into the glass vessel and the specimens 

were soaked in it for 2 h at ambient pressure and room temperature. 

The wet mass (M2) of each specimen was recorded and then they were placed in the 

conditioning chamber at 20 ± 2°C with a relative humidity (RH) of 65 ± 5% for 4 weeks to 

achieve moisture equilibration. The weight percentage gain (WPG) was calculated using 

the dry mass before treatment and wet mass after treatment with the following formula.  
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WPG (%) =
(M2 − M1)

M1
× 100 

where, 

 M2 – wet mass of the impregnated specimen 

 M1 – dry mass of the specimen before impregnation  

 

The retention (R) of NMFs in wood after treatment was calculated by the following 

formula.  

R (kg m3⁄ ) =
(M2 − M1)C

V
 

where,  

 C – grams of preservative in 100 g of treatment solution 

 V – volume of the specimen  

 

The specimen volumes were used to determine their volumetric swelling (S) and 

anti-swelling efficiency (ASE). The treated specimens were immersed in distilled water for 

24 h followed with oven-drying (103 ± 2°C for 18 h) and their dimensions were measured 

with a digital caliper (0.01 mm accuracy). The equations for their measurements are as 

follows. 

S (%) =
(V2 − V1)

V1
× 100 

where, 

 V2 – volume of the dried impregnated specimen after water immersion 

 V1 – initial volume of the specimen before impregnation  

 

ASE (%) =
(SU − ST)

SU
× 100 

where,  

 SU – volumetric swelling of untreated wood 

 ST – volumetric swelling of treated wood  
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9.3.2 EN 84 - Leaching of treated wood specimens  
The nano metal fluoride (NMF) treated wood specimens were leached before the 

EN 113 (1996) biological tests. The leaching procedure was performed in accordance with 

the EN 84 (1997) standard.122 Subsequently, specimens were submerged in distilled water, 

exposed to low pressure at 4 kPa for 20 min, and then kept in distilled water for 2 h. The 

water was changed and collected nine times during a period of 14 days beginning with the 

1st day. This collected water (leachate) was analyzed for the amount of active ingredients 

that were leached from the NMF treated wood. 

The chemical analysis of leachates was done as follows. A Dionex 320 device 

equipped with an AS 40 autosampler, an ASRS 300 suppressor, an AS 9-HS column with 

thermostat and an electrical conductivity detector was used for the determination of fluoride 

according to DIN EN ISO 10304-1 (2009).132 From the leachate specimen, 25 µl was 

injected and separated on a AS 9-HS column with carbonate (8 mM)/bicarbonate (1 mM) 

aqueous solution as an eluent at a flow rate of 0.35 ml/min in isocratic mode. If necessary, 

the specimens were diluted using ultrapure water prior to the measurement. An external 

calibration was used. 

 

9.4 Biological tests  
Wood specimens treated with NMF were tested in accordance with EN 113 (1996) 

and EN 117 (2012), respectively. 

 
9.4.1 EN 113 - Efficacy against wood-destroying basidiomycetes 

To evaluate the efficacy of NMF treated wood, four replicates were used per 

treatment as outlined in EN 113 (1996).124 After NMF treatment and conditioning, the 

specimens were autoclaved at 121°C for 30 min. The wood specimens were tested against 

Coniophora puteana (BAM Ebw. 15), Rhodonia placenta (FPRL 280), and Trametes 

versicolor (CTB 863 A). One NMF treated specimen and an untreated specimen were 

introduced in a Kolle flask and then exposed to the selected fungi for 16 weeks. 

Additionally, treated specimens were put only on malt-agar medium to determine the mass 

loss not due to fungal decay at the end of the test, this is known as the correction value. At 

the end of testing, the mycelium adherent to the surface of the wood specimens was gently 

removed and their mass (M3) was recorded. Then, all specimens were oven-dried 

(103 ± 2°C for 18 h) and their final mass (M4) was recorded. The mass loss was calculated 
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as the difference between the initial and final mass. The formula for calculating the mass 

loss (ML) is presented below. 

ML(%) =
(M1 − M4)

M1
× 100 

where,  

 M1 – oven-dried mass of specimen before wood treatment 

 M4 – oven-dried mass of treated specimen after EN 113 test 

 

Correction values were used where high uptake of the NMF formulation during 

treatment resulted in final mass losses to be negative NMF treated wood specimens that had 

an average mass loss of 3% or below after the EN 113 test were classified as durable. 

 

9.4.2 Equilibrium moisture content (EMC)  
Moisture content of wood depends on the relative humidity and temperature of the 

surrounding environment. Wood reaches an equilibrium moisture content when it is neither 

gaining nor losing moisture. The equilibrium moisture content (EMC) of specimens was 

calculated after the end of the EN 113 test as follows.  

EMC (%) =
(M3 − M4)

M3
× 100 

where, 

 M3 – mass of specimen after EN 113 test 

 M4 – oven-dried mass of specimen after EN 113 test 

 

9.4.3 In-vitro agar test 
An in-vitro agar test was done after the first set of biological tests to determine the 

optimum NMF concentration and formulation for biocidal efficacy against fungi. The test 

was done on three fungal species, C. puteana (BAM Ebw. 15), R. placenta (FPRL 280), 

and T. versicolor (CTB 863 A). Two concentrations of NMF were tested; 0.05 M and 

0.4 M, in three formulations; MgF2, CaF2, MgF2+CaF2. For each formulation, three Petri 

dishes with their respective medium were prepared. To a 20 mL medium of 5% malt extract 
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and 3% agar, NMF sols were added in different amounts to get the respective final 

concentration of 0.05 M and 0.4 M and then sterilized. After the medium solidified, an 

inoculum from a fungal culture was placed in each Petri dish. The Petri dishes were 

incubated at 20 ± 2°C and 65% RH. The anti-fungal efficacy was assessed by measuring 

the size of the fungal colony diameter in centimeters over the duration of the experiment 

(14 days) to calculate the fungal growth rate. The formula for growth rate is shown below.  

Growth rate (cm/day) =
Fungal diameter in cm

Number of days
 

 
9.4.4 EN 117- Efficacy against termites 

The testing against termite species, Coptotermes formosanus was done in 

accordance with EN 117 (2012)129 in a glass jar. Each jar comprised of 30 g of vermiculite, 

10 ml of H2O, and 1 cm3 of untreated wood specimen. To each jar, 250 termite workers and 

30 termite soldiers were introduced. The termites were given three days to start settling in 

their new environment indicated by their active movement in the jar. Then, unleached 

treated wood specimens were introduced into the jar. After 8 weeks, the test specimens were 

removed from the jar and termite mortality was calculated by counting the number of alive 

termites with the formula shown below.  

Termite mortality (%) =
(250 − Number of alive  termites)

250
 × 100 

 

Then, the specimens were dried at 103°C for 18 h and weighed to record their final 

oven-dried mass. The mass loss (%) due to termite attack was calculated as the difference 

between the initial oven-dried mass of the specimen before NMF treatment and final oven-

dried mass of the specimen after the end of the EN 117 test. These specimens were also 

visually examined to classify the severity of termite attack with an assessment scheme 

provided in EN 117 and shown in Table 9.3. Based on the visual rating and according to 

EN 350 (2016),133 the treated specimens can be assigned to Durability Classes (“Durable” 

if the visual rating was 0 or 1, “Moderately Durable” if less than 50% test specimens had a 

visual rating of 3 or 4, and “Not Durable” if more than 50% had a visual rating of 3 or 4).  
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Table 9.3 Visual rating assessment scheme from EN 117 (2012) 

Rating Description 

0 No attack; 

1 Attempted attack – Surface erosion (less than 0,5 mm in depth); 

2 Slight attack – erosion of wood surface (less than 1 mm in depth) 

and/or single tunneling (less than 3 mm in depth); 

3 Average attack – erosion between 1 mm to 3 mm in depth and/or 

single tunneling (greater than 3 mm in depth) without cavities; 

4 Strong attack – tunneling greater than 3 mm in depth with formation 

of large cavities;  

 

The number of protists in the termite gut were also measured according to the 

method described by Lewis and Forschler.134 The termite gut was gently removed using 

fine-tipped forceps. The gut contents of three termites were pooled in a phosphate buffered 

saline (PBS) solution (500 µl) with a pH of 7.4. Then, the solution was gently agitated with 

a pipette tip. From this solution, 50 µl aliquot was added to a counting chamber (Nageotte, 

Bioanalytic, GmbH), which was then placed under a microscope to count the number (#) of 

protists. The protist population in the termite gut was estimated using the following formula. 

Protists =
# Counted protists × Original volume (500 μl)

Chamber volume (50 μl)  × # Termites per sample
 

 

9.5 Analytical methods 
The NMF sols and the resultant NMF treated wood specimens were characterized. 

The following is a brief explanation of the analytical techniques used for their 

characterization. 

 

9.5.1 X-ray diffraction  
X-ray diffraction (XRD) is a non-destructive technique to characterize materials. It 

is based on constructive interference between scattered beams diffracted from the lattice 

planes of the material. The periodic arrangement of atoms in a given material gives rise to 
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an X-ray diffraction pattern characteristic to the material. The diffracted beams are 

measured by the goniometer at specific angles 2θ satisfying the Bragg’s law shown below. 

nλ = 2dsinθ 

where, n – integer, λ – X-ray wavelength, d – interplanar spacing, θ – diffraction angle 

In this study, XRD measurements were performed using the Seifert XRD 3003 TT 

with a rotating specimen holder (Rich, Seiffert & Co., Freiberg) and Cu Kα radiation (Cu 

Kα1.2, λ = 1.542 Å, V = 40 kV, I = 40 mA, 2θ range - 5° < 2θ < 90°, step scan - 0.05°, step 

time - 5 s). All specimens were measured in Bragg-Brentano geometry and the diffraction 

patterns were compared to powder diffraction files (PDF) in the ICDD powder database.109 

 
9.5.2 Dynamic light scattering  

Dynamic light scattering (DLS) is used to determine the hydrodynamic diameter of 

the nanoparticles. In this technique, laser light is shined on the clear colloidal suspension of 

nanoparticles. The light interacts with the nanoparticles causing it to be scattered. The 

intensity of the scattered light depends on various characteristics of the nanoparticle. This 

scattered light is analyzed and information about the nanoparticle is extracted from the data 

using a light scattering model.  

In this study, DLS was done with Malvern Instruments Zeta-sizer Nano using a He-

Ne Laser (λ = 633 nm, 4 mW). The scattered light was detected at an angle of 173° to 

minimize the scattering effects. Three measurements were recorded for each sample to 

determine the average hydrodynamic size of the nanoparticle.  

 
9.5.3 Transmission electron microscopy  

In transmission electron microscopy (TEM), the sample is irradiated with an 

electron beam. Instead of secondary electrons, the transmitted electrons from the sample 

are detected. Only the elastic electrons contribute in TEM imaging. Therefore, large number 

of electrons with a small energy distribution are needed to reach the detector for 

characterization. As a result, the specimen thickness should not exceed 100 nm otherwise 

not enough transmitted electrons would reach the detector.  

For TEM and high-angle annular dark field scanning transmission electron 

microscopy (HAADF-STEM) measurement, the NMF sol was dispersed in ethanol and 

10 µl of it was transferred on a conventional carbon hole film with a thickness of 20 nm 
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supported on a copper grid. After complete evaporation of the ethanol from the grid, the 

particles were studied on a JEOL 2200 FS (S)TEM that was operated at an acceleration 

voltage of 200 kV. In high-resolution mode TEM (HR-TEM), the point-to-point resolution 

is 0.19 nm and the information limit for the visualization of crystal lattice planes is 0.14 nm. 

 
9.5.4 Scanning electron microscopy  

Scanning electron microscopy (SEM) is a method that provides information about 

the surface topography and morphology of a given sample in the nanometer range. The 

sample is scanned with a finely focused electron beam. Typical energy range of the electron 

beam in SEM is from 5 to 20 kV. The irradiation stimulates the atoms in the sample and 

generates secondary electrons, which together with the back-scattered electrons are 

collected in a detector. A photomultiplier transforms the energy of the collected electrons 

into an electrical signal that is transferred to the screen of a monitor to visualize the sample.  

In SEM, the wood specimens are prepared as follows. The wood specimens were 

cut using a sledge microtome and sputtered with carbon (15 nm). The SEM images were 

acquired on Leo 1530 VP (Zeiss) at 15 kV in variable pressure (5−10 Pa) with a working 

distance of 10 mm.  

The composition contrast between the wood specimen and the NMFs in a back-

scattered electron (BSE) image is due to the back-scattered electrons. The energy of back-

scattered electrons reflected from wood is lower than NMFs. Therefore, the higher energy 

from the NMF aggregates is associated with the lighter regions in the back-scattered 

electron image. Thus, BSE provides information about the spatial distribution of NMFs in 

treated wood. 

 
9.5.5 Energy-dispersive X-ray spectroscopy  

Energy-dispersive X-ray spectroscopy (EDX) is used to determine the elemental 

composition of the specimen. A finely focused electron beam incident on the specimen 

causes an electron in the atom to be excited and ejected from the inner shell creating an 

electron hole. Another electron from an outer, higher energy shell fills up that hole. The 

energy difference between the higher energy shell and the inner energy shell is released as 

an X-ray, which is characteristic of each element. An energy-dispersive spectrometer is 

used to measure the number and energy of the X-rays emitted from a representative area of 

the specimen and thus provide its elemental composition map.  
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Elemental distributions of calcium, magnesium, and fluorine on the wood surface 

were mapped with EDX Bruker Esprit at 15 kV, in variable pressure (5−10 Pa), at a working 

distance of 10 mm, and an acquisition time of 600 s. 

 
9.5.6 X-ray micro-computed tomography  

Non-destructive analysis of the whole wood specimen was done with X-ray micro-

computed tomography (X-ray micro-CT). The advantage of this technique is that there is 

no sample preparation required. The measurement is done under ambient conditions by 

directing X-rays at the wood specimen from multiple orientations. The chemical 

composition (atomic number) and density of wood changes the X-ray intensity.135 These 

changes in intensity are recorded and then algorithms are used to reconstruct the internal 

structure. The voids in wood appear black as they do not change the X-ray intensity. In 

contrast, the X-ray intensity changes when it encounters aggregates of NMFs in wood which 

appear white. In such an analysis, location of NMFs in the whole wood specimen can be 

determined.  

X-ray micro-CT was performed on a Phoenix vǀtomeǀx L 300/180. The specimen 

was scanned using an open type microfocus transmission X-ray tube at 60 kV, 170 μA, 

3000 projections, and 6000 ms exposure time per projection. Reconstructions were 

performed with the datosǀx reconstruction software package, a tomography reconstruction 

package for cone-beam from GE Sensing & Inspection Technologies GmbH phoenixǀx-ray, 

resulting in reconstructed data with a voxel size of 12 μm. The reconstructed volumes were 

analyzed using 3D Imaging software, CT Viewer, licensed by BAM. 

 
9.5.7 Nuclear magnetic resonance spectroscopy  

Solid-state MAS (magic angle spinning) NMR spectra were recorded on a Bruker 

AVANCE 400 spectrometer at room temperature. A 2.5 mm rotor was filled with grounded 

wood and then 19F (Larmor frequency of 376.4 MHz) was measured using rotation 

frequency of 20 kHz. All 19F MAS spectra of wood specimens were recorded using a π/2 

pulse length of 4.4 μs, a spectrum width of 400 kHz, a recycle delay of 5 s, and an 

accumulation number of 2048. 

Solid-state MAS 1H-13C NMR spectra was performed at 10 kHz using a 4 mm rotor 

filled with grounded wood. NMR spectra were acquired with a cross-polarization (CP) 

pulse sequence under the following conditions:13C frequency of 100.62 MHz, π/2 pulse 
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length of 5 μs, 1H decoupling pulse power of 11 dB, recycle delay 5 s, contact time of 

1000 μs, time domain of 1796, and line broadening of 40 Hz. A TPPM15 pulse sequence 

was used for 1H decoupling. The acquisition time was 0.019 seconds and the sweep-width 

was 45 kHz. The number of scans was 2194. 

 
9.5.8 Contact angle  

Contact angle is used to characterize the surface wettability of a given material. The 

angle between the liquid surface and the contact surface is called the contact angle (CA). 

The water contact angle depends on the chemical composition of the substrate material. At 

an angle of 0°, the surface becomes completely wet as the water droplet spreads. An angle 

between 0° and 90° means that wetting the surface is possible. When the angle is over 90° 

the surface is poorly wettable as the surface tension of the liquid is greater than the substrate 

to be wetted. For this reason, a substrate with a CA above 90° is characterized as 

hydrophobic and if CA is below 90°, then it is characterized as hydrophilic. A substrate 

with an angle of over 150° has super hydrophobic properties.116  

CA measurements were performed with a drop-shaped analyzer (Kruss, DSA100). 

The syringe above the specimen stage was set to dispense 0.5 µl amount of distilled water 

on the wood surface. The CA values were recorded immediately after droplet deposition on 

the wood specimen surface until complete wetting of the surface with a time interval of 

30 s. The CA was measured on three different locations for each specimen. 

 
9.5.9 Fluoride concentration in sols 

Four replicates of each NMF sols at 0.5 mM were prepared with distilled water. The 

amount of fluoride in NMF formulations was measured using ion chromatography as 

follows. A Dionex 320 device equipped with an AS 40 autosampler, an ASRS 300 

suppressor, an AS 9-HS column with a thermostat and an electrical conductivity detector 

was used for the determination of fluoride concentration. From the NMF sol, 25 µl was 

injected and separated on a AS 9-HS column with carbonate (8 mM)/bicarbonate (1 mM) 

aqueous solution as an eluent at a flow rate of 0.35 ml/min in isocratic mode. An external 

calibration was used. 
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