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Abstract:
The goal of this work is to identify the optimal operating input for a lithiation reaction that
is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial
environment, taking into account the process and safety constraints. The main challenge is to
identify the optimum operation in the absence of information about the reaction mechanism
and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier
adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the
presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used
to measure the concentration of the reactants and of the product at the reactor outlet. The
experiment results demonstrate the capabilities of the iterative optimization using the MAWQA
algorithm in driving a complex real plant to an economically optimal operating point in the
presence of plant-model mismatch and of process and measurement uncertainties.

Keywords: Iterative real-time optimization, Modifier adaptation, Plant-model mismatch,
Reactor control, PAT-sensor, NMR.

1. INTRODUCTION

Active pharmaceutical ingredients (APIs) have been pro-
duced in multi-purpose batch and semi-batch reactors
since long (Mleczko and Zhao, 2014; Porta et al., 2016).
Recently, flow technologies have gained popularity within
the pharmaceutical industry for the production of APIs.
In order to survive the increasing competition, it is nec-
essary to operate these processes optimally with respect
to product yield and production cost. This stimulates
the development of completely automated processes with
increased efficiency.

Identifying the process optimum is possible by solving a
model based optimization problem using a mathemati-
cal model which captures the behavior of the underlying
process accurately. However, it is expensive or sometimes
not possible to build high accuracy models. It is therefore
in the interest of the process industries to employ opti-
mization schemes which can identify economically optimal
operating conditions of the process which satisfy the pro-
cess and safety constraints, using an imperfect model with
structural and/or parametric mismatch.

� The research leading to these results has received funding from the
European Unions Horizon 2020 research and innovation program un-
der grant agreement number 636942 “CONSENS–Integrated Control
and Sensing”.

Iterative real-time optimization techniques have gained
popularity in recent years to identify the optimal operating
condition of a process despite the presence of plant-model
mismatch. Initially, a two-step approach to handle para-
metric plant-model mismatch was proposed in Jang et al.
(1987). In the two-step approach, the model parameters
are updated using the plant measurements and the model
based optimization problem with updated parameters is
solved and the procedure is iterated. In Roberts (1979), the
integrated system optimization and parameter estimation
(ISOPE) approach was proposed where in addition to
updating the model parameters, the objective function
of the model based optimization problem is modified by
adding bias and gradient correction terms which are also
iteratively updated. The ISOPE scheme can handle both
structural and parametric plant-model mismatch and the
inputs obtained from the ISOPE converge iteratively to
the KKT point of the plant. To avoid the estimation of
the model parameters in each iteration, Tatjewski (2002)
proposed the redesigned-ISOPE scheme. It was shown
in Tatjewski (2002) that the uncertain parameters do not
have to be updated in each iteration (or not at all) to
achieve convergence to the KKT point of the plant. The
redesigned-ISOPE scheme was further extended in Gao
and Engell (2005) to the handling of process-dependent
constraints and called iterative gradient-modification op-
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timization (IGMO). They also refined the computation of
the plant gradients which are needed in the iterative opti-
mization. This approach was further analyzed in Marchetti
et al. (2009) and the term modifier adaptation (MA) was
proposed.

The ISOPE, IGMO and MA schemes require the knowl-
edge of the gradients of the cost function and of the
constraints with respect to the inputs of the real plant
which are usually hard to obtain (Roberts, 2000). Finite
differences are used to compute the process gradients in
the ISOPE and the redesigned-ISOPE schemes. In pres-
ence of measurement noise, the gradient approximation
using finite differences is prone to error. Additionally, it
has a disadvantage of requiring additional plant pertur-
bations around each input (Roberts, 2000). In Gao and
Engell (2005), Broyden’s formula from Roberts (2000) is
used to approximate the plant gradients from the past
moves, avoiding additional plant perturbations unless the
data matrix becomes nearly singular, then optimized new
test points are evaluated. In Gao et al. (2016), modi-
fier adaptation with quadratic approximation (MAWQA)
has been proposed as a combination of IGMO, quadratic
approximation (QA) and elements from derivative free
optimization (DFO) (Conn et al., 2009). It was demon-
strated in Gao et al. (2016) that the QA handles the
measurement noise well and is capable to decrease the
gradient approximation error when compared to the above
mentioned methods. Recently, Matias and Jäschke (2019)
proposed to use radial-basis function network to compute
the plant gradients in modifier adaptation.

Although there exists a large amount of literature on
iterative real-time optimization methods, they are still not
very widely used in the industry. According to Darby et al.
(2011), the most successful applications of iterative real-
time optimization are found in ethylene plants. In Her-
nandez et al. (2018), an experimental implementation of
MAWQA at a miniplant for hydroformylation has been
reported. Recently, de Avila Ferreira et al. (2019) used
iterative real-time optimization to optimize a solid-oxide
fuel-cell system. In this work, the optimum operating
conditions of a lithiation reaction that takes place in
an intensified continuous reactor is identified using the
iterative real-time optimization scheme MAWQA and a
novel NMR PAT sensor in an industrial environment, the
INVITE test facility. The challenge here is to identify the
process optimum in spite of the lack of knowledge about
the reaction mechanism and kinetics.

The remainder of the paper is organized as follows: In
Section 2, the iterative real-time optimization scheme
MAWQA is presented. The lithiation reaction scheme, the
process description and the models, both the nominal and
the plant model used in the iterative optimization are
presented in Section 3. Simulation results and experiment
results are also presented and discussed in Section 3.
Finally, in Section 4, the paper is summarized.

2. MODIFIER ADAPTATION WITH QUADRATIC
APPROXIMATION

Consider a process for which a steady state mathematical
model (1b) has been built. The mapping function Fm :
Rnu → Rny maps the input variables represented by the

nu-dimensional vector u to the ny-dimensional vector of
measured variables ŷ. Let Jm : Rnu × Rny → R be a
function of input and measured variables that we want
to minimize and Gm : Rnu × Rny → Rnc be a vector of
nc inequality constraints. We assume that the functions
Jm and Gm are at least twice differentiable with respect
to u. Optimal inputs of the process between bounds uL

and uU can be obtained by solving the optimization
problem (1). The identified optimum u∗

m using the a priori
known process model (nominal model) however may differ
considerably from the optimum u∗

p of the real process as
Fm may not describe the real process (plant) accurately.

u∗
m = arg min

u∈[uL,uU ]
Jm(ŷ,u) (1a)

s.t. ŷ = Fm(u), (1b)

Gm(ŷ,u) ≤ 0. (1c)

MAWQA is an iterative gradient-modification optimiza-
tion scheme that makes use of elements of derivative free
optimization (DFO), in particular local quadratic approx-
imations (Gao et al., 2016). In MAWQA the plant-model
mismatch is handled by modifying and iteratively updat-
ing the objective and the constraint functions of the model-
based optimization problem in (1) as in Gao and Engell
(2005); Marchetti et al. (2009). The objective function is
modified by adding a gradient correction term and the
constraint function is modified by adding bias and gradient
correction terms according to the following equations:

Jad,k
m := Jm(ŷ,u)+

(∇Jp(y
k
p,u

k)−∇Jm(ŷk,uk))T (u− uk),

(2a)

Gad,k
m := Gm(ŷ,u) + (Gp(y

k
p,u

k)−Gm(ŷk,uk))+

(∇Gp(y
k
p,u

k)−∇Gm(ŷk,uk))T (u− uk),

(2b)

and the following optimization problem is solved itera-
tively:

ûk+1 = arg min
u∈[uL,uU ]

Jad,k
m (3a)

s.t. ŷ = Fm(u), (3b)

Gad,k
m ≤ 0. (3c)

The optimization problem (3) when solved in the kth

iteration computes the input for the k + 1th iteration
(uk+1). ∇Jp(y

k
p,u

k), ∇Jm(ŷk,uk) in (2) represent the
gradient of the plant objective function Jp(yp,u) and the
nominal model objective function Jm(ŷ,u) with respect to
the process inputs obtained at the kth iteration. Similarly
∇Gp(y

k
p,u

k), ∇Gm(ŷk,uk) represent the gradient of the
plant constraint function Gp(yp,u) and the constraint
functions of the nominal model Gm(ŷ,u) with respect to
the process inputs at the kth iteration.

In MAWQA, ∇Jp(y
k
p,u

k) and ∇Gp(y
k
p,u

k) are approxi-
mated using a surrogate quadratic approximation model

(Q). To fit Q, a minimum of (nu+1)(nu+2)
2 number of data

points including the input point uk at which the gradient
is approximated are required. From the set of all evaluated
plant inputs up to the kth iteration (Uk), a subset of input
data points Uk are selected. The values of Jp andGp for all
Uk are used to approximate the plant objective function
Jp and each of the constraint functions Gp using quadratic
functions. The gradients are obtained by analytically dif-
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ferentiating the fitted quadratic functions and evaluating
them at uk. A general quadratic function can be expressed

as Q(p,u) =
∑nu

i=1

∑i
j=1 ai,juiuj +

∑nu

i=1 biui + c, where

p := {a1,1, . . . , anu,nu
, b1, . . . , bnu

, c} is the vector of pa-
rameters of the quadratic function. The set Uk is identified
by screening all the available data points in Uk. In general,
it is attempted to select Uk such that it consists of well
distributed distant data points Uk

dist which act as anchor
points and neighboring points Uk

nb which lie in the vicinity
of uk. The inverse of the condition number of sk (κ−1(sk))
in (4) is used to assess the quality of the distribution of
the data points (Gao et al., 2016). In (4), [uk] and [Uk

dist]
are matrix representations of uk and of the set Uk

dist. If
κ−1(sk) is less than a desired value (δ), additional plant
perturbations are performed and added to Uk to improve
the distribution of the points. This condition is referred to
as the conditionality condition.

sk = [uk]nu×1 ⊗ 1cardinality(U
k
dist)×1 − [Uk

dist] (4)

As the fitted quadratic functions are only local approxi-
mations of Jp and Gp, they are valid only in the vicinity

of uk. In MAWQA, the process input ûk+1 obtained from
the optimization problem (3) is restricted to lie inside a
confidence ellipsoid (trust-region) by adding the following
constraint to the modified optimization problem (3):

(u− uk)T cov(Uk)(u− uk) ≤ γ2, (5)

where γ is a tuning parameter which scales the size of the
trust region defined by the confidence ellipsoid (Gao et al.,
2016).

In addition to QA, there are also other elements of deriva-
tive free optimization (DFO) Conn et al. (2009) included
in MAWQA. It includes the criticality-check, the quality-
check and a switch to an optimization based on the
quadratic approximation model. The criticality-check is
used to ensure that the anchor points Uk

dist that are used
in fitting Q do not lie far from uk. The algorithm for the
criticality-check is shown in Algorithm 1. In the quality-
check, the quality of Jad,k

m and Gad,k
m are compared with

the fitted quadratic models Jk
Q and Gk

Q. The minimum of

ρkm, ρkQ in (6) determines the best among the adapted and

quadratic models (Gao et al., 2016).

ρkm := max




∣∣∣∣1−
Jad,k
m − Jad,k−1

m

Jk
p − Jk−1

p

∣∣∣∣ ,
∣∣∣∣∣1−

Gad,k
m,1 −Gad,k−1

m,1

Gk
p,1 −Gk−1

p,1

∣∣∣∣∣ ,

. . . ,

∣∣∣∣1−
Gad,k

m,nc −Gad,k−1
m,nc

Gk
p,nc

−Gk−1
p,nc

∣∣∣∣



,

(6a)

ρkQ := max





∣∣∣∣1−
Jk
Q − Jk−1

Q

Jk
p − Jk−1

p

∣∣∣∣ ,
∣∣∣∣1−

Gk
Q,1 −Gk−1

Q,1

Gk
p,1 −Gk−1

p,1

∣∣∣∣ ,

. . . ,

∣∣∣∣1−
Gk

Q,nc
−Gk−1

Q,nc

Gk
p,nc

−Gk−1
p,nc

∣∣∣∣




, (6b)

From the quality-check, if the quality of the quadratic
model is better than the adapted model, i.e. ρkQ < ρkm,

instead of solving the optimization problem in (3) using
the modified objective and constraint functions, the fol-
lowing optimization problem based on the fitted quadratic
approximation model is solved:

uk+1 = arg min
u∈[uL,uU ]

Q(pk,J ,u) (7a)

s.t. Q(pk,G,u) ≤ 0, (7b)

(u− uk)T cov(Uk)(u− uk) ≤ γ2. (7c)

Algorithm 1 Criticality-check

Require: �u,uk+1,uk,Uk
dist

if ||uk+1 − uk||2 < �u then
Solve

u∗ = arg max
ui∈Uk

dist

||ui − uk||2

while ||u∗ − uk||2 > 2�u do

u∗ := u∗+uk

2

uk+1 := u∗

end while
end if

3. LITHIATION PROCESS

3.1 Process Description

A lithiation reaction is performed in a containerized re-
actor module that was developed within the F3-factory
project (Bieringer et al., 2013) at the INVITE facility in
Leverkusen, Germany. The important modules used in the
lithiation process, i.e. the coiled tubular reactor, an online
NMR sensor, a NIR flow cell and a product filter are
shown in Figure 1. The reactants Aniline (A), 1-Fluoro-
2-nitrobenzene (E) and Lithium bis(trimethylsilyl)amide
(B) are fed into the reactor through a mixer to produce
Lithium 2-Nitrodiphenylamine (H). The reaction scheme
is:

A + B −→ C+D, C+ E −→ F +G, (8a)

C + F −→ H+A, F + B −→ H+D, (8b)

H + E −→ I + G. (8c)

where C, D, F and I represent Lithium phenylazanide,
Hexamethyldisilazane, 2-Nitrodiphenylamine and 4-Nitro-
N-(4-nitrophenyl)-N-phenylaniline. Tetrahydrofuran is us-
ed as a solvent in this reaction. The reaction is performed
in a coiled tube which does not have mixing elements
and is cooled by the ambient air. As the reactor does not
have a cooling jacket, for safety reasons the throughput
of the reactants is limited by the requirement that the
temperature at the reactor outlet is less than 54 ◦C.

B
1

C

A C

D

E

B

F

Fig. 1. Photograph of the modular pilot plant (A) for the
continuous production of Li-NDPA. (B) is a close-up
of the tubular reactor (D, Inner diameter = 12.4mm)
and the filter section (E). (C) is a photograph of
the integrated compact NMR spectrometer (43MHz)
with ATEX certified pressurized housing for online
concentration measurements. (F) indicates the loca-
tion of the NIR flow cell.
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During the reaction, the byproduct Lithium fluoride (G)
precipitates along the length of the reactor, forming a
fouling layer. Fouling in tubular reactors causes local
constrictions of the tube, thus leading to varying flow
velocities and increasing pressure drops. In the worst
case, a complete blockage of the tubular reactor happens
(Schoenitz et al., 2015). The reaction mixture from the
outlet of the reactor is passed through a filter to remove the
solid particles of G that are produced during the reaction.
The filtered mixture is then passed to a storage tank.
A sample of the filtered reaction mixture is continuously
passed to the online NMR and to an NIR flow cell
to measure the concentrations of the reactants, of the
byproducts and of the product in the reaction mixture
at the reactor outlet. We refer to Kern et al. (2019) for
further information about the online NMR device used in
this study.

3.2 Plant model

The following assumptions are made in modelling the
reaction in the coiled tubular reactor: (i) the effect of
coiling is negligible, (ii) the reactor is an ideal plug flow
reactor, (iii) the specific heat capacity and the densities are
time invariant, (iv) relative reaction rate constants were
taken as provided by INVITE based on their observations
and are time invariant, (v) the 5th elementary reaction
(H + E −→ I + G) does not take place and (vi) the
concentration and temperature gradients in the radial
direction are negligible.

Based on the above assumptions, the following partial
differential equations (PDE) model using general mass and
energy balance equations for tubular reactors results:

∂Ci

∂t
= − ∂(vzCi)

∂z
+Dcz

∂2Ci

∂z2
+ ri

∀i ∈ {A,B,C,D,E, F,G,H},

(9a)

∂TR

∂t
= − ∂(vzTR)

∂z
+

1

ρcp
(Dtz

∂2TR

∂z2
+KA(TR − TE)−

�H1k1CACB −�H2k2CCCE−
�H3k3CCCF −�H4k4CBCF ),

(9b)

where Ci, ri denote the concentration and the reaction
rate of the ith reactant, vz represents the velocity of
the reaction mixture in the axial direction, Dcz, Dtz are
the concentration and thermal dispersion coefficients. The
algebraic equations for the reaction rates are:

rA = −k1CACB + k3CCCF , rE = −k2CCCE , (10a)

rB = −k1CACB + k4CBCF , rG = k2CCCE , (10b)

rC = k1CACB − k2CCCE − rA, (10c)

rD = k1CACB + k4CFCB , (10d)

rF = k2CCCE − k3CCCF − k4CBCF , (10e)

rH = k3CCCF + k4CFCB , (10f)

where the reaction rates ki∀i = 1, . . . , 4 are given by

ki = ki0 exp(
−E

RTR
). (11)

The steady state model for the lithiation reaction is

obtained by substituting ∂Ci

∂t
= 0 and ∂TR

∂t
= 0 in the

PDE model (9). This substitution leads to a second order

Table 1. Parameter values used in the plant
model

Parameter Value Parameter Value

�H1, . . . ,�H4 −6 J/mol Tin 283.15K
k10, . . . , k40 17.8 s−1 E 25× 103 J/mol

KA 0.001W/K �H −19 J/mol
TE 293.15K cp 0.123 J/(molK)
ρ 900 kg/m3 R 8.314 J/(molK)

differential equation in the longitudinal coordinate z. As
precise information is lacking, the dispersion coefficients of
the concentrations and of the temperature are set to zero.
The resulting simplified model is

∂Ci

∂z
=

ri
vz

∀i ∈ {A,B,C,D,E, F,G,H}, (12a)

∂TR

∂z
=

1

vzρcp

(
KA(TR − TE)−�H1k1CACB−

�H2k2CCCE −�H3k3CCCF−
�H4k4CBCF

)
,

(12b)

and the model parameter values are listed in Table 1.
The steady state optimum of the plant model results as
u∗
p := [4.21, 8, 6.65] kg/h for the flow rates of reactants A,

B and E.

3.3 Nominal model

The nominal steady-state model approximates the five step
reaction mechanism in (8) by assuming a single reaction

A + 2B + E −→ 2D + G+H. (13)

The algebraic equations for the reaction rates are

rA = −kCACBCE , rB = −2kCACBCE , (14a)

rD = 2kCACBCE , rE = −kCACBCE , (14b)

rG = kCACBCE , rH = kCACBCE , (14c)

where k = 17.8 exp( E
RTR

). The steady-state reactor model
is

∂Ci

∂z
=

ri
vz

∀i ∈ {A,B,D,E,G,H}, (15a)

∂TR

∂z
=

1

vzρcp

(
KA(TR − TE)−�HkCACBCE

)
. (15b)

This nominal model has a different structure compared
to the real process leading to structural plant-model mis-
match. The steady state optimum of the nominal model is
u∗
m := [4.32, 8, 6.7] kg/h for the flows of the reactants A,

B and E.

3.4 Communication

In order to run the MAWQA scheme at the real plant
autonomously, it was necessary to establish a reliable
communication between MAWQA and the Siemens PCS7
control system of the plant and between MAWQA and
the SQL database of the online NMR. A schematic of the
communication scheme used for the experimental imple-
mentation of the MAWQA scheme is shown in Figure 2.
The PCS7 control system has an OPC-DA server installed.
The temperature of the reaction mixture at reactor outlet
is recorded in the OPC-DA server from which this informa-
tion is read by the MAWQA scheme. The SQL database of
the online NMR records the concentration of the reactants,
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Table 2. Description of the markers used in Figures 3,4. Input markers in Red and Black refer
to A (Aniline); Blue and Magenta refer to B (Li-HMDS); Green and Cyan refer to E (FNB).

Marker Description Marker Description

[ , , ] Successful-iteration input from model-based optimization [ , , ] Perturbation input
[ , , ] Successful-iteration input from optimization using quadratic model [ , , ] Optimal input for the plant
[ , , ] Explorative-iteration input from optimization using quadratic model Evolution of the profit function

[ , , ] Input due to criticality, which improved the value of profit function

[ , , ] Input due to criticality, which did not improve the value of profit function

by-products and the product. This information is read by
the MAWQA scheme from the SQL database. The input
calculated by the iterative optimization scheme is written
onto the SQL database of the online NMR which writes it
onto the OPC-DA server of the PCS7 control system. The
Siemens PCS7 control system finally applies this input to
the plant.

3.5 Problem formulation

Our goal is to identify the optimal inlet flows for the
lithiation process during continuous operation. Addition-
ally the optimal inputs have to satisfy the process and
safety constraints on the feed flow rates of the reactants
and on the temperature of the reaction mixture at the
reactor outlet. The optimum is defined by a profit function
which depends on the cost of the feeds and the price of the
valuable product at the reactor outlet. The inputs from the
iterative RTO algorithm are passed to the local mass flow
controllers via the communication system described above
which establish the set-points in the dosing units. The
optimization problem for identifying the process optimum
is formulated as

max
u

w̄HCHMH

ρ

3∑
i=1

ui − w̄Au1 − w̄Bu2 − w̄Eu3 (16a)

s.t. Plant model (12), (16b)

TR − 327.15 ≤ 0, (16c)

uL ≤ u ≤ uU , (16d)

where MH is the molecular weight of component H (the
target product), u := {u1, u2, u3} represents the feed flow
rates of components A, B, E and (w̄A, w̄B , w̄E , w̄H) are
the weights used in the profit function. The weights reflect
the cost of the reactants and of the product. The weight
percentage of A, B and E in the feed is 10.61, 20.0 and
10.18. Additionally, the limits for the feed flow rates of A,
B and E are [3-8] kg/h.

Plant

Siemens PCS7 SQL database
of online NMR

MAWQA

T k
R

uk+1

uk+1

uk+1

T k
R Ck

Fig. 2. Illustration of the setup used to communicate with
the plant via the Siemens PCS7 system and via the
SQL database of the online NMR.

3.6 Simulation results

A simulation result with tuning parameters γ = 1, �u =
0.1 and δ = 0.1 of the MAWQA algorithm is shown in
Figure 3. The description of the markers used in the figure
is provided in Table 2. In order to take into account the
process noise, the input flow rates and the concentration
measurement in the plant profit function are corrupted
by Gaussian noise with a standard deviation of 0.05. Be-
fore the first iteration in Figure 3, after performing plant
perturbations according to finite differences, 9 additional
plant perturbations are performed to benefit early from
the quadratic approximation. These additional perturba-
tion inputs are chosen such that they are well distributed
over the operating region. The MAWQA scheme already
identifies a near optimum operating input u3 in the second
iteration. Although the optimum of the plant and the
nominal model are close, the optimization problem (7)
using the quadratic approximation model is chosen by the
MAWQA over the modifier adaptation problem (2) using
the nominal model, as the approximated QA model rep-
resents the plant measurements better than the nominal
model. Therefore, the optimization problem in (7) is solved
in every iteration starting from the 1st iteration. After
identifying a near optimum input u3, the MAWQA scheme
performed several exploratory moves and moves to satisfy
the criticality conditions before it converged to the known
plant optimum.

3.7 Experimental result

For the experiment, the screening algorithm for choosing
Uk data points from Uk was suppressed. This is done to
use all the available data points for fitting a quadratic
function, to avoid oscillating input set-points from the
MAWQA scheme which can be caused by flipping of the
quadratic function. Recently in Gottu Mukkula and Engell
(2020), a guaranteed model adequacy scheme for MAWQA
was proposed to avoid flipping of the quadratic function
in MAWQA, thereby avoiding oscillating input set-points
from the MAWQA scheme.

The input moves computed by the MAWQA scheme and
the evolution of the profit function are shown in Figure 4.
The online concentration measurements from the online
NMR, the offline concentration measurements from the
NIR sensor and the feed flow rates are shown in Figure 5.
The MAWQA scheme was initialized with a flow rate of
3.58 kg/h for A, B and E. In the beginning, plant pertur-
bations were realized to approximate the plant gradients
using finite differences. Additionally, 9 additional plant
evaluations were performed to ensure the availability of
well distributed data points for quadratic approximation.
From the 1st iteration onwards, quadratic approximation
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Fig. 3. Simulation result: Evolution of the input flow rates of reactants A, B and E computed using MAWQA and
the resulting profit function using simulated measurements corrupted by Gaussian noise. The description of the
markers used is provided in Table 2.
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Fig. 4. Experimental result: Evolution of the input flow rates of reactants A, B and E optimized by MAWQA and the
obtained profit function using measurements from the online NMR sensor. The description of the markers used can
be found in Table 2.
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Fig. 5. Top figure: Concentration measurements from the online NMR; Middle figure: Concentration measurements from
the NIR; Bottom figure: Input flow rates of reactants A, B and E as computed by MAWQA. Technical glitches
that occurred during the experiment are highlighted by ellipses.
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was used for the approximation of the plant gradient due
to the availability of the minimum required number of
data points. The 3rd iteration input is already close to the
theoretical plant optimum. During the 7th MAWQA iter-
ation, an unplanned event took place, the feed container
was changed and the weight percentage of Li-HMDS in
the feed was increased to 20.6. This information was not
made available to the control system. Nonetheless, as the
controlled process was not yet stationary, it was reflected in
the plant gradients that were computed from the quadratic
approximation and the control scheme responded by mak-
ing moves to improve the plant performance. The improve-
ment in the plant profit over the MAWQA iterations is
shown in Figure 4. The input moves between the 3rd to the
7th and from the 9th to the 18th iteration are caused due to
the tuning of the algorithm, specifically by not employing
the screening algorithm and the criticality-check. Due to
switching off the screening, there always are data points
that lie farther away from the current point by more than
2�u which triggered additional moves via the criticality-
check. This has the positive effect that the algorithm reacts
quickly to changes in the plant but leads to slightly oscil-
lating inputs which however have almost no influence on
the profit. Nonetheless, the online optimization algorithm
showed a very good performance, driving the plant to
the optimal operation in the presence of significant struc-
tural and parametric plant-model mismatch. As usually
in industrial plants, such probing moves of the controlled
inputs are unwanted, extensions are needed that suppress
further moves but restart the algorithm when plant model
mismatch is detected. First proposals in this direction can
be found in Ye et al. (2018); Gottu Mukkula et al. (2019).

4. CONCLUSION

In this paper, we reported the development of an online
real-time optimization solution for a highly innovative con-
tainerized continuous production process in a pilot plant.
MAWQA, a novel iterative optimization scheme that uses
a plant model as well as measured data, was chosen as
a suitable algorithm for the case study. The simulation
results show that the MAWQA scheme is capable to drive
the plant to its optimum despite significant plant-model
mismatch in few iterations. It then was validated exper-
imentally that the combination of online NMR measure-
ments of the concentrations at the plant outlet with the
iterative optimization algorithm MAWQA can drive the
plant to an optimal operation despite significant deviations
between the model used in the optimization algorithm and
the behaviour of the real plant. It was even possible to
exploit an unknown change in the operating conditions to
improve the efficiency of the operation of the plant. In our
future work, we will focus on developing a standardized
approach for choosing the tuning parameters in MAWQA
scheme.
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